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ABSTRACT

We present a general framework for complex event recog-
nition that is well-suited for integrating information that
varies widely in detail and granularity. Consider the sce-
nario of an agent in an instrumented space performing a
complex task while describing what he is doing in a natu-
ral manner. The system takes in a variety of information,
including objects and gestures recognized by RGB-D and
descriptions of events extracted from recognized and parsed
speech. The system outputs a complete reconstruction of
the agent’s plan, explaining actions in terms of more com-
plex activities and filling in unobserved but necessary events.
We show how to use Markov Logic (a probabilistic extension
of first-order logic) to create a model in which observations
can be partial, noisy, and refer to future or temporally am-
biguous events; complex events are composed from simpler
events in a manner that exposes their structure for inference
and learning; and uncertainty is handled in a sound prob-
abilistic manner. We demonstrate the effectiveness of the
approach for tracking kitchen activities in the presence of
noisy and incomplete observations.

Categories and Subject Descriptors

1.2.10 [Vision and Scene Understanding]: 3D/stereo
scene analysis; 1.2.4 [Knowledge Representation For-
malisms and Methods]: Predicate logic; 1.2.3 [Deduction
and Theorem Proving]: Probabilistic reasoning; 1.2.7
[Natural Language Processing]: Language parsing and
understanding
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1. INTRODUCTION

Consider a situation where you are observing a person
demonstrating both physically and verbally how to perform
a complex task, for example, preparing a cup of tea. The
subject performs simple actions (e.g., picking up a tea ket-
tle), which are part of more complex activities (filling the
kettle from the sink), and which in turn are part of yet
higher-level activities (preparing hot water), ad infinitum.
Actions are inextricably connected to changes in the state
of the world (moving the cup changes its location), even if
the change is not directly observable (stirring the tea after
adding sugar dissolves the sugar). The subject may refer to
actions in the past (“I've finished filling the kettle...”), the
current moment (“The water is heating...”), or in the future
(“I still have to get the milk and sugar...”), and complex
events can overlap temporally (the subject fetches the tea
box while the water is heating). The subject may describe
an event at different levels of abstraction (“I’ll heat water”
vs “I'll heat water in the microwave”), or provide a par-
tial verbal description, which is resolved by context (“Now
I pour the water [from the kettle into the cup]”). Similarly,
visual percepts of events may be incomplete due to visual
resolution or obscuring objects, and only disambiguated by
context (hand removes something from tea box).

A human observer reflexively tries to understand the sit-
uation by explaining what he sees and hears in terms of the
subject’s plan: a coherent, connected structure of observed,
hypothesized, and predicted structure of actions and proper-
ties. When the subject is a teacher, the latter must piece to-
gether a new plan. In other cases, the plan is one familiar to
the observer, whose task becomes identifying, instantiating,
and tracking the plan; such is the case, e.g., when a teacher
observes a student at work. For this thought exercise, we
focused on cooking, but the same principles apply to many
domains where there is a practical need for automated plan
recognition, such as wet labs, medical procedures, equipment
maintenance, and surveillance.

While there is a rich history of research on plan recogni-
tion (briefly recapped in the next section), most work makes
assumptions about the nature of actions and observations
that are violated by the simple example above. We argue
that a general framework for plan recognition should meet
the following criteria: (i) Be robust across variations in the
appearance of a scene and the language used to describe it:
i.e., provide a semantic as opposed to an appearance model.
(ii) Support easy knowledge engineering, e.g., for defining
events in terms of changes of properties of objects and/or
collections of other events. (iii) Represent both decomposi-



tion and abstraction event hierarchies, with no fixed number
of levels. (iv) Treat instances of events as entities to which
reference can be made: e.g., support event reification. (v)
Allow events that are not temporally disjoint, and observa-
tions that arrive out of temporal order.

The contributions of this paper include defining and im-
plementing a framework meeting these criteria based on
Markov Logic, a knowledge representation and reasoning
system that combines first-order logic with probabilistic se-
mantics. Our implementation includes a capable vision
system for tracking the state of objects using an RGB-
D (Kinect) camera together with an uncalibrated high-
definition camera to increase accuracy. Low-level actions
are defined in terms of qualitative spatial and temporal rela-
tions rather than visual appearance, so the system does not
need to be trained on particular environments. We lever-
age a domain independent natural language parser to ex-
tract action descriptions and temporal constraints from the
subject’s narration. Our experiments demonstrate accurate
recognition and tracking of complex plans, even as visual
inputs to the system are purposefully degraded. Finally,
we briefly describe how our future work on learning from
demonstration builds upon this framework.

2. BACKGROUND & RELATED WORK

Our project builds upon work from a wide variety of fields:
machine learning, knowledge representation, pervasive com-
puting, computer vision, and computational linguistics. We
provide a brief overview of only the most direct precedents.

Markov Logic [18] is a language for representing both log-
ical and probabilistic information in the form of weighted
logical formulas. Formulas that include quantified variables
are taken to represent the set of ground formulas that can be
formed by replacing the variables with constants. The prob-
ability of a possible world is proportional to the exponenti-
ated sum of the weights of the ground formulas that are true
in that world. The task of finding a most likely explanation
of a set of data becomes maximum weighted satisfiability,
and can be solved by local search or backtracking methods
(c.g., [3])-

Plan recognition was identified as a core reasoning prob-
lem in early research in Al and cognitive science [19]. Kautz
(1991) developed a logical framework for plan recognition
that met the criteria of expressiveness for action abstraction,
decomposition, reification, and temporal generality, but did
not handle probabilistic information and was never applied
to observations from sensor data. The Markov Logic frame-
work for plan recognition by Singla and Mooney (2011) han-
dled probabilities, but was limited to a two-level hierarchy,
did not reify actions, and was also never applied to sensor
data.

Some groups have explored Markov Logic for activity recog-
nition in video [11,15,23], but did not consider multi-level
hierarchies and employed ad hoc rules for inferring unob-
served events. Of these, Morariu et al. (2011) is closest to
our framework, in that it associated events with time inter-
vals rather than time points.

Lei et al. (2012) demonstrated robust tracking of low-level
kitchen objects and activities (e.g., pour, mix, etc.) using
a consumer Microsoft Kinect-style depth camera (RGB-D).
Their approach is similar to ours for low-level action recog-
nition, but differs in that they inferred actions from object
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Figure 1: Overview of the multi-modal Markov logic
(ML) framework for recognizing complex events. By
obtaining visual and linguistic events through video
and speech, our system provides a general frame-
work for complex event recognition, fusing vision,
language, and knowledge of complex event struc-
ture.

constraints and appearance-based motion flow, while we use
object constraints and relative qualitative spatial position.

We employ the non-domain specific TRIPS parser [1] to
extract action descriptions from narration. There is grow-
ing interest in machine learning and computational linguis-
tics in models that unify visual perception and natural lan-
guage processing. This includes using language to supervise
machine vision (e.g., [9]) and simultaneous learning of vi-
sual and linguistic attributes (color, shape, etc.) [13]. The
grounded language approach of Tellex et al. (2011), like ours,
integrates visual, linguistic, and background knowledge in a
general probabilistic model, but has not yet considered plans
or complex actions.

General formalisms such as stochastic grammars [14] and
hierarchical hidden Markov models [6, 16] have been de-
veloped for representing and reasoning about hierarchically
structured actions; however, grammars have difficulty repre-
senting non-disjoint actions, and HMM models fix the num-
ber of levels in the hierarchy. Others, such as event logic [5]
provide a compact notation for probabilistic models relat-
ing interval-based actions and properties, while propagation
networks [20] use partially-ordered plans to encode the tran-
sition relationships in a dynamic Bayesian network.

3. REPRESENTING COMPLEX EVENTS

We now describe a Markov Logic theory that meets our
criteria for plan recognition. Throughout this section we will
use the general term “event”, rather than action or plan. We
begin by introducing predicates that define the sets of event
types, event instances, and relationships between events.
Any particular domain is specified by defining the domains



Table 1: Core predicates in the event theory. Pred-
icates that begin with “D” are used to define a do-
main, while Occurs, Part, Rel, Stime, and Etime
hold for particular event instances.

Dabstracts(t1,t2) Event type t1 abstracts type ta.
Dpart(t1,p,t2) Events of type ¢1 include a part p of type t2.

DrelEP(¢,r,p) The temporal relation r holds between any
event of type t and its part p.

DrelPP(¢t, r, p1,p2) The temporal relation r holds between
parts p1 and p2 of any instance of ¢.

Occurs(t,e) An event instance e of type ¢ occurs.

Part(e1,p,e2) Event instance e; includes instance ez as a
part p.

Rel(e1, 7, e2) The temporal interval relation r holds between
e1 and ez, which may be events or time intervals.

Stime(e,n) Event instance e starts at the integer-valued
timestamp n.

Etime(e,n) Event instance e ends at the integer-valued
timestamp n.

of these predicates. We then define generic axioms for pre-
dicting future and unobserved events on the basis of ongoing
complex events, and abductively infer complex events from
observations of subevents. This approach simplifies domain-
specific knowledge engineering, and (in future work) turns
the task of learning new events into learning the extent of
the definitional predicates, rather than the unconstrained
problem of learning arbitrary logical formulas.

Our implementation uses the implementation of Markov
Logic called “Tuffy” [17]. Tuffy extends first-order syntax
with scoping and datalog rules, which our implementation
makes use of to substantially improve performance. Tuffy
also restricts Markov Logic syntax by requiring that each
formula be equivalent to a single clause. In order to keep
this section brief and clear, however, we present logically
equivalent axioms in pure Markov Logic.

Table 1 lists the predicates used to define a domain and
to describe a particular situation in terms of the events that
actually occur. Instances of events are reified, that is, are
represented as individuals.

Abstraction Event types are organized into a hierarchy;
an instance of a type is also an instance of all ab-
stractions of the type. By default, an event of a given
type is also an instance of some known specialization
of the type. This is expressed by a weighted (soft) ax-
iom. The weights (denoted by w) for soft rules can be
learned from examples or estimated manually; in the
experiments reported in this paper, estimated weights
were sufficient. The axioms are thus:

Dabstracts(t1,t2) A Occurs(e, t2) = Occurs(e, t1).

w: Occurs(e, t1) =
3 to Dabstracts(t1, t2) A Occurs(e, t2)

Figure 2: An example frame generated by the vi-
sion subsystem. The target objects are in labeled
green bounding boxes, the subject’s face is in a yel-
low bounding box, and her hands are outlined in

cyan.

Temporal Temporal relationships between events are ex-
pressed using Allen’s interval algebra [2], where event
instances are treated as intervals. An integer times-
tamp can optionally be associated with the start and/or
end time of an event. The intended semantics is cap-
tured by two sets of axioms, the first involving inter-
val relations and endpoints, and the second involving
triples of interval relations. An example of the first
sort assert that if two events (intervals) meet, the end
point of the first must equal the start point of the sec-
ond; an example of the second is that “begun by” is
transitive:

Rel(e1, Meets, e2) A Etime(er, n1) = Stime(ez, n2).

Rel(e1, BegunBy, e2) A Rel(ez, BegunBy, e3) =
Rel(e1, BegunBy, e3).

For example, the formula

Occurs(BoilWater, E1) A Part(Eq, Step,, E2)A
Occurs(FillKettle, E2) A Rel(Eq, BegunBy, E2)A
Stime(Ez, 109).

asserts that an instance of the complex event boiling
water occurs, and that it is begun by the sub-event of
filling a kettle. The filling starts at time 109. As a con-
sequence of the general temporal axioms, the boiling
water event also starts at time 109; both events end at
unspecified times greater than 109.

Prediction Distinct from the abstraction hierarchy is a de-
composition, or part-of, hierarchy. There are three
types of axioms for complex events: prediction, con-
straint, and abduction. The prediction axiom assert
that if a complex event occurs, each of its parts occurs
by default.

w: Occurs(t1, e1) A Dpart(t1,p, t2) =
3 ez Occurs(tz, e2) A Part(er, p, e2)



Constraint The constraint axioms assert that the defined
temporal constraints among a complex event and its
parts are satisfied.

DrelEP(¢, r, p) A Occurs(t, e)A
Occurs(t1,e1) A Part(e,p,e1) = Rel(e, 7, e1).

DrelPP(t, r, p1,p2) A Occurs(t, e)A
Occurs(t1, e1) A Occurs(ta, e2)A
Part(e, pl,e1) A Part(e,p2,e2) = Rel(e1,r, e2).

Abduction Finally, abduction axioms allow complex events
to be inferred on the basis of their parts. These ax-
ioms state that by default an event is part of a more
complex event:

w : Occurs(ti,e1) =
3 tQ €2 p
Dpart(t2, p,t1) A Occurs(tz, e2) A Part(ez2, p, e1)

An observer should prefer more likely explanations and
should not assume events occur without evidence. These
preferences are captured by encoding a prior probability
over the occurrence of events of various types by negative
weighted clauses. For example,

—1 Occurs(MakeTea, €)

—2 Occurs(MakeCocoa, €)

indicates making tea is more likely than making cocoa. Specif-
ically, if two worlds are identical except for the choice of tea
or cocoa, then the odds ratio of the first world being true
over the second is e™!/e™2.

4. DETECTING VISUAL EVENTS

Primitive visual events are inferred from interactions be-
tween the subjects’ hands and objects in the environment.
First, we detect and track the hands and objects from a
RGB-D video on a frame-by-frame basis, and smooth the
results to determine a set of time intervals over which hand
and object related fluents (time-varying predicates) hold.
Next, we look at where specific combinations of these flu-
ents begin, end, or hold, and classify them as low-level visual
events.

4.1 Hand and Object Detection and Tracking

While hands are difficult to detect on their own in video,
faces can be reliably detected. The system employs face
detection to first find the subjects face and determine skin
color, and then uses this to aid in finding the hands. Ob-
jects and their orientation are detected and tracked by the
combination of color and 3D bounding-boxes as computed
from the point cloud. The following is a brief summary of
the methods employed:

Skin modeling In order to make the vision subsystem
adaptive to different lighting conditions, an image-
specific Gaussian Mixture Model (GMM) is fitted over
the pixels inside the detected face bounding box. Face
detection is accomplished per frame by the Viola &
Jones algorithm [24]. We assume that the majority of
the area inside the detected face represents skin, which
corresponds to the largest cluster in the fitted GMM.
For a pixel outside the face bounding box, the Ma-
halanobis distance to the largest GMM component is

Table 2: Set of visual fluents (time varying predi-
cates) used in our scenarios.

| Target | Property | Value |
Orientation %t;;lggtéo"lv;lited,
Single Object | Motion Stationary, In-motion
Location Counter, Sink,
Cupboard
. Above, Directly-above,
Relative
Object Pair Location Co—planal_"
Below, Directly-below
Distance Adjacent, Near, Far
Object-Hand | Relation Held, Not-held,
Subject Location gﬁ;rl;t)e; dSlnk,

computed as a skin score. In order to transform this
real-valued score into a binary decision value, a two-
parameter sigmoid classifier similar to Platt scaling in
SVM (support vector machine) is trained on the fly.

Discriminative hand detection A discriminative Con-
nected Components (CC) analysis is performed over
the skin area binary map using SVM. For each CC
in the skin area binary map, the following features
are used: normalized CC size; normalized spatial dis-
tance to the detected face; width-height ratio of the
CC bounding box; histogram of oriented gradients
(HOG) [8]; and distance to the face.

Object identification Objects interacting with the hands
are found by segmenting regions in the point cloud
that are close to the hands but not part of the hands
or body. Objects are differentiated from the hands by
color and from the body by color and distance to the
body. Objects on the table are found by subtracting
the table and subject from the point cloud. Objects are
identified using a nearest-neighbor match on color his-
togram and 3D bounding-box dimensions over a pre-
defined set of named models. This simple approach to
object identification was adequate for our experiments.
For larger domains, the model library can be expanded
to include various shape, texture, and other features.

Tracking and smoothing Since there are occlusion and
perspective variations from time to time during the
demonstration, object detection cannot be expected
to be perfect. A multi-object tracking module is con-
structed to enforce temporal smoothing, particularly
compensating for missed detections. Mean-shift-based
tracking [7] is used for frame to frame object track-
ing, and color histogram distance is used as a matching
score in the common Hungarian Algorithm to associate
tracking and detections [4].

Fig. 2 shows a frame resulting from the vision subsystem,
where hands and objects are detected, tracked and labeled.
If skeleton tracking is readily available using the RGB-Depth
cameras, we also use this information to identify and track
the subject and their hands. This data is now used to infer
low-level events.



Table 3: Examples of low-level events as defined by
selected sets of fluents.

Fluent:

Low-level | Condi-

Event tion Target(s), Property and Value
Begins | Object, Hand: Held
Grasp Ends Object, Motion: In-motion

Holds | Object, Motion: Stationary
Begins | Object, Motion: Stationary
Release Ends Object, Hand: Not-held
Holds | Object, Hand: Held

Begins | Object;, Orientation, Tilted

Ends Object1, Orientation, Straight)
Pour Object1, Objects,

Holds Relative Location: Directly-above

Objecty, Hand: Held

4.2 Low-Level Event Generation

The output of hand and object detection and tracking is
a set of intervals over which visual fluents hold. As shown
in Table 2, each fluent asserts that some object or pair of
objects (first column) has a property (second column) with
a particular discrete value (third column). Metric values
from the visual system, such as the distance between two
objects, are converted to discrete values, such as “Adjacent”,
“Near”, or “Far”, by simple threshholding. Discrete values for
a fluent are mutually exclusive; for example, for the relative-
location property, the value “Above” means the first object
is on a higher plane than the second, but is not directly over
the second; if it were, the value would be “Directly-above”.
Note that visual fluents are not tied to the particular domain
of kitchen activities used in our experiments. The same
(perhaps expanded) set of fluents would be useful for any
domain that involves a person manipulating objects.

Next, primitive events, such as “Grasp”’, “Release”, or
“Pour”, are generated in a deterministic fashion from
changes in the fluent, as illustrated in Table 3. Fluents may
trigger the beginning of an event, signal the end of the event,
or be required to hold over the period of the event (but may
in fact be longer than the event on either end). For example,
a “Pour” event is begun by an object tilting, and ends when
the object becomes straight. However, during the pour the
object must be held and above some other receiving object.
In addition to the fluent changes, the event definitions in-
clude type constraints on the objects involved (not shown in
the table). For example, for a “Pour” event to be inferred,
Object: must be of a type that can be poured (e.g., a kettle)
and Objecte must be of a type that can be poured into (e.g.,
a cup).

5. EXTRACTING EVENTS FROM LAN-
GUAGE

The speech transcriptions from the audio are parsed with
the TRIPS parser [1] to create a deep semantic representa-
tion of the language, the logical form (LF). Essential infor-
mation regarding events are extracted from the LF via event
extraction. The output from event extraction is converted
into linguistic event instances and given as evidence to the
inference system.

5.1 Logical Form

The TRIPS parser uses a semantic lexicon and ontology
to create an LF that includes thematic roles, semantic types
and semantic features, yielding richer representations than
“sequence of words” models. To facilitate using language
representation as features in activity recognition models, we
added new semantic types in the ontology to correspond
to objects and actions in the domain, such as “tea”, “cup”,
or “steep”. The new labels were usually specific subtypes
of already existing semantic types. For example, the word
“tea” was in the ontology under the general type TEAS-
COCKTAILS-BLENDS, so we created the specific subtype
TEA. This extension gives us greater transparency in the
surface representation, but we retain the richness of the hi-
erarchical structure and semantic features of our language
ontology.

5.2 Event Extraction

The LFs are input to the TRIPS Interpretation Manager
(IM), which computes crucial information for reasoning in
the domain, including reference resolution. The IM extracts
a concise event description from each clause, derived from
each main verb and its arguments. The event descriptions
are formulated in terms of the more abstract semantic types
in the LF, resulting in short phrases such as CREATE TEA,
CLOSE LID, and POUR WATER INTO CUP. By substitut-
ing the semantic information of referents for pronominal ex-
pressions, we derive more semantically meaningful descrip-
tions. For example, the phrase “open it” would be described
as OPEN LID in contexts where the pronoun “it” refers to
the lid of the kettle. These phrases will be used as language
features in our activity recognition models. Fig. 3 shows an
example of an extraction from the LF for “Place tea bag
in the cup.” The objects “bag” and “cup” are identified as
REFERENTIAL (i.e., observable) by the IM, and the IM
also includes the coreferential index for the first mention of
the term.

(EXTRACTION-RESULT
:VALUE ((EVENT V38801)
(PUT V38801) (:THEME V38801 V38818)
(:SHORT-DESCRIPTION V38801

(PUT (:* BAG BAG) INTO CUP))

(:INTO V38801 V38887)
(:TENSE V38801 PRES)
(REFERENTIAL V38818) (BAG V38818)
(:ASSOC-WITH V38818 V38814)
(:COREF V38818 V38185)
(REFERENTIAL V38887) (CUP V38887)
(:COREF V38887 V33594)
(NONREFERENTIAL V38814) (TEA V38814))
:WORDS (PUT THE TEA BAG INTO THE CUP))

Figure 3: Extraction for the utterance, “Place the
tea bag in the cup.”

Events described by language may have differing status
with respect to the time of utterance. Our current sys-
tem uses a decision tree method based on tense, aspects,
modals, and event types to classify events according to their
temporal relationship to the moment of utterance: past, on-
going, or future. In addition, since the current reasoning



is propositional, the system generates an atomic event de-
scription based on the short description produced. Putting
this together, the analysis of the extraction in Fig. 3 pro-
duces a concise observation of form (PUTBAGINTOCUP
" TEMPRELN FUTURE).

5.3 Encoding Language Events in Markov
Logic

The final step in language processing encodes the pro-
cessed LF in Markov logic. An event instance of the event
type specified in the LF is generated, and the instance is
asserted to occur. Any temporal attributes in the LF are
converted to temporal constraints between the current clock
time and the time of the event. For example, suppose the
utterance leading to the form (PUTBAGINTOCUP :TEM-
PRELN FUTURE) is made during the time interval [190,
203]. A Markov logic formula of the following form is cre-
ated, where Eg5 is the generated event instance:

Occurs(PutBagIntoCup, E25) A Rel(Egs, After, [190, 203])

A complication arises in the case where the event is a low-
level type which could also occur as a visual event. Markov
logic makes the assumption that different constants refer to
different individuals. If the same event instance were both
observed visually and described in language, it would be
incorrect to use different event tokens for the visual and
language-based observations. The case can be handled cor-
rectly by using an existentially quantified variable in the
formula representing the language-based observation, rather
than a constant, e.g.,

3 e Occurs(PutBaglntoCup, e) A Rel(e, After, [190, 203])

A new instance of the event type is added to the set of con-
stants in the language, but the new instance is not explicitly
asserted to occur. A consistent interpretation that does not
make use of the new token will, in general, be preferred by
the Markov logic inference engine over one that does, be-
cause as noted in Sec. 3, a negative weight is associated
with the occurrence of each event.

6. EXPERIMENTS

We evaluate our framework on a multi-modal corpus col-
lected from people conducting tasks in an instrumented
kitchen, including making tea [22], making cocoa and mak-
ing oatmeal. Participants were asked to conduct the activ-
ity and at the same time verbally describe the action being
conducted. This section demonstrates how: (i) employing a
complex event library improves visual event detection, and
(ii) using both an event library and data from free-form spo-
ken language can compensate for sparse visual input.

6.1 Data

Five sequences of making tea, and four sequences each of
making cocoa and making oatmeal were chosen for evalu-
ation. An RGB-Depth sensor, HD video camera, and mi-
crophones for recording speech were used for data collec-
tion. For ground truth, activities in the sessions were manu-
ally annotated by an expert observing recorded videos per-
formed by the participants. Each low-level event in the video
was annotated with an action (e.g., grasp, carry, open), at-
tributes, such as objects (e.g., cup, kettle, teabox) and paths
(e.g., to, from, into).

Table 4: Example of a multi-level hierarchy of event
types in our complex event library.

Top Mid Low
Level | Level Level
GraspKettle, CarryKettle,
. TurnonFaucet, FillWater
FillKettle TurnoffFaucet, CarryKettle
ReleaseKettle
GoToCupboard,
Make GetlIngredients | GetCupFromCupboard
Tea GetTeaboxFromCupboard
PrepareTeabag GraspTeabox, OpenTeabox,
PutBagIntoCup
BoilWater TurnOnKettle, TurnOffKettle
GraspKettle,
PourHotWater | PourWaterIntoCup
ReleaseKettle

We axiomatized the events that occurred in making tea
into a multi-level hierarchy. The domain includes low-level
events such as GraspKettle, mid-level complex events such
as BoilWater, and general top-level events such as MakeTea.
Table 4 lists the event types involved in an example of mak-
ing tea. While not shown in the table, the BoilWater event
abstracts two more specialized events: boiling water using
an electric kettle, and boiling water using a microwave oven.
Our complex event library also includes high-level events
MakeCocoa and MakeOatmeal, which share many common
mid- and low-level events with MakeTea.

6.2 Impact of the Complex Event Library

Low-level events, such as the ones shown in Table 4, are
generated by fluents extracted from the vision subsystem.
The low-level vision subsystem with the help of the RGB-D
camera, detects the location of objects in the scene (kettle,
cup, teaboz, etc.), along with the locations of the subject
and their hands in 3D space. The locations are quantified
into scene-independent visual fluents, which serve as triggers
that generate low-level events.

The left half of Table 5 (without complex event library)
shows the raw low-level event detection performance for our
12 selected activity sessions divided into three top-level events.
Approximately 2/3 of the events were detected on average.
Some error counts were due to participants not being lim-
ited to a particular method of carrying on an activity, thus
conducting actions that low-level detection was not able to
either capture or detect accurately. However, despite hav-
ing different people performing the same high level activity
in different ways, a majority of low-level events were cor-
rectly identified. The differences over the top-level events
are caused by objects used in the scenarios that are inheri-
tently easier, or harder to detect than others.

We compare these raw recognition results to our complex
event recognition framework using our event library. By
defining the event type structure through the “D” predicates
(via abstract, part and temporal relations) in Markov Logic,
we were able to identify and match low-level events into the
mid- and high-level event structure. The framework in many
cases was able to fill in many of the missing events resulting
in improved recall, while dismissing irrelevant events that
were not part of the plan as being unexplained (i.e., the cor-



Table 5: Recognition performance comparison for low-level events without and with using our complex event
library. Performance improves when event hierarchy is taken into account.

Without Complex With Complex
Event Library Event Library
g . # Correct | # Incorrect # Correct | # Incorrect
cenario
Low-Level | Low-Level Precision | Recall Low-Level | Low-Level Precision | Recall
Events Events Events Events
Detected Detected Detected Detected
Making Tea 59 32 0.65 0.66 72 11 0.87 0.81
Making Cocoa 64 40 0.62 0.89 68 18 0.79 0.94
Making Oatmeal 58 30 0.66 0.81 67 13 0.84 0.93
Total 181 102 0.64 0.77 207 42 0.83 0.89

Table 6: Number of linguistic events correctly and
incorrectly interpreted extracted from narrations
over all sessions of making tea.

Low-level | Mid- and High-level
# Correct Events 10 8
# Incorrect Events 1 0

responding abduction axiom did not hold in the most likely
interpretation), resulting in an improvement in precision. A
comparison of results with and without using our complex
event recognition framework is shown in Table 5.

6.3 Interpreting Linguistic Events

The subject’s utterances from the 5 making tea sessions
were transcribed, and the text parsed and put into an initial
logical form by the TRIPS parser. Events were extracted ac-
cording to the method described in Section 5. The processed
LF and its temporal constraints are extracted and encoded
in Markov Logic. Lingustic events that were not represented
by any event in our library was considered irrelevant and dis-
carded. We call events originating from language linguistic
events to differentiate it from events generated using visual
data.

While a total of 89 linguistic events were generated from
the speech data from our event corpus, only 19 were identi-
fied as relevant to our activities, and the remaining events
were filtered out. Table 6 shows the number of linguistic
events correctly and incorrectly identified by the system. A
majority of the events from language confirmed evidence
already recognized by the visual system. Out of the 10
correctly identified low-level linguistic events, 7 explained
events that were consistent with the visual events, while 3
were events not previously identified from visual data.

An advantage linguistic events have over visual events is
that they can directly describe mid- and high-level events,
which can be interpreted as corresponding predicates in
Markov Logic without much difficulty. A purely vision-based
system on the other hand must rely on using the event struc-
ture to infer higher-level events. During our evaluations, 8
mid- and high-level events were explicitly identified through
language.

6.4 Impact of Language in Sparse Visual Data

Linguistic input is most important when the visual input
is noisy and incomplete, and/or the task is plan learning
rather than plan tracking. As noted, this paper assumes

Table 7: Impact of language with varying amounts of
visual event data. Precison and recall are averaged
over all sessions of making tea.

Without With
% Visual Linguistic Linguistic
Events Events Events
Precision | Recall || Precision | Recall
100 0.87 0.80 0.80 0.92
75 0.89 0.78 0.86 0.93
50 0.98 0.43 0.94 0.60
25 0.90 0.21 0.98 0.60

the plan library is known, while our future work will take
on the learning case. The performance of the vision sys-
tem in our testing kitchen was high enough that only minor
further improvement could be obtained by integrating lan-
guage. Therefore, in order to fully explore the power of
language to aid event tracking in the face of sparse visual
data, we ran a series of experiments where we deliberately
degraded the input to the Markov Logic engine from the vi-
sion system. We varied the input from 100% to only 25% of
the visually detected low-level events.

There are many situations where visual data is similarly
sparse. For example, an object may be too small to recog-
nize, or occlusion of the subject or objects may cause catas-
trophic failure in the visual tracking system. In such cases,
language aids the system in recognizing events and plans.
As shown in Table 7, in the absence of linguistic events, re-
call of low-level events degrades linearly with the amount of
visual event data. However, the use of linguistic events, es-
pecially mid- and high-level events used in conjunction with
sparse visual data significantly improves overall recognition
recall.

7. CONCLUSIONS

In this paper we have presented a robust Markov Logic
framework for recognizing hierarchical events from a com-
plex event library. We have described a Markov Logic theory
that is able to represent complex events, and have used this
theory to implement a system that can recognize kitchen
activities in a real world setting, combining visual and lin-
guistic evidence.

In highly structured domains, formulating and applying
complex event knowledge results in an improvement of event
recognition in the form of contextual information. We have



examined the advantages of using multimodal data through
a Markov logic framework that can directly integrate mul-
tiple modes using visual and linguistic events. We have
shown the usefulness of linguistic events as additional in-
put to our system in the absence of visual events. To the
best of our knowledge, our system is the first general plan
recognition system that can recognize and trace arbitrarily
complex events on the basis of both visual and linguistic
input.

Our current system is only the first step in our larger
project of creating a system that can learn new complex ac-
tivities from demonstration. The use of multimodal data,
such as vision and language, introduces the possibility of
learning new complex activities in a rich and dynamic man-
ner. The flexibility of Markov Logic provides a compact but
robust method of representing visual and linguistic events.
For future work, we plan on formalizing activity learning as
the task of extending the domains of the event definition
predicates so as to reduce the overall cost (i.e., increasing
the probability) of the observed demonstration.
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