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Abstract

The problem of Most Probable Explanation (MPE)
arises in the scenario of probabilistic inference:

The success of modern complete SAT solvers has inspired
a number of researchers to develop improved complete MAX-
SAT algorithms. Recent developments include using unit

finding an assignment to all variables that has the
maximum likelihood given some evidence. We
consider the more general CNF-based MPE prob-
lem, where each literal in a CNF-formula is asso-
ciated with a weight. We describe reductions be-
tween MPE and weighted MAX-SAT, and show
that both can be solved by a variant of weighted
model counting. The MPE-SAT algorithm is quite
competitive with the state-of-the-art MAX-SAT,
WCSP, and MPE solvers on a variety of problems.

propagation for strong bound computatifiri et al, 2005;
2004; adapting local consistency methods developed for
CSP to MAX-SAT [de Givry et al, 2003; and using fast
pseudo-Boolean solvers to check the optimality of MAX-SAT
boundgAloul et al,, 2004.

In probabilistic reasoning, the problem of Most Probable
Explanation (MPE) is to find an assignment to all variables
that has the maximum likelihood given the evidence. Exact
methods for MPE on probability distributions representgd b
Bayesian networks include well-known methods such as the

Join Tree algorithniJenseret al, 1994, as well as a recent
] branch-and-bound algorithm, AND/OR Tree Sealbhari-
1 Introduction nescu and Dechter, 20pS5ince solving MPE exactly is NP-

Constraint Satisfaction Problems (CSP) have been theciubjeHard, local search algorithms have been introduced for ap-
of intensive study; many real-world domains can be formal-Proximation [Park, 2_002 In this paper, we consider MPE
ized by CSP models and solved by either complete or incom@n CNF formulas with weighted literals, where the goal is to
plete reasoning methods. Beyond classic CSP, where a solfind @ solution with maximum product or sum of its literal
tion must satisfy all hard constraints, some CSP models ar&/€ights. This CNF-based MPE problem is strictly more gen-
capable of handling both hard and soft constraints. The deféral than MPE for discrete Bayesian networks, because any
inition of constraints and the measurement of the quality ofdiScrete Bayesian network can be converted to a CNF with
a solution vary from model to model, and the goal is usua||ywe|ght§c_i literals whose size is linear in the size of conditi
to find a best solution to the constraints, rather than simplyProbability tables (CPTs) of the netwol®anget al.,, 20054.
a solution. For example, the constraints can be associated MPE on CNF can be viewed as a special case of Weighted
with probability, cost, utility, or weight; the goal can be t Model Counting (WMC)[Sanget al, 20058, and is likely
minimize costs of violated constraints, or to maximize theeasier than WMC because we may apply branch-and-bound
likelihood of a variable assignment, etc. However, all fit in based pruning techniques to reduce the search space. We
a general framework for soft constraints, namely, seng-rin choose CachdiSanget al, 2004, a state-of-the-art model
based CSPEBistarelli et al, 1997. In this paper, we focus counting system, as a platform on which to build our
on two specific models: MPE and weighted MAX-SAT. MPE solver, and we extend pruning techniques for sub-
MAX-SAT extends SAT to the problem of finding an as- problems with components. As a result, we present MPE-
signment that maximizes the number of satisfied clauses, i®AT, @ decomposition-based branch-and-bound algorithm
case the formula is unsatisfiable. Weighted MAX-SAT ex-that works on top of WMC and prunes the search space ef-
tends MAX-SAT by adding a weight to each clause, with fectively. Furthermore, we are able to use the dtree algorit
the goal of finding an assignment that maximizes the sun®f [Huang and Darwiche, 2003; Darwiche, 20@2boost the
of weights of satisfied clauses. MAX-SAT and weighted performance on problems with good decomposability.
MAX-SAT problems are solved by either incomplete local In general, MPE and weighted MAX-SAT illustrate two
search methods or complete branch-and-bound based exhagemplementary ways of representing soft constraints:eeith
tive search. For most MAX-SAT problems, local searchhaving weight on variables or having weight on constraints
methods exhibit better speed and scaling than complete metfclauses). Although they have apparently different regmes
ods. Local search methods, unfortunately, do not provide &ations of weight and goals, they can be converted to each
proof that the returned solution is optimal. other by adding auxiliary variables or clauses, possibly at



some loss in efficiency. In addition to describing these reclause. Not surprisingly these two representations are/equ
ductions, we show how to formulate CNF-based MPE as amlent in that they can be directly converted to each other.
iterative pseudo-Boolean satisfiability (PBSAT) process. .

MPE to weighted MAX-SAT

In our experiments we compare our MPE solver MPE-SAT ) 4 . )
with other state-of-the-art complete MPE/MAX-SAT solvers W€ give a simple conversion for MPE on CNF to weighted
YAX-SAT, which is different from the encoding ibPark,

as well as a pseudo-Boolean solver on a variety of MPE an ] !
MAX-SAT problems. Our approach is quite competitive on 2002 translates MPE on Bayesian Networks to weighted
most problems and is significantly faster than each of thd"AX-SAT. Assuming the combination operator+s

other solvers on at least one of the classes of benchmarks. o for each literal in MPE, a unit clause is added with
weight equal to the weight of the literal.
e all original clauses in MPE are assigned an “infinite”

weight, which is a number chosen to be at least as large
as the sum of the weights added in the previous step.

2 MPE and Weighted MAX-SAT

The MPE problem originated in research on Bayesian net-
works, one of the most popular graphical models. A Bayesian o o )
network is a DAG, where each source node has a prior proba- Since all original clauses have an infinite weight, any op-
bility distribution on its values and each non-source noate h timal solution in weighted MAX-SAT must satisfy them and
a Conditional Probability Table (CPT) specifying the proba maximize the sum of weights of satisfied unit clauses, which
bility distribution of its values given the values of its pats. ~ Obviously maximizes the sum of literal weights in MPE and
Most Probable Explanation (MPE) is the problem of findingtherefore is an optimal solution in MPE as well, and vice
a complete assignment of values to nodes that has the mayersa. The converted formula has a mixture of hard and soft
imum likelihood given some node values as evidence. Th&onstraints, which is a challenge for exact weighted MAX-
likelihood of a complete assignment is the product of the cor SAT solvers: to be efficient, they must take advantage of the
responding entries in the conditional probability tablesla hard constraints.

the prior probabilities. To solve MPE exactly, one can ei'Weighted MAX-SAT to MPE

ther compile the Bayesian network into a junction tree and_. : .
then propagate the evidené2ensenet al, 1994, or per- Givry et. al.[2003] described a Pseudo-Boolean encoding for

form a branch-and-bound searehg, AND/OR tree search MAX-SAT. Although that does not explicitly refer to MPE,

[Marinescu and Dechter, 20DSAlternatively, one can con- It ¢@n be modified for MPE by adding proper weights. Our
vert MPE to weighted MAX-SAT and solve it by any local conversion is as follows:
search algorithniPark, 2002

We begin with some definitions:
Definition 1 A CNF formula with weighted literalis a CNF
formula plus a functionweight that maps literals to real-
valued non-negative weights.
Definition 2 Given a combination operatay defined on the
reals, the problem oMPE on CNF formulas with weighted
literals is to find a complete satisfying assignmerthat has
the maximuma;weight(v;), wherewv; is either the positive
or negative form of theth variable ins. To be convenient, we
also define the inverse operater MPE of an unsatisfiable solution with a maximum sum of weight givariables, which

CNF formula is defined to be 0. ; . L : O
This CNF-based MPE B . is equivalent to maximizing the sum of weights of satisfied
IS -base can represent Bayesian-networky|, seg in weighted MAX-SAT. This encoding does not add

based MPE because there are linear reductions from Bayesiafi,, |ause, but needs as many auxiliary variables as the num-
networks to CNF formulas with weighted literdBangetal, o1 ¢ clauses. The inflated number of variables makes solv-

e for every variable z in weighted MAX-SAT, let
weight(z) = weight(—-x) = 0.

o for every clause; in weighted MAX-SAT, an auxiliary
literal —y; is added toc;, with weight(—y;) = 0 and
weight(y;) = weight(c;).

While the original formula for MAX-SAT may be unsat-
isfiable, the converted formula is guaranteed to be satisfiab
because one can always obtain a trivial solution by setting a
auxiliary y variables to false. When the combination operator
is fixed to sum, solving MPE on the converted formula finds a

2005b; Chavira and Darwiche, 200%Practically, settingp
to arithmetic+ or x (theno is either— or /) suffices our
purposes . For example is used for likelihood-originated
MPE and+ is used for weighted MAX-SAT-originated MPE.

ing MPE more difficult, especially since auxiliary variable
make every clause trivially satisfiable and thus unit prepag
tion and conflict-driven learning become unavailable.

In the rest of the paper, we will use the short term MPE forMPE and Pseudo-Boolean SAT

“MPE on CNF formulas with weighted literals”, when there
is no confusion.

The problem of weighted MAX-SAT on a CNF formula is

Since the encoding ifde Givryet al., 2003 converts MAX-
SAT to Pseudo-Boolean SAT and (weighted) MAX-SAT and
MPE are equivalent, we observe that there is a close refation

to find an assignment that has the maximum sum of weightship between MPE as Pseudo-Boolean SAT as well.
of all clauses satisfied by that assignment. When every weighbefinition 3 Given a CNF formulap and a seCC of linear

is 1, weighted MAX-SAT reduces to MAX-SAT.
Both MPE and weighted MAX-SAT optimize a metric of

constraints over variables in, Pseudo-Boolean SAT (PB-
SAT)is to find a total assignment that satisfies bgtland

the weight, the only difference is that MPE has a weight onlinear constraints inC'. A linear constraint has the form
each literal and weighted MAX-SAT has a weight on eachzz;1 a;v; > d wherewv; is a variable that takes value 0 or



1, a; andd are real-valued constants ands the number of ~ Algorithm 2 MPE-SAT
variables. MPE-SAT(¢, (b) I returns MPE of CNF formula

We show how to convert a likelihood-based MPE to an if ¢ is empty, return optimal value of unassigned vars
iterative PBSAT process. In the context of likelihood, the if ¢ has an empty clause, dogood learningand return 0
combination operato becomesx, and a variabley; has ~ dodynamic component detection solve each separately
weight(v;) = p; andweight(—v;) = 1 — p;. Without loss do cache lookup reuse previously computed values
of generality, we assunte< p; < 1, otherwise ifp; = 0 (1) dodynamic bounding: if E(¢) < Ibreturn 0 // pruning
we solve the simplified formula with; instantiated to 0 (1). ~ select an unassigned literale ¢ by branching heuristics
The MPE goal is to find a complete satisfying assignment thatlresult = MPE-SAT ¢|,—, Ib © weight(—w))

maximizes updatelb according to Iresult
pi i rresult = MPE-SAT¢|,—1, b © weight(v))
H Di H (1-p) = H ( 11— -) H (1 —pi). result = Maxlresult @ weight(—v), rresult @ weight(v))
=1 2,=0 i i i do caching AddToCachep, result)

Since [T, (1 —p;) is a constant andog is an increasing _'eturn result

function, this is equivalent to maximizing

log [H(L)“] =3 log( Pi e, 3.2 Branch-and-Bound and Decomposition
el 4 i 1=p Branch-and-bound is the underlying mechanism for most ex-
This linear expression can be used as the left side of &austive search algorithms that find an optimal solutiore Th
linear constraint in PBSAT, but we still need to figure branch-and-bound algorithm maintains a global best swiuti
out what boundd to put on the right side. By defini- found so far, as a lower bound. If the estimated upper bound
tion of MPE, we know that the optimal value must be in of a node is not better than the lower bound, the node is
[0,T17_, Max(p;, (1 —p;)) ]. Now we can iteratively search pruned and the search continues with other branches.

for the boundd using binary search. At each step whéis Previous research has shown that decomposition and
set, we solve PBSAT with a single linear constraint caching techniques are critical for such exhaustive se@rch
i be efficient[Darwiche, 2002; Bacchust al, 2003; Sanggt
Zlog(l — )z > d. al., 2004; Marinescu and Dechter, 2§05 owever, with dy-
i Pi namic decomposition the simple form of branch-and-bound

In this way, we can gef arbitrarily close to the optimal value must be modified. During the search, a problem may decom-

in a bounded number of steps. pose into several independent sub-problems (components)
that, for efficiency, one would like to analyze separatelye T
3 Algorithms and the Implementation branch-and-bound algorithm must include a way of allogatin

In this section, we first examine a simple MPE algorithm andportlons of the global bounds to the individual components.
then show how to enhance it with some advanced techniques. 3 MPE-SAT

3.1 DPLL for MPE To address thg above issues, we develop MPE-SAT, a
The nave Algorithm 1 is a simple modification of the classic N€W decomposition-based branch-and-bound algorithm with

DPLL search. First if the formula is empty (already satisfied dynamic decomposition and caching. MPE-SAT extends
DPLL-MPE returns the optimal valueg, sum or product) DPLL-MPE with the following function blocks. Since there

of weights of unassigned variables, which becomes pareof tha'€ & number of similarities with the related AND/OR tree

current value: if the formula is UNSAT, DPLL-MPE returns S€arch algorithniMarinescu and Dechter, 20n5wve briefly

0 by definition; otherwise it selects a variable to branch, re €ompare our methods with that algorithm.

cursively solves each branch and then returns the best valug Dynamic Component DetectionA connected component

which is the better one found in the two branches. detection is performed dynamically for every non-trivial
Unlike DPLL for SAT where the search halts when a SAT [N the search. Since components¢oére independent sub-

leaf is found, DPLL-MPE performs an exhaustive search oveProblems with disjoint variables, they are solved sepayate

all possible SAT leaves for the optimal value. It can be very@d then their results are combined to get the resuligfor
slow without proper pruning, and that is why branch-and-(thoughAlgorithm 2 does not show details of these obvi-

bound algorithms are widely used for many similar optimiza-©US Steps due to space limitation). (In AND/OR tree search,

tion tasks including MAX-SAT and weighted CSP. components are determined statically using the pseudo tree
constructed before the search.)

Caching and Cache lookupWhen the value of a com-
ponent is known, the component with its value is stored in

Algorithm 1 DPLL-MPE

DPLL-MPE(¢) // returns MPE of CNF formula _ a hash table (caching) for later reuse (cache lookup), which
if ¢ is empty, return optimal value of unassigned variables 5gids repeated computation. A component to store can be
if ¢ has an empty clause,. return O its corresponding clauses or a short signature of the céatose
select an unassigned variabies ¢ to branch save space. Even when the exact value of a component is un-
return MaxDPLL-MPE(¢|,—o) © weight(—v) , known because of pruning in its subtree, a proper bound can

DPLL-MPE(¢|,=1) ® weight(v)) be cached for reuse too. The purpose of this bound caching




is to save the partial work already done for a component that Component ProcessingComponents are processed in a
is to be pruned. A cached bound can be used as an estimatddpth-first order and the search stays within a component un-
upper bound of the component for pruning and it is updatedil it is finished. This component processing strategy islwel
whenever a tighter bound or the exact value of the same consuited to dynamic bounding for sibling components, but it
ponent is found. (AND/OR tree search caches the contexs different from that for model counting. In Cachet, once
instead of the component itself.) a component is found SAT during search, the work on the
Dynamic Bounding The parametelb, initially co or given  rest of that component will be temporarily suspended and an
by local search, is the lower bound forwhen¢ is created. unexploited component (if available) will be processedtnex
E(#) is an upper bound estimation of the true valuegof That strategy works well for finding UNSAT components as
which can be simplys, ey Maz(weight(v), weight(—v)), a  soon as possible, which is good for model counting; but in
cached bound or a result by special computation (as describdVIPE-SAT we want to continue working on a SAT component
in section 3.4). IfE(¢) is at mostlb, the current branch is until it is fully done, because the known value of a finished
pruned for it will not yield a better result. Note that for a component yields better lower bounds for its siblings when
subproblem/b for its right branch may be better thahfor  they are checked for pruning.
its left branch, because solving the left branch may improve Optimal Solution Retrieval In order to get the optimal
the previoudb. When a sub-problem (component) is being solution as well as the optimal value, we need to maintain
solved, only local information is needed for pruning; iteg  all partial solutions associated with all the active comgras
bound from its parent and the bounds from sibling compo-on the current search path, from which we can compose the
nents, which are updated dynamically. A pareliis imme-  optimal solution at backtracking. The optimal partial smn
diately broken and passed into its sub-problems for pruningf a component must be cached together with its exact value.
(top-down). For example, if sub-problessplits intoS; and Branching Heuristics The dynamic branching heuristics
Sy thenlbg, = lbg © E(S2). andlbs, = lbs © E(S1).  for SAT and model counting such as VSIDS, VSADS and
However, sinces; is solved afterS;, lbs, should be dynam- EUPC[Moskewiczet al., 2001; Sangt al, 20053 work well
ically updated with the exact value &f replacing£(S1).  for MPE too. These heuristics aim at maximizing the effect
(AND/OR tree search uses dynamic bounding as well but colef unit propagation or avoiding the infeasible search syyce
lects bounds from sub-problems (bottom-up).) learning from conflicts. However for MAX-SAT problems,
Branching Heuristics Any dynamic heuristic good for we have found that the dtree-based semi-dynamic branch-
DPLL search will work, and it turns out that decomposition- ing heuristiclHuang and Darwiche, 2003; Darwiche, 2002;
based heuristics are often very useful (as discussed iipsect 2004 is often better, because in those problems unit propaga-
3.4). (AND/OR tree search uses the statically-constructedions and conflicts that guide dynamic heuristics are nodong
pseudo-tree heuristic, which also aims at decomposition.) available whereas structural decomposition based higrist
Nogood Learning The well-known conflict-driven clause are affected less. The dtree program [yuang and Dar-

learning technique for satisfiability testirgg, [Zhangetal,  wiche, 2003 computes a static variable group ordering based
2001, can be directly used for CNF-based MPE. Learnedon dtree decompositioiDarwiche, 2002 which is fed
clauses implicitly prune the infeasible search space. to MPE-SAT. The semi-dynamic branching heuristic makes

Comparison Since the top-down scheme passes the besthoices by dynamic heuristic for variables in the same group
known lower bound to a sub-problem once it is available,but prefers variables in a group with higher priority and the
MPE-SAT may examine fewer nodes than AND/OR treegroup priorities are determined statically by dtree. Timeeti
does when pruning occurs. MPE-SAT benefits from nogoodor running dtree is usually insignificant compared to tiesti
learning that dynamically changes its variable orderingi{w for solving the problem. A nice property of dtree is that afte
VSIDS or VSADS heuristic), while nogood learning is likely each group of variables is instantiated (from high to low pri
less useful for the static pseudo-tree variable orderinge T ority), the problem is guaranteed to decompose. However, if
dynamic component detection in MPE-SAT is more powerfula problem has a large tree-width, the sizes of the high pyiori
than the static detection in AND/OR tree search because thgroups by dtree can be so large that the search space blows
latter may miss some decomposition due to dynamic effectsjp before the problem decomposes.
however, the overhead of the former is much higher. Finally, Upper Bound Computation We are able to extend the
the more expensive component caching in MPE-SAT is moreéJP heuristic[Li et al,, 2003 to weighted MAX-SAT in our
powerful than context caching in AND/OR tree search, be-solver. Computing an upper bound on the weight of the satis-
cause different contexts may lead to the same component. fied clauses of formula is equivalent to computing a lower

) bound on the weight of violated clausesdfThe weight of
3.4 The Implementation violated clauses of can be estimated as follows:
The problem of model counting (counting the number of solu- CostLB =0
tions of a CNF formula) shares many features with MPE, both  for each unit clause af
requiring exhaustive search. In DPLL-MPE if we replace the Simplify ¢ by setting the current unit clause to true
max operation by sum (and the optimal value of a SAT leafis if there is an empty clause (conflict)

one) we will get a nive model counting algorithm. Using the incrementCost LB by the minimum weight of the
weighted model counting system Cach&anget al., 2004 empty clause and the clauses for deriving it, and
as a platform, we have implemented the MPE-SAT algorithm remove clauses for deriving the empty clause from

and the following to better support it. CostLB is the lower bound of violated clauses at the end.



We also adopt a trick from previous MAX-SAT solvers that [_Problems [ #vars | #dauses [ Toolbar | PB2 | MPE-SAT

. . ra 1236 11416 30 0.04 0.18

when the value of a known solution and the current estimated b 1854 | 11324 X 12 072
i i rc 2472 17942 X 10 3.9

value differ only by one, unit clauses are safely propagated 2biteamps | 260 b o8 i oo
2bitmax6 150 370 X 35 0.28

randl 304 578 X X 15

4 Experimental Results

) Figure 2:MPE of circuit CNF and runtime in seconds.
We tested with both CNF-based MPE and MAX-SAT.

The CNF-based MPE problems are either from random [ Problems | #Node | Induced width | AoTree | MPE-SAT |
3-CNF or structured CNF formulas with random literal 75-12 144 19 20 047
weights (equivalent to weighted MAX-SAT), or trans- o | % P Rl A
lated from Bayesian networks (special because of the So-28 525 “ X 55

ad-hoc Bayesian-network-to-CNF encoding). The MAX-
SAT problems are structured ones used in previous litergigyre 3:MPE of grid Bayesian networks and runtime in seconds.
ature and fault diagnosis problems generated from stan-
dard circuit benchmarks that are challenging for many
solvers. More details of these problems can be found at The first domain is MPE on satisfiable random 3-CNF for-
www.cs.washington.edu/homes/sang/benchmarks.htm mulas with random weights between 1 and 1000 on each pos-
We used the fo”owing state-of-the-art solvers: itive literal and O WE|ght on each negative literal. The prOb
Toolbar [de Givryet al, 2003; 2005 an exact weighted €ms were converted to weighted MAX-SAT via the encoding
CSP solver that integrates efficient algorithms for maiiitg N Section 2 (introducing only positive unit clauses). Sime
various levels of local consistency. It is a generic soheer f US€+ as the combination operater for MPE here, a direct
weighted CSP and weighted MAX-SAT. We used version 3.0franslation to PBSAT is adding a linear constraint where the
UP [Li et al, 2004 : an exact branch-and-bound MAX- weighted sum of all positive literals is at least a given kdhun
SAT solver usi,ng unit propagation and distinguishing inde-In principle we _should run PB2 iteratively to optimize this
pendent conflicts for powerful lower bound computation. ~ 20uUnd, but we just set the bound @gt (for proving SAT)
MaxSatz [Li et al, 2004 : an exact branch-and-bound andopt + 1 (for proving UNSAT), because PB2 is not effi-

: . i cient enough on this domain. (The valuept was that found
MAX-SAT solver extendingUP with sophisticated lower " oo 'solvers ) For MPE-SAT, we used the weight-based
bound computation techniques. Highly optimized for MAX-

. . ) dynamic heuristic, where variable selections with good-uni
SA;E;\{VSS t?e ww;nzggfzthe 2006 '\SAE'SAI‘T evglx_a;tlonl. propagated weights are preferred before a solution is found
oul et al, | - @ pseudo boolean SAl SOVEr (4 get 3 good bound early) and bad unit-propagated weights
that takes linear constraints. It can prove the optimality o

. - - are preferred afterwords (to get prunings early).
encoded MAX-SAT problems. Basically, an auxiliary vari- ~ g0 re 1 each point represents the median runtime on
able is added for each clause and there is a linear constraihy instances. On the PB2 curve. the data point of ratio 2.6
limiting the sum of these added variables to the given bound : ’ '

) is actually a timeout (media 600 seconds). Compared to
AoTree [Marinescu and Dechter, 20D3he AND/OR tree e other two, PB2 is very inefficient at low ratios, frequgnt

implem_entation that works for MPE of Bayesian networksiimed out. However, as the problem gets more and more
and weighted CSP. _ constrained with ratio increasing towards 4.2, PB2 impsove
MPE-SAT: our solver that implements the MPE-SAT al- significantly. MPE-SAT has a similar trend: it is about two
gorithm. It is for CNF-based MPE and weighted MAX-SAT. times slower than Toolbar at low ratios, but gains a dramatic
All experiments were done on a Linux machine with 2.8 speedup at high ratios. Apparently at high ratios MPE-SAT
GHz Pentium 4 CPU and 4 GB memory, except that we rarand PB2 benefit a lot from clause learning by the underlying
AoTree on a Windows machine with 2.8 GHz Pentium 4 CPUSAT engine, which prunes most infeasible search space. The
and 1.5 GB memory. The runtime cutoff is 600 secondscurve of Toolbar is rather flat before ratio 4.2. For low ratio
Since not all solvers apply to the same domains, for each dainder-constrained problems, Toolbar prunes the seardespa
main, we show the results only for the solvers that apply.  very effectively using advanced bounding techniques; how-
ever, without nogood learning, it is not effective at prunin

Random MPE (100 variables) using the constraints and so does poorly on well-constdaine
. S oy high ratio problems. This effect is amplified with 200 vari-

wod e ] ables and ratio 4.2: Toolbar often cannot solve an instamce i
an hour but MPE-SAT can solve it in a few seconds.

Figure 2 shows the results of MPE on structured circuit
CNF formulas with random variable weights. Clearly most
problems are easy to MPE-SAT but hard or non-solvable to
Toolbar. We also ran PB2 with aive binary search for the
optimal value. PB2 works fine on all problems but one. It
* auseivar refio T ¢ appears that CNF-based MPE suits MPE-SAT and PB2 better
) ] ) than Toolbar, which is optimized for weighted CSP.

Figure 1: MPE of random 3-CNF (median runtime) In Figure 3, we compared with AND/OR tree search on

time (sec)

18 22



Problems | Toolbar [ PB2 MaxSatz [ UP [ MPE-SAT

Problems. | OPT [ Bound | Toolbar [ PB2 | MaxSatz [ UP | MPE-SAT

Pret6Q60 70 0.001 11 79 0.05 4321 1 Z 169 | 002 0.25 0.17 0.7
Pret6Q75 4 0.001 11 48 0.06 4322 1 8 X 0.01 543 2.3 0.1
Pret15060 X 0.003 X X 0.09 c432-3 2 6 X 0.16 37 0.2 0.25
Pret15075 X 0.003 X X 0.1 c432-4 2 6 X 0.06 41 0.4 0.75
dubois22 130 0.001 37 248 0.04 €499-1 3 4 55 4.58 0.22 0.01 0.4
dubois23 245 0.001 74 168 0.04 €499-2 4 5 28 3.58 3.33 0.01 0.37
dubois24 496 0.001 152 X 0.04 €499-3 7 9 X X 2.96 0.03 0.66
dubois25 X 0.001 311 X 0.04 c499-4 8 9 X X 7.94 0.02 0.75
duboisz6 X 0.001 X X 0.04 880-1 4 9 116 0.3 23 0.3 2.2
dubois30 X 0.001 X X 0.05 €880-2 5 6 X X X 0.1 27
dubois100 X 0.006 X X 0.17 €880-3 6 8 X X X 0.2 78

- 880-4 7 8 X X X 0.11 59

am-100-16n1 | 318 | 0.001 78 1 31 13561 5 9 X X X 1 15

aim-100-16-n2 2 0.005 23 24 139 13562 6 9 X X X 1 34

aim-100-16-n3 X 0.003 1338 194 55 13553 7 12 X X X 17 4

aim-100-16-n4 X 0.005 10.0 29 78 13564 s 13 X X X 19 6.7

aim-100-20-n1 | 158 | 0.003 23 24 2.2

aim-100-20-n2 20 0.008 13 24 15 )

aim-100-20-n3 | 145 | 0.001 59 20 16 Figure 5:MAX-SAT problems from fault diagnosis and runtime in

aim-100-20-n4 | 192 0.04 15 23 4 seconds (X = time> 600).

hole07 019 | 0001 | 004 0.03 031
hole08 18 0.002 0.4 0.4 1.9
hole09 20 0.002 41 5.8 8.9
hole10 249 | 0.002 46 9% 35

such as clause learning and non-chronological backtrgekin

; . 3 - which are unavailable for other MAX-SAT solvers including
e e g ACS UNSAT Instances  yipe ST (because of the MAX-SAT-to-MPE encoding).
MPE-SAT works very well on pret and dubois problems,
because they decompose quickly—they usually have small
grid MPE problems on Bayesian networks. Anx n grid  separator sets by diree based heuristics. After thoseatriti
network has binary-valued nodes indexed by p@irg), with ~ variables are instantiated, the problem decomposes into in
node(1,1) as a source angh, n) as a sink. Each nodg, j)  dependent sub-problems and MPE-SAT can solve them effi-
has parents indexed l§y— 1, j) and(i, 5 — 1), and a fraction ~ ciently. For the same reason, MPE-SAT works less well on
of nodes have deterministic CPfSanget al, 20058. The  some aim-100 and hole problems—the sizes of root separator
sink is set to true as the evidence for MPE. The induced widtsets vary from 17 to 20, large enough to be hard.
of a Bayesian network is a measure of its density. It is clear Toolbar and UP have somewhat similar behaviors over
that MPE-SAT dominates on all these highly deterministicproblems in Figure 4, in that they can solve all aim (except
problems by a large margin and AoTree has difficulties onone) and hole problems and all fail on large pret and dubois
grid networks with large induced width. MPE-SAT is not problems, though UP is faster up to a factor. For large prétan
very sensitive to the induced width because the underlyinglubois problems they seem to have difficulty in finding a good
SAT engine can explore the local structures (introduced bysolution matching the given upper bound, but for hole prob-

deterministic entries) efficiently. lems finding a good solution is easy: removing any clause
The remaining experiments were on structured MAX-SAT makes the formula satisfiable.
problems: examples considered [ie Givry et al, 2003; Next, we show that PB2 is indeed not universally good

Li et al, 2005 and fault diagnosis problems. Our MPE for all MAX-SAT problems. In Figure 5, the fault diagno-
solver is competitive with the other solvers on most classessis problems were generated from ISCAS-85 combinational
(We do not show results for unstructured random MAX-SAT circuits [Brglez and Fujiwara, 1945 In a circuit we make
problems where MPE-SAT is not at all competitive becausesome gates have stuck-at faults such that the output isincon
MPE-SAT spends significant time on dynamic decomposisistent with the given input, so a MPE solution is a sound ex-
tion checking and caching, which is wasted because the prolplanation with the least number of faulty gates. This proble
lems have very dense constraints and hardly decompose.) Foan be solved by a SAT based method that enumerates pos-
each problem, we gave all solvers the initial bound found bysible explanationgSmith et al, 2005. An optimal solution
Borchers' local search program for MAX-SABorchers and  often falsifies quite a few clauses. Each entry in the /Bound
Furman, 1998 and the optimal value is defined as the min- column is the initial upper bound (for solvers) returned by |
imum number of clauses violated. In fact, local search cartal search. It is interesting that local search cannot find an
quickly find the optimal bound of 1 for every problem in Fig- optimal value. PB2 at least takes one run to prove UNSAT
ure 4. All the solvers will find a solution value atleast as@oo (givenbound = opt — 1) and another run to prove SAT (given
as the given bound. bound = opt). So each number for PB2 is the sum of these
In Figure 4, PB2 dominates on all problems, and MPE-two runtimes, and we ignore the insignificant portion of time
SAT is also quite good, outperforming Toolbar and UP onfor other runs.
most problems. Unlike other branch-and-bound solvers, PB2 Only UP and MPE-SAT can successfully solve all fault di-
proves the optimality of a given bound that becomes a singlagnosis problems, and UP is faster by a constant factor. UP is
linear constraint. When the upper bound is 1, the problem igxtremely efficient probably because of its lower bound com-
probably under-constrained (note that the encoding for PBputation: there are many binary clauses in these formulds an
is trivially satisfiable without the linear constraint), 882 UP may get a very tight lower bound by applying the unit
can easily find a solution. Itis also easy for PB2 to prove thatiteral rule iteratively. It is a little surprising that M&atz,
all problems in Figure 4 are UNSAT using SAT techniqueswhich is supposed to use more sophisticated lower bounding



techniques than UP, has serious difficulties on many probRenseret al, 1994 F. V. Jensen, S.L. Lauritzen, and K.G. Olesen.
lems. MPE-SAT is efficient because it takes advantage of Bayesian updating in recursive graphical models by local com-
decomposition: the problems often decompose after a few putation.Computational Statistics Quarterl$:269-282, 1990.
instantiations when dtree heuristic is used. Toolbar fails [Li etal, 200§ C. M. Li, F. Manya, and J. Planes. Exploiting unit
most problems, while PB2 can solve problems with small op- propagation to compute lower bounds in branch and bound max-
timal values € 4) but fails on most problems with large op-  sat solvers. IrProc. 11th Principles and Practice of Constraint
timal values & 5). We guess that in general pseudo-Boolean Programming 2005.

solvers become very inefficient for MAX-SAT when the op- [Li etal, 2004 C. Li, F. Manya, and J. Planes. Detecting Dis-
timal value is reasonably large, where it is hard to provdabot  joint Inconsistent Subformulas for Computing Lower Bounds for

SAT and UNSAT. Max-SAT. InProc. 21st AAAI2006.
) [Marinescu and Dechter, 20p3R. Marinescu and R. Dechter.
5 Conclusion And/or branch-and-bound for graphical models. Rroc. 19th
IJCAI, 2005.

MPE and weighted MAX-SAT are complementary represen-
tations for problems with soft constraints and we have delMoskewiczetal, 2001 M. Moskewicz, C. Madigan, Y. Zhao,
scribed natural reductions between them. To solve these op- L- Zhang, and S. Malik. Chaff: Engineering an efficient SAT
timization tasks efficiently, we have presented an algorith ~ Solver. InProc. 38th Design Automation Conferen2€01.
MPE-SAT which incorporates various techniques with a dy-[Park, 2002 J. Park. Using weighted MAX-SAT engines to solve
namic flavor: including dynamic problem decomposition, dy- MPE. InProc. 18th AAAI2002.

namic bounding, caching (a form of dynamic programming),[Sanget al, 2004 T. Sang, F. Bacchus, P. Beame, H. Kautz, and
and clause-learning. As a result, our approach is quite com- T. Pitassi. Combining component caching and clause learning for
petitive with other solvers on a wide range of problem do- effective model counting. IRroc. 7th International Conference
mains from MPE and MAX-SAT and significantly outper-  on Theory and Applications of Satisfiability Testi@g04.
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