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Abstract

This paper describes ILP-PLAN, a framework for solving AI
planning problems represented as integer linear programs.
ILP-PLAN extends the planning as satisfiability framework to
handle plans with resources, action costs, and complex ob-
jective functions. We show that challenging planning prob-
lems can be effectively solved using both traditional branch-
and-bound IP solvers and efficient new integer local search
algorithms. ILP-PLAN can find better quality solutions for a
set of hard benchmark logistics planning problems than had
been found by any earlier system.

1 Introduction
In recent years the AI community witnessed the unexpected
success of satisfiability testing as a method for solving
state-space planning problems (Weld 1999). Kautz and Sel-
man (1996) demonstrated that in certain computationally
challenging domains, the approach of axiomatizing prob-
lems in propositional logic and solving them with gen-
eral randomized SAT algorithms (SATPLAN) was compet-
itive with or superior to the best specialized planning sys-
tems. The framework has been shown to be quite broad,
for example encompassing both action-centered and fluent-
centered representations of change, conditional and main-
tenance goals, causal planning (Kautz, McAllester, & Sel-
man 1996), automatic generation of axioms from STRIPS
operators (Ernst, Millstein, & Weld 1997; Kautz & Selman
1999), hierarchical task networks (Mali & Kambhampati
1998), and domain-specific knowledge (Kautz & Selman
1998b).

Despite this generality, certain limitations in the frame-
work still prevent it from being used for many practical,
real-world domains. One problem is the difficulty in deal-
ing with resources and the associated numeric constraints.
For example, you might wish to assert that a “drive” action
consumes 3 units of fuel, and that a “refuel” action resets
the vehicle’s tank to 15 units. Numeric variables that have
a very small range can be represented by a set of Boolean
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variables, one for each possible value, but in general this
introduces too many variables. In theory one could adopt a
binary encoding of numeric quantities, but this would only
keep the number of variables small by introducing a huge
number of clauses to encode binary arithmetic.

Perhaps a more important limitation from an applications
standpoint is that the notion of optimality inherent in the
SATPLAN framework may be too weak. SATPLAN allows
one to minimize the parallel length of a solution, where
several non-interfering actions may occur at each time step.
This notion of optimality, which is also shared by the pop-
ular Graphplan system and its descendents (Blum & Furst
1995; Koehler et al. 1997), is an advance over planning
frameworks that treat all feasible solutions indifferently: for
many popular test domains finding a shortest solution is at
least NP-hard, while finding a feasible solution can be done
in linear time (Bylander 1991). However, real world plan-
ning problems usually have more complex optimality crite-
ria, that take into account e.g. different costs for different
types of actions, minimization of resource usage, and so
forth. Furthermore, even if all actions have the same cost,
one may wish to minimize the number of actions in a so-
lution, that is, the sequential length rather than the parallel
length: or, more generally, some function of both the par-
allel and sequential length. The two notions of length may
actually be in conflict: for example, in the logistics domain
that we consider in detail below, one can construct exam-
ples where the solution with the lowest sequential length
has a greater than minimum parallel length.

It is desirable, therefore, to enrich the underlying lan-
guage of the SATPLAN framework while retaining its com-
putational advantages. This paper introduces an approach
to AI planning based on integer optimization of integer lin-
ear programs (ILP), which we call ILP-PLAN. An ILP con-
tains both Boolean (0/1) and integer valued variables, and
represents both constraints and optimization functions as
linear inequalities. ILP generalizes SAT because any clause
can be written as a linear inequality over 0/1 variables (e.g.,
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rarely exploited in AI applications. The first part of this pa-
per will demonstrate how STRIPS-style planning problems
extended with costs, resources, and optimality conditions
can be represented as an ILP in the AMPL modeling lan-
guage (Fourer, Gay, & Kernighan 1993), and solved using
the branch-and-bound algorithm by a commercial mixed in-
teger programming package (ILOG CPLEX). We will dis-
cuss various encoding schemes and their tradeoffs. We will
argue that specifying a planning problem by a combination
of STRIPS operators (to represent logical constraints be-
tween actions and their preconditions and effects) and lin-
ear inequalities (to represent resource usage and objective
functions) is more elegant and natural than using only ex-
tend STRIPS operators or only linear inequalities.

2 Planning and Integer Local Search
One reason that the ILP approach has been rarely inves-
tigated in AI is that branch-and-bound is a relatively in-
efficient algorithm for solving problems that are mainly
logical in nature. However, recently a new approach
to integer programming has been developed by Walser
(1997; 1998) based on randomized local search. This algo-
rithm, WSAT(OIP), generalizes the Walksat algorithm for
satisfiability (Selman, Kautz, & Cohen 1994) to a form of
ILP’s called “over-constrained integer programs (OIP)”. In
an OIP the objective function is represented by a set of “soft
constraints” – that is, linear inequalities that may or may
not hold for a feasible solution. Walser demonstrated that
WSAT(OIP) is can outperform ILP branch-and-bound in a
number of challenging domains, including sports schedul-
ing and capacitated production planning (CLSP).

The second part of this paper presents a case study of us-
ing WSAT(OIP) to find better quality solutions to a set of
difficult logistics planning benchmark problems that have
been frequently cited in the literature on Graphplan, SAT-
PLAN, and other recent planning algorithms such as ASP
and LRTA* (Bonet, Loerincs, & Geffner 1997). We will
demonstrate that the known computational advantages of
using local search on a state-based encoding (Kautz & Sel-
man 1996) of this domain can be retained, while the integer
local search framework allows us to find solutions of lower
sequential cost. The ILP-PLAN approach improves on the
best published solutions for this domain.

ILP-PLAN thus brings together work on generalizing the
expressive power of SATPLAN with work on generalizing
the Walksat inference engine originally employed by that
system. ILP-PLAN also builds a bridge between AI or OR
technology. It shows how powerful and sophisticated OR
solvers can be applied to AI planning. As a contribution to
OR, ILP-PLAN shows how STRIPS operators can be used to
make the specification of complex optimization problems
that involve action selection concise and easy to express.

CLSP is unlike the kind of AI planning discussed in this paper
in that it does not involve action selection.

3 Preliminaries
The class of planning problems considered in this paper is
an extension of classical bounded-length state-space plan-
ning. States assign truth values to facts, and correspond to
a bounded sequence of integers. An action is a partial func-
tion over states that can be specified by a precondition, add
list, and delete list of positive facts. The parallel composi-
tion of a set of actions is defined for a state if none of the
actions delete a precondition or effect of another. This core
semantics underlies SATPLAN and Graphplan, and can be
extended to conditional effects as described in (Koehler et
al. 1997; Anderson, Smith, & Weld 1998).

The first extension is to introduce resource variables that
are assigned a numeric value by each state. In general, re-
sources may be integer or real-valued. Every resource value
has a global minimum and maximum value. Actions may
be extended with resource preconditions and effects. Fol-
lowing the framework of (Koehler 1998), a resource pre-
condition is a simple linear inequality that must hold in any
states in which the action is applicable. The effect of an
action may be to consume (decrease), produce (increase),
or provide (set) the value of a resource. The parallel com-
position of a set of actions is defined for a state if the
following holds for every resource :

The set is logically conflict-free, as defined above;
If the set contains a provider for , it contains no other

effect for ;
The value of at minus the sum of the consumers of

in the set satisfies the global lower bound for ;
The value of at plus the sum of the producers of in

the set satisfies the global upper bound for ;
For any action in the set with a resource precondition

for , the value of at minus the sum of the consumers of
other than satisfies that precondition.
These conditions ensure that every way of sequencing a

set of parallel actions is well-defined and equivalent. Note
too that explicit resource preconditions on actions are re-
dundant if they are the same as the global bounds on the
resource. The second extension is addition of optimization
criteria to the planning problems. We will want to find so-
lutions that minimize one or more linear functions of re-
sources, actions, and facts. Although resource consumption
is a most common objective function, note that we also al-
low such functions as the number of actions that occur, or
the number of objects for which a predicate holds.

4 Operator-based Encodings
We begin by developing encodings for STRIPS operators
extended with resource effects and optimization objectives.
We call these encodings “operator-based”, because they are
based on writing constraints between variables representing

In this paper we only consider resource effects involving a
single variable, e.g., += , not general linear equations.



actions and variables representing the preconditions and ef-
fects of those actions. In the terminology for SAT encod-
ings from Ernst, Millstein, and Weld (1997), the encodings
are an extension of “regular action representations with par-
allel actions and explanatory frame axioms”. In the second
part of the paper we will consider examples that use an al-
ternative “state-based” encoding.

Recent work by Koehler (1998) describes an extension
of the IPP/Graphplan framework to handle resource con-
straints via annotations on STRIPS operators. We will de-
scribe conventions for translating such annotations into ILP
constraints, and present the results of applying this method-
ology to a transportation problem (“Airplane”) and solving
the instance with CPLEX, a popular branch-and-bound ILP
engine. Our approach is more general than that of IPP, how-
ever, in that it allows us to include explicit optimization cri-
teria.

4.1 Encoding Conventions
The encoding consists of three parts: constraints for the
logical properties of actions; for resource usage; and for
optimization objectives. The logical properties of STRIPS
operators are encoded by the following kinds of axioms: (i)
explanatory frame-axioms (if a state-change occurs, one ac-
tion that could account for it must have taken place (Haas
1987; Schubert 1989; Kautz, McAllester, & Selman 1996));
(ii) an occurring action implies its effects and precondi-
tions; (iii) exclusiveness of logically conflicting actions;
and (iv) state invariant axioms in the style of (Kautz & Sel-
man 1998b). See the references cited above for the details
of the translation into CNF; each clause can then be easily
converted into a linear inequality as described earlier.

The second set of constraints maintains the value of each
resource at each point in time, and makes sure that paral-
lel actions are free of resource conflicts, according to the
rules described in section 3 above. For each resource
we introduce a set of numeric variables that stand for
the quantity of at the start of step . Let and be
minimum and maximum bounds on . For each ground
operator we use the variable to represent the action
of that ground operator occurring at time . For each con-
sumer, producer, or provider ground operator let be the
amount by which the operator decreases, increases, or sets
the resource. Let Prod and Con be the sets of producing
and consuming ground operators respectively. For simplic-
ity we will say there is exactly one providing ground op-
erator, , which resets to its maximum . We introduce
a new set of variables that stand for amount of resource
created by provider if it occurs. We call the provider
reset variables. Then the resource conflict constraints are:

Con Prod
(1)

resource fuel

fly( : airport):
precondition: at-plane
effects: at-plane at-plane

fuel –=
passenger : boarded

effects: at at

refuel:
effects: fuel

Figure 1: Airplane example with conditional effects. No-
tice that refueling fills the tank to capacity.

Prod Con (2)
(3)
(4)

Con
(5)

Prod
(6)

We have written these constraints as mixed logical / linear
inequalities, but each can be converted to a linear inequal-
ity, as we will do in the example below. (1) propagates the
value of the resource from one time step to the next. (2)
makes providers exclusive of other actions that affect the
resource, while (3) and (4) establish the amount of resource
created by a providing action (if any). Finally (5) and (6)
enforce the global bounds on the resource. Due to lack of
space we omit the translation of resource preconditions; in
fact, for all the examples considered in this paper they are
redundant due to the global resource bounds. Finally, re-
source optimization constraints are simply arbitrary linear
inequalities over all the variables described above.

Example: Resource Optimization Planning. We illus-
trate this translation with a a modified version of the air-
plane example from (Penberthy & Weld 1992) and (Koehler
1998). It simplifies the original example by ignoring tim-
ing aspects but extends it for optimization of passenger
routings. The scenario is a plane that can fly between a
number of different airports and consumes fuel. Passen-
gers with checked-in status at the location of the plane can
be boarded. Boarded passengers move with the plane until
they are deplaned, which can occur individually in our vari-
ation. The ILP-PLAN version of the example extends the
task from a decision problem (with resources) to resource
optimization: An explicit optimization objective is included
to minimize resource usage, in this case “fuel”. Figure 1
and table 1 describe some of the operators and variables
used.



Indices Definition
action step ( is the last step)

; airports ; passenger
Constants Definition

tank capacity, fuel use per dist. unit
Distance from to

Variables Definition
flight from to occurs in step .

refuel refuel in step .
refuel amount provider reset variable
fuel plane’s fuel level

Table 1: Parameters in the ILP translation of the airplane
example. All variables binary unless declared otherwise.

The following inequalities state the resource aspect of the
model ( ).

refuel fuel (7)
refuel refuel amount (8)

fuel fuel refuel amount (9)

refuel (10)

(7) and (8) link the decision variables for refueling with
the fuel and refuel amounts and (9) states the fuel balance.
Note that (7)-(8) are directly translated to linear inequalities
( is translated to , and
yields , where is a binary variable,
variable has bounds and is a constant). (10)
is a compact way of making refuel (a provider) and flying (a
consumer) mutually exclusive. The optimization objective
is stated as

minimize fuel fuel refuel amount

where refuel amount is the provider reset variable corre-
sponding to the refuel action at time . Figure 2 shows an
example problem and table 2 reports experimental results
using CPLEX 5.0 with standard/auto parameters settings.

Aspects of an Automated Translation. In this work, we
approach resource-optimal planning using integer program-
ming by directly formulating state-based encodings in a
high-level IP modeling language, AMPL (Fourer, Gay, &
Kernighan 1993). This approach provides maximal flexibil-
ity for experimenting with various combinations of encod-
ings and IP solvers. Nevertheless, a system that automat-
ically translates resource-annotated STRIPS into IP would
have several advantages, including an improved represen-
tation of the logical portion of the problem by the use of

777

Paris 490
343

London

Zurich (plane)
Scott Dan

Ernie

Figure 2: Scenario of initial state and travel destinations
(arrows) of airplane-a. The resource-optimal plan found
by CPLEX given the state-based ILP encoding has 5 steps:
board Scott, fly to Paris deplane Scott, refuel board Dan
and Ernie, fly to London deplane Ernie, fly to Zürich
deplane Dan.

problem / steps p/a vars cnstrs min.fuel time
airplane-a / 5 3 134 551 805 s
airplane-b / 7 4 304 1774 897 54s
airplane-c / 9 5 576 4405 2096.5 895s

Table 2: Experimental results for airplane example.
Columns are problem name / min. number of plan steps in
a parallel plan, the number of passengers and airports (p/a),
problem size in number of variables and constraints, the
min. fuel consumption, and the solution time for CPLEX.

an intermediate representation such as a plan graph (Kautz
& Selman 1998a), and ease in handling complex language
constructs such as quantified conditional effects (Koehler et
al. 1997; Anderson, Smith, & Weld 1998). A natural design
for such a system would be a preprocessor for AMPL that
handles STRIPS operators, thus allowing the user to mix
the two representational levels. We are currently looking
into implementation strategies.

It is important to note that many kinds of resource con-
straints are much more easily and naturally represented di-
rectly as linear inequalities, rather than as STRIPS anno-
tations. For example, in the classic Missionaries and Can-
nibals problem, the capacity constraint that the cannibals
never outnumber the missionaries on either shore can be
written simply as

missionaries cannibals

while expressing the constraint using operator annotations
is much more complex.

5 Case Study: Minimizing Plan-length
Traditionally, AI has concentrated on hard feasibility prob-
lems. In contrast, OR has put emphasis on approaches for
finding near-optimal solutions to problems for which fea-
sible solutions can be constructed easily. In both fields,
there is increasing interest in finding near-optimal solutions
to problems with a difficult feasibility aspect. Here, we
consider a planning benchmark from the logistics domain



(Veloso 1992) that also exhibits this characteristic. The sce-
nario is the transportation of a set of packages that involves
flights and truck-drives between locations.

To model the problem, we use a variant of the state-based
encodings presented in (Kautz & Selman 1996) that is ex-
tended to encode a notion of plan optimality. There are
various possible criteria to optimize in this domain: (a) The
total number of necessary actions, (b) the number of neces-
sary time steps when parallel actions are allowed, (c) some
function of the sequential and parallel lengths, and (d) yet
more realistic measures of plan quality, e.g.including spe-
cific action costs for the different action types (flying an
airplane is typically more expensive than driving a truck or
loading a packet).

Previous approaches to the logistics domain include find-
ing parallel optimal solutions (criterion b) using SAT-
PLAN (Kautz & Selman 1996); more recently, Bonet, Lo-
erincs and Geffner (1997) presented a method that found
better serial optimal solutions (criterion a) using LRTA*,
however at high computational cost for near-optimal solu-
tions. We will concentrate on criteria (c), where our goal
is find solutions of minimal sequential length among all so-
lutions of minimal parallel length. This criteria allows us
to directly compare the quality of our solutions to previous
results in the literature. (This criteria appears to be gener-
ally useful for comparing planning systems, particularly for
domains where it is easy to satisfy one of (a) or (b) alone.)

Since one of the best strategies to solve SATPLAN en-
codings is local search (Walksat), we employ a similar strat-
egy for optimization encodings in ILP-PLAN. The ILP-
PLAN approach to the domain casts the problem in in-
teger constraints and solves it using integer local search,
WSAT(OIP). Experimental results demonstrate that ILP-
PLAN can find plans with fewer actions than SATPLAN. In
comparison with LRTA it finds plans with the same num-
ber of actions or fewer at reduced computational cost. In
contrast to all previous approaches to this domain, it allows
for stating planning objectives explicitly and opens up the
way for even more practical criteria of plan-optimality.

5.1 Integer Local Search Encoding
The basis for the encoding developed here is the state-
based encoding described in Kautz and Selman (1996),
since it currently provides the best representation for lo-
cal search algorithms in the Walksat family. State-based
encodings employ axioms that directly relate changes in
fluents between adjacent states without explicit reference
to actions. In theory such axiomatizations could be created
from operator-based encodings by resolving away all action
variables (Kautz, McAllester, & Selman 1996). However,
in the current version of ILP-PLAN, the encodings were cre-
ated by hand in the AMPL modeling language, a widely
used specification language for linear and integer optimiza-
tion.

As noted earlier, the criterion of plan optimality that we
will consider in this paper is to minimize sequential plan
length over plans of bounded (minimal) parallel length. To
formulate this, the scheme is augmented by action vari-
ables, and optimization (soft) constraints are used to for-
mulate the objective function. However, instead of adding
the full descriptive set of action variables and requiring
state/action consistency, a much smaller reduced set of ac-
tion variables is used. We will refer to this encoding scheme
as an “augmented state-based encoding”.

It is interesting to note that the obvious alternative of us-
ing an operator-based encoding of the type described in the
previous section yields encodings that are much harder to
solve by local search. In fact, we were surprised to dis-
cover that the conjunction of an operator-based encoding
with a state-based encoding also is problematic for local
search. An open question we are currently investigating is
why the inclusion of a full (unreduced) set of action vari-
ables and corresponding axioms in this domain slows down
the search; an understanding of this issue may help us de-
vise more robust heuristics for local search that are immune
to the effect. We currently hypothesize that the underlying
problem is that it is costly for local search to maintain con-
sistency between the settings of an action variable and those
for its preconditions and effects (a inference step that is, by
contrast, trivial for systematic inference engines).

Over-Constrained Integer Programs. To include op-
timization objectives into local search, the integer local
search framework uses a representation introduced as over-
constrained integer programs (OIPs) (Walser 1998). OIP
formulates optimization criteria by means of soft inequality
constraints over bounded integer variables and can be re-
duced to ILP. An OIP consists of hard and soft inequality
constraints, wherein the optimization objectives are repre-
sented by the soft constraints. If all inequalities are linear,
the OIP problem can be formulated in matrix notation as

(soft) where and are
-matrices, are -vectors, and

is the variable vector, ranging over positive finite domains
. A variable assignment that satisfies all hard

constraints is called a feasible solution. Given a tuple
, the OIP minimization problem is

min
wherein the objective is to find a feasible solution with

minimal soft constraint violation, .
The contribution of each violated soft constraint to the over-
all objective is thus its degree of violation.

Augmented State-based OIP Encoding. The logical
part of the OIP encoding for the domain is the direct trans-
lation of the CNF encoding with parallel (non-conflicting)
actions used in SATPLAN. First, axioms are stated that
directly relate changes in fluents between adjacent states



Indices Definition
plan steps, objects.
locations.
vehicles, plane , truck .

Constants Definition
cost of load/unload, flight, truck drive.

Action Variables Definition
load load in step .
unload unload in step .
drive truck drive truck in step .
fly plane fly plane in step .

Table 3: Parameters for the OIP encoding of ‘logistics’.

without reference to action variables, as described in (Kautz
& Selman 1996). An example in the logistics domain is
“objects stay in place or are loaded”,

at at in

Further, state invariant axioms are included as in the pre-
vious example. In order to allow us to count the number of
actions in a plan, we introduce a small number of reduced
action variables, as mentioned above. These variables are
used to help direct the search for optimal solutions, but not
to constrain the set of feasible solutions. A reduced vari-
able stands for the occurrence of any of a set of mutually
exclusive actions. For example, we introduce the variable
drive truck , meaning “truck is driven (from somewhere
to somewhere else) at time ”, in place of the set of vari-
ables drive truck for all locations and . Similarly,
the variable load stands for “package is loaded (onto
some vehicle)”, in place of the set of actions load for
loading onto particular vehicles, because a package can
only be loaded into one vehicle at a time. Table 3 describes
the indices and action variables used.

State changes are linked uni-directionally to the action
variables by constraints of the type

at at drive truck
We do not include implications in the opposite direction,
that would assert that an action implies its effects and pre-
conditions. Encoding bi-directional consistency would re-
quire full action specification and thus degrade performance
for local search as mentioned above.

To optimize sequential plan length, all action variables
appear in the minimization objective, weighted by cost co-
efficients, and formulated using soft constraints. There are
many ways to write down this function; for example, one
could write a single constraint that simply summed all the
action variables. Alternatively, one could write a constraint
for each time step: minimize the sum of the actions at time
1, then also at time 2, and so on. We obtained the best per-
formance in this domain by encoding a separate soft con-
straint for each object in the domain, that is, each package,

truck, or airplane. For example, for each package there
is a soft constraint that minimizes the number of times the
package is loaded or unloaded:

(soft) load unload

As noted in table 3, the represents a cost factor for a load
or unload. represents a valid lower bound on the num-
ber of load/unload actions required to transport object .
could be chosen as zero, but local search performance can
be improved by making such bounds as tight (large) as pos-
sible (Walser 1998). It is possible to determine such tight
lower bounds by static analysis of the problem domain. For
example, in this logistics domain at least 6 load/unload ac-
tions are required for any object whose initial and goal lo-
cations are at non-airport locations in different cities. In a
similar fashion one can write a separate soft constraint for
each truck (minimizing driving) and each airplane (mini-
mizing flying). We did not attempt static analysis for these
constraints, and simply took the right-hand sides of the soft
constraints to be 0.

In summary, the representation consists of constraints for
(i) state-transition consistency, (ii) state invariant axioms,
(iii) implied reduced actions, and (iv) optimization criteria.

Post-optimization. To construct the full set of actions
from a consistent solution encoded by fluent variables, a
post-optimization stage is applied. In an AMPL control
script, after a solution has been reached, all fluent vari-
ables are fixed at their current values. Subsequently, the full
(bi-directional) set of state/action consistency constraints
is posted, and the system is re-optimized according to the
same minimization function as before, this time using ILP
branch-and-bound. This post-optimization process yields
the actual plan encoded by the action variables, and is a
simple yet general strategy to derive valid plans.

5.2 Experimental Results
The encodings were first simplified by AMPL’s presolving
algorithms and subsequently solved by integer local search,
WSAT(OIP). We were not able to solve the described en-
coding using integer programming branch-and-bound tech-
niques, although such techniques are potentially applicable.
To ensure that every ILP-PLAN solution meets the given
plan length requirement, the value of the objective func-
tion was read off from the solutions and subsequently used
as a lower bound on the objective function; the WSAT(OIP)
search was then terminated upon reaching the bound. The
SATPLAN numbers stem from evaluating the sequential
plan length found in the solutions without encoding any
planning objective.

We obtained the values for the problem instances in this
study by simple inspection; a formal development of the static
analysis necessary to derive lower bounds is beyond the scope of
this paper.



problem/steps GRAPHPLAN SATPLAN ASP LRTA ILP-PLAN
state-based encoding functional encoding augmented state-based OIP encoding

actions time m/actions K-flips time actions time actions actions (f-d) K-flips time
log-a / 11 54 5942s 63 149 2.7s 57 34s 54 54 (6-6) 330 27s
log-a / 11 53 (5-6) 1,795 141s
log-a / 11 52 (4-6) 41,104 3,178s

log-a* / 13 51 (3-6) 4,938 401s
log-b / 13 47 2538s 68 93 0.7s 51 29s 42 42 (4-8) 3,478 340s
log-c / 13 – – 72 161 1.4s 61 53s 52 52 (6-8) 2,466 274s
log-d / 14 86 1,425 13.3s 71 (7-15) 1,416 224s
log-d / 14 68 (7-15) 15,171 2,402s

Table 4: Performance of different planning systems. The columns are: number of sequential actions and runtime. A blank space indicates
that no attempt was made at solving the problem. A dash (–) indicates that the problem could not be solved due to memory limitations.
For SATPLAN, ‘m/actions’ reflects the mean number of actions found in 1,000 runs. The (f-d) column reflects the actual plan quality in
number of required flights and truck drives. Note that the LRTA and ASP algorithms are finding serial plans only. Solution times of LRTA
were not published. Results for SATPLAN and ILP-PLAN run on a 194 MHz R10000 SGI Challenge. ASP and LRTA were reported for an
IBM RS/6000 C10 with 100 MHz PowerPC 601 processor.

Table 4 gives the experimental results. Note that the
LRTA and ASP algorithms are finding serial plans, and
their actual parallel length is unknown but could be very
high. Solution times of LRTA were not published, but it
was noted that the algorithm did not converge after 500 tri-
als (Bonet, Loerincs, & Geffner 1997). The state-based OIP
encodings of ILP-PLAN were solved by WSAT(OIP) and av-
eraged over 20 runs. Also note that SATPLAN times are for
running the Walksat solver only, and do not include gener-
ating the wff (which requires approximately 1 minute on
the test machines).

In addition to just sequential plan length, a more mean-
ingful measure is given in the (f-d) column. It gives the ac-
tual number of flights and truck-drives in the solutions (all
other actions are load/unload). It is clear that those numbers
represent the most realistic quality measure. In general, of
course one cannot infer the (f-d) value from the number of
actions; however, for log-a we never observed a 54 action
plan with 4 flights rather than 6. Also for log-a, we observe
that it is possible to further reduce the number of actions to
51 (only 3 flights by making a circular plane trip around the
airports with a single plane). This exemplifies that there is a
tradeoff between short parallel and resource-optimal plans
because it can be shown that a circular trip requires at least
13 steps. To compute the solution, we aided ILP-PLAN by
removing one plane from the encoding labeled “log-a*/13”.

Throughout the experiments, WSAT(OIP) was run with
parameters hard zero noise , and the
following action costs were used: fly plane ,

drive truck , load unload . We note
that the computational results are relatively sensitive to the
particular parameter settings. The particular setting of ac-
tion costs was tuned in pre-experiments to favor short plans.

In interpreting these results it is important to note that
we are comparing not just algorithms, but algorithms to-
gether with representations. Indeed, the same algorithm
can yield quite different results when the same problem

is encoded in different ways (Bonet, Loerincs, & Geffner
1997). In particular, only Graphplan took as input a “bare”
STRIPS representation of the problem domain; for each of
the others, the form of the input was tailored to the sys-
tem and incorporated some degree of what is considered
domain-specific knowledge. For example, SATPLAN in-
cluded state-invariant axioms (e.g., a package is only at
one location); ILP-PLAN added soft constraints as described
above; and LRTA* included an A*-type heuristic search
function.

6 Related Work
The work on ILP-PLAN was partially inspired by that of
Koehler (1998) on extending Graphplan to handle resource
constraints. Unlike ILP-PLAN, however, that system han-
dled resource usage strictly by annotations on STRIPS op-
erators, and did not include objective functions. The ZENO
planner (Penberthy & Weld 1994) included a rich language
that could express complex resource constraints, although
it too lacked explicit optimization functions. It also dif-
fered from ILP-PLAN in that the underlying planner was a
least commitment, regression planner, and the architecture
involved a collection of specialized routines to handle dif-
ferent kinds of constraints (including a linear programming
subroutine), rather than a single technique (as in ILP-PLAN)
like local search or branch-and-bound. Other planners that
extended nonlinear planning to include metric constraints in
constraint programming type frameworks include O-PLAN
(Tate 1996) and parcPLAN (El-Kholy & Richards 1996).
The IxTeT planner (Laborie & Ghallab 1995) is a least-
commitment planner notable for using an efficient graph-
based algorithm for detecting resource conflicts between
parallel actions.

Recent work by Vossen et al. (1999) describes an al-
ternative formulation of ILP encodings for planning prob-
lems (without resources or optimality conditions) that re-
sults in stronger linear relaxations. Their techniques im-
prove the performance of branch-and-bound solvers and



are likely to be a valuable enhancement to the ILP-PLAN
framework. An interesting similarity between their for-
mulation and the one we develop for the logistics domain
is that both eliminate explicit variables that represent ac-
tions (although other details differ). Independent work by
Bockmayr and Dimopoulos (1998) develops ILP encodings
for planning where the linear relaxation gives guidance to
the branch-and-bound strategy by including (i) an objec-
tive function that maximizes the number of goals achieved,
and (ii) a domain-specific strengthening of the linear relax-
ation which they show to be effective for the blocks world
domain, but not strong enough in the logistics domain. Fi-
nally, while the ILP solvers used in our work so far (CPLEX
and WSAT(OIP)) require all constraints to take the form of
linear inequalities, recent work onmixed logical/linear pro-
gramming (Hooker & Osorio 1997) may provide the under-
pinnings for systems that more efficiently handle ILPs that
have a large logical component.

7 Conclusions
We have described ILP-PLAN, a new framework for solv-
ing AI planning problems under resource constraints and
optimization objectives. By casting AI planning as integer
programming, ILP-PLAN allows for constraints and objec-
tive functions over resource usage, action costs, or regular
fluents. Using ILP as the base representation, it brings to-
gether threads in AI planning and integer optimization and
extends previous frameworks (SATPLAN) to new practical
planning optimization domains. The conceptual approach
of ILP-PLAN integrates STRIPS style operator descriptions
with linear inequality constraints. This can be seen as mak-
ing ILP machinery applicable to AI planning, or conversely,
as adding a new representational layer on top of linear in-
equalities. Like SATPLAN, ILP-PLAN is flexible with re-
spect to inference methods and can be used in conjunction
with both systematic and local search algorithms for integer
optimization. We have demonstrated that two challenging
planning problems can be solved effectively using a tradi-
tional ILP branch-and-bound solver and a new strategy for
integer local search. For a set of hard benchmark logistics
planning problems, ILP-PLAN can find better quality solu-
tions than had been found by any earlier system.
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