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Abstract. We study the runtime distributions of backtrack procedures for propositional satisfiability
and constraint satisfaction. Such procedures often exhibit a large variability in performance. Our
study reveals some intriguing properties of such distributions: They are often characterized by very
long tails or “heavy tails”. We will show that these distributions are best characterized by a general
class of distributions that can have infinite moments (i.e., an infinite mean, variance, etc.). Such
nonstandard distributions have recently been observed in areas as diverse as economics, statistical
physics, and geophysics. They are closely related to fractal phenomena, whose study was introduced
by Mandelbrot. We also show how random restarts can effectively eliminate heavy-tailed behav-
ior. Furthermore, for harder problem instances, we observe long tails on the left-hand side of the
distribution, which is indicative of a non-negligible fraction of relatively short, successful runs. A
rapid restart strategy eliminates heavy-tailed behavior and takes advantage of short runs, significantly
reducing expected solution time. We demonstrate speedups of up to two orders of magnitude on SAT
and CSP encodings of hard problems in planning, scheduling, and circuit synthesis.
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1. Introduction

Procedures for solving propositional satisfiability (SAT) problems often exhibit a
remarkable variability in the time required to solve any particular problem instance.
For example, we see significant differences on runs of different heuristics, runs
on different problem instances, and, for stochastic methods, runs with different
random seeds. The inherent exponential nature of the search process appears to
magnify the unpredictability of search procedures. In fact, it is not uncommon to
observe a satisfiability procedure “hang” on a given instance, whereas a different
heuristic, or even just another stochastic run, solves the instance quickly.
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The fastest complete procedures for SAT are based on the Davis–Putnam–Loge-
mann–Loveland method [12, 13]. These procedures essentially perform a back-
track search through the space of truth assignments. We study the runtime distrib-
utions of such backtrack search methods on a variety of problem instances. As we
will see, these distributions have a number of intriguing properties. In particular,
the distributions are often characterized by very long tails or “heavy tails”. We
will show that these distributions are best captured by a general class of distrib-
utions that can have infinite moments. Aside from our experiments on SAT, we
also demonstrate the heavy-tailed phenomenon for backtrack search on general
constraint satisfaction problems. In fact, we believe our results apply to backtrack
search techniques in general.

Heavy-tailed distributions were first introduced by the Italian-born Swiss econo-
mist Vilfredo Pareto in the context of income distribution. They were extensively
studied mathematically by Paul Lévy in the period between the world wars. Lévy
worked on a class of probability distributions with heavy tails, which he called
stabledistributions. However, at the time, these distributions were largely consid-
ered probabilistic curiosities or pathological cases mainly used in counterexamples.
This situation changed dramatically with Mandelbrot’s work on fractals. In partic-
ular, two seminal papers by Mandelbrot [42, 43] were instrumental in establishing
the use of stable distributions for modeling real-world phenomena.

Recently, heavy-tailed distributions have been used to model phenomena in
areas as diverse as economics, statistical physics, and geophysics. More concretely,
they have been applied in stock market analysis, Brownian motion, weather fore-
casts, earthquake prediction, and recently, for modeling time delays on the World
Wide Web (e.g., [1, 44, 56]).

Various researchers studying the computational nature of search methods on
combinatorial problems have informally observed the erratic behavior of the mean
and the variance of the search cost. In fact, this phenomenon has led researchers
studying the nature of computationally hard problems to use the median cost, in-
stead of the mean, to characterize search difficulty, because the median is generally
much more stable [9, 20, 27, 35, 46, 64]. More recently, the study of runtime
distributions of search methods – instead of just the moments and median – has
been shown to provide a better characterization of search methods and much useful
information in the design of algorithms [18, 23, 21, 29, 36, 55].

The work reported here provides a characterization of the tail behavior of back-
track-style SAT and CSP procedures, which often dominates their overall perfor-
mance. We use the probabilistic model of heavy-tailed distributions. Such distri-
butions provide a formal framework explaining the large variance and the erratic
behavior of the mean of backtrack search. See Figure 1(a) for a preview of the
erratic mean phenomenon. The figure shows the mean cost calculated over an in-
creasing number of runs, on the same problem instance, of a randomized backtrack
search procedure on a constraint satisfaction formulation of the quasigroup com-
pletion problem (described below). Contrast this behavior with that of the mean of
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(a)

(b)

Figure 1. Erratic behavior of the sample mean of backtrack search for completing a qua-
sigroup (order 11, 30% pre-assignment) vs. stabilized behavior of the sample mean for a
standard distribution (gamma).

a standard probability distribution (e.g., a gamma distribution; no heavy tails), as
given in Figure 1(b). In this case, we see that the sample mean converges rapidly to
a constant value with increasing sample size. On the other hand, the heavy-tailed
distribution in Figure 1(a) shows a highly erratic behavior of the mean that does
not stabilize with increasing sample size.?

Previous authors have discovered the related – and quite surprising – phenom-
enon of so-called exceptionally hard SAT problems in fixed problem distributions
[20, 62]. For these instances, we further observed that when a small amount of

? The median, not shown here, stabilizes rather quickly at the value 1.
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randomization was introduced into the heuristic used by the search algorithm,
then, on some runs, the instances were solved quickly [58]. Thus, the “hardness”
did not necessarily reside only in the instances, but rather in the combination of
the instance with the details of the deterministic algorithm. When we plotted the
solution times for many runs of the randomized complete algorithm (with different
random seeds) on asingleproblem instance, we discovered the same heavy-tailed
behavior as we had seen before on a collection of instances.

In our empirical work, we analyze cost distributions of collections of runs on
single SAT instances, as well as on ensembles of instances. When running a search
procedure on an ensemble of instances, we encounter two sources of variability:
One is due to the variability between problem instances and the other one is due
to the search algorithm itself. In order to isolate the latter source of variability –
to better understand the nature of our search methods – we emphasize the study
of distributions obtained from collections of runs (with different random seeds)
on single problem instances. By considering instances from a range of problem
domains, we also obtain insights into the variability across domains. See [29, 31]
for a similar methodology.

As a direct practical consequence of the heavy-tailed behavior of backtrack
search methods, we show howrapid randomized restarts(RRR) can dramatically
reduce the variance in the search behavior. In fact, as we will see, a search strategy
with restarts can eliminate heavy-tailed distributions.

For our experiments, we used SAT encodings of known hard problem instances
from timetabling, planning, code optimization, and circuit synthesis. We also con-
sidered CSP encodings of scheduling problems. For our solvers, we used two
state-of-the-art satisfiability engines: Satz by Li and Anbulagan [39] and Relsat
by Bayardo and Schrag [5], and an efficient CSP solver built using the Ilog C++
constraint programming library [53]. It is important to note that the underlying de-
terministic complete search engines are among the fastest (and on many problems,
the fastest) in their class. Thus, the techniques discussed in this paper extend the
range of complete methods to problems that were often previously beyond their
reach.

The paper is structured as follows. In the next section, we describe how we
randomize Davis–Putnam style search methods and define our problem domains.
In the following section, we introduce the notion of heavy-tailed distributions and
analyze our empirical data. In the fourth section, we discuss how one can exploit
the underlying heavy-tailed distributions to improve satisfiability and constraint
satisfaction methods. The final section summarizes our results and gives directions
for future research.
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2. Search Procedures and Problem Domains

2.1. RANDOMIZATION

We consider a general technique for adding randomization to complete, system-
atic, backtrack search procedures, such as the Davis–Putnam procedure. These
procedures construct a solution (or truth assignment) incrementally. At each step a
heuristic is used to select an operation to be applied to a partial solution, such as
assigning a value to an unassigned variable. Eventually either a complete solution is
found, or the algorithm determines that the current partial solution is inconsistent.
In the latter case, the algorithm backtracks to an earlier point in its search tree.

If several choices are heuristically determined to be equally good, then a de-
terministic algorithm applies some fixed rule to pick one of the operations, for
example, by selecting the variables in lexicographic order. The most obvious place
to apply randomization, therefore, is in this tie-breaking step: if several choices are
ranked equally, choose among them at random. Even this simple modification can
dramatically change the behavior of a search algorithm, as we will see below.

However, if the heuristic function is particular powerful, it may rarely assign
more than one choice the highest score. To handle this, we can introduce a “heuris-
tic equivalence” parameter to the algorithm. Setting the parameter to a valueH

greater than zero means all choices that receive scores withinH -percent of the
highest score are considered equally good. This expands the choice set for random
tie-breaking.

With these changes, each run of the search algorithm on a particular instance
will differ in the order in which choices are made and potentially in time to solution.
We note that introducing randomness in the branching variable selection does not
affect the completeness of the backtrack search. Some basic bookkeeping ensures
that the procedures do not revisit any previously explored part of the search space,
which means that we can still determine inconsistencies, unlike local search meth-
ods. The bookkeeping mechanism involves some additional information, where for
each variable on the stack, we keep track of which (truth) assignments have been
tried so far.

We modified two state-of-the-art SAT solvers, Satz [39] and Relsat [6].? Both
procedures are versions of the Davis–Putnam–Logemann–Loveland procedure [12,
13] with sophisticated heuristics for choosing which variable to branch on at each
branching point. Relsat incorporates random tie-breaking and lookback strategies,
such as conflict directed backjumping (CBJ, [52]) and relevance bounded learning
[5]. These procedures are the fastest SAT methods we have found for the instances
discussed in this paper. In both procedures the powerful heuristics often only yield
a relatively small set of variables to branch on. We therefore added the heuristic
equivalence parameterH to enlarge the choice set.

? We thank Chu Min Li and Roberto Bayardo for making their source code available to us. See
also SATLIB at www.informatik.tu-darmstadt.de/AI/SATLIB/.
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We also randomized the Ilog constraint solver for our experiments on constraint
satisfaction formulations. Ilog provides a powerful C++ constraint programming
library [53]. We randomized the first-fail heuristic and various variants of the Bre-
laz selection rule, which has been shown to be effective on graph-coloring-style
problem domains [7].

2.2. PROBLEM DOMAINS

In our study, we consider a series of problem domains.? Our first domain is the
so-called quasigroup completion problem. This domain was introduced in Gomes
and Selman [22] to bridge the gap between purely random instances and highly
structured problems, such as those from finite algebra [19, 37, 61].

A quasigroup is an ordered pair(Q, ·), whereQ is a set and(·) is a binary
operation onQ such that the equationsa · x = b and y · a = b are uniquely
solvable for every pair of elementsa, b inQ. TheorderN of the quasigroup is the
cardinality of the setQ. The best way to understand the structure of a quasigroup is
to consider theN byN multiplication table as defined by its binary operation. The
constraints on a quasigroup are such that its multiplication table defines aLatin
square. This means that in each row of the table, each element of the setQ occurs
exactly once; similarly, in each column, each element occurs exactly once [14].

An incompleteor partial Latin squareP is a partially filledN byN table such
that no symbol occurs twice in a row or a column. The quasigroup completion prob-
lem is the problem of determining whether the remaining entries of the table can be
filled in such a way that we obtain a complete Latin square, that is, a full multipli-
cation table of a quasigroup. We view the pre-assigned values of the Latin square as
aperturbationto the original problem of finding an arbitrary Latin square. Another
way to look at these pre-assigned values is as a set of additional problem constraints
on the basic structure of the quasigroup. (See www.cs.cornell.edu/gomes/ for a Java
applet demonstrating the quasigroup completion problem.)

The quasigroup completion problem is NP-complete [3, 8]. In previous work,
we identified a phase transition phenomenon for the completion problem [22]. At
the phase transition, problem instances switch from being almost all solvable (“un-
derconstrained”) to being almost all unsolvable (“overconstrained”). The computa-
tionally hardest instances lie at the phase transition boundary. This phase transition
allows us to tune the difficulty of our problem class by varying the percentage of
pre-assigned values. The location of the phase transition for quasigroups of order
up to around 20 occurs around 42% of pre-assigned colors. For larger quasigroups,
the exact location of the phase transition appears dependent on the order of the
quasigroup, which is a topic for further study.

Figure 2 shows the median computational cost and phase transition as functions
of the percentage of pre-assigned values for quasigroups up to order 15. Each data
point is generated using 1,000 problem instances. The pre-assigned values were
? Problem instances and data are available from the first author (gomes@cs.cornell.edu). All

experiments were performed on a 194 MHz SGI R10000 processor.
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(a)

(b)

Figure 2. (a) Cost profile, and (b) phase transition for the quasigroup completion problem (up
to order 15).

randomly generated in a incremental fashion with forward checking to eliminate
obvious conflicts. For interesting related work using a somewhat different model
of pre-assignment, see [59].

In our experiments, we used a constraint satisfaction formulation (CSP) for-
mulation of the quasigroup completion problem. We did some preliminary exper-
iments with a satisfiability (SAT) encoding but found that the formulas grow very
large rather quickly, making it difficult to study quasigroup problems of interest-
ing size. However, our preliminary SAT experiments agreed with our experiments
using the CSP encoding.?

? We thank Mark Stickel for randomizing his implementation of the Davis–Putnam procedure and
for providing us with a SAT generator for the quasigroup problem.
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Our second problem domain is from the area of timetabling. In this domain,
the problem is to determine whether there exists a feasible schedule that takes into
consideration a set of pairing and distribution constraints. We consider two types of
timetabling problem domains: school timetabling ([32]; we used a SAT encoding),
and round-robin sports team scheduling ([45]; we used a CSP encoding). For some
of the background literature in this fast-growing area and to get a sense of the range
and mathematical difficulty of the problems encountered, see, for example, [48].

Our third problem domain is planning. Kautz and Selman [34] showed that
propositional SAT encodings of STRIPS-style planning problems could be effi-
ciently solved by SAT engines. While both a complete backtrack-style engine and
an incomplete local search engine worked well on moderate-sized problems, the
largest problems from the domain of logistics scheduling could be solved only by
local search. However, as it turns out, the deterministic version of Satz can solve all
of the logistics instances from that paper in less than 2 minutes. Therefore we con-
structed a still-larger planning problem, labeled “logistics.d”. This domain involves
moving packages on trucks and airplanes between different locations in different
cities. While the largest logistics problem from the Kautz and Selman [34] paper
involved 1,141 variables and 1010 states, “logistics.d” involves 2,160 variables and
1016 states. In the logistics domain, a state is a particular configuration of packages
and vehicles. Satz takes over 100 minutes on logistics.d.

Our fourth and final domain involves several SAT encodings of problems from
the Dimacs Challenge benchmark [32]. We consider a code optimization problem,
involving register allocation (“mulsol” instance), and circuit synthesis problems
(“adder” instances). For the circuit synthesis problems, Kamath et al. [33] devel-
oped a technique for expressing the problem of synthesizing a programmable logic
array (PLA) as a propositional satisfiable problem. The statement of the problem
includes a table specifying the function to be computed, and an upper bound on the
number of gates that may appear in the circuit. In general, these problems become
more difficult to solve as the number of gates is reduced, until the limit is reached
where the instance becomes unsatisfiable. These problems are quite hard to solve
with complete SAT procedures and have been used as part of the test beds for
numerous SAT competitions and research studies. The problems considered in this
paper, “3bit-adder-32” and “3bit-adder-31”, are (as one would guess) based on
synthesizing a 3-bit adder using 32 and 31 gates, respectively. Although Selman et
al. [57] solve the instances using local search, they have not previously been solved
using a backtrack procedure.

3. Cost Distributions of Backtrack Search

As mentioned in the introduction, our first experiments demonstrate some of the
puzzling features of backtrack search procedures, such as an extreme variability
and a seemingly “wandering sample mean” of the search cost. See Figure 1(a).
The data is based on runs of a randomized backtrack search procedure (Ilog) on an



HEAVY-TAILED PHENOMENA IN SATISFIABILITY 75

(a)

(b)

Figure 3. Long tails for (a) quasigroup completion (CSP formulation), and (b) timetabling
(SAT formulation).

instance of the quasigroup problem of order 11 with 30% of pre-assignment. The
figure shows the highly erratic behavior of the mean, which does not stabilize with
increasing sample size. On the other hand, as we noted earlier, the median is 1 and
stabilizes rather quickly.

Figure 3 provides some insights into the cause of the “wandering mean phenom-
enon.” The figure shows surprisingly long “tails” in the distributions for two exper-
imental domains. Each curve gives the cumulative fraction of successful runs as a
function of the number of backtracks, and was produced by running the randomized
backtrack search procedure 10,000 times on the same instance. Figure 3(a) shows
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the performance profile for the quasigroup completion problem; the data is from
the same instance as shown in Figure 1. Figure 3(b) shows the cost profile of a
randomized search procedure for a school timetabling problem (“school1_nsh”
[32]).

The long-tail phenomenon is apparent in both curves. In the case of the quasi-
group completion problem, even though 50% of the runs solve the instance in 1
backtrack or less, after 100,000 backtracks 0.5% of the runs were still not com-
pleted. For the school timetabling problem, in 80% of the runs, a solution is found
in 1,000 backtracks or less. However, 5% of the runs do not result in a solution
even after 1,000,000 backtracks. (Note that, given that our procedure is complete,
each of these runs would eventually find a solution.)

In order to model the long-tail behavior of our distributions, we will consider
nonstandard probability distributions, referred to as “heavy-tailed” distributions.
These distributions have recently received much attention because of their suit-
ability to model stochastic phenomena subject to extreme fluctuations. In the next
section, we provide a brief introduction to heavy-tailed distributions and some of
their mathematical properties. In the following section, we show how the long tails
of the runtime distributions of backtrack search methods can be captured using the
heavy-tailed model.

3.1. HEAVY-TAILED DISTRIBUTIONS

Standard probability distributions, such as the normal distribution, have exponen-
tially decreasing tails, which means that events that are several standard deviations
from the mean of the distribution (“outliers”) are very rare.? In this section, we
consider distributions that have rather different properties, often leading to non-
intuitive behavior. More specifically, we consider distributions that asymptotically
have “heavy tails” – also called tails of the Pareto–Lévy form, namely,

P{X > x} ∼ Cx−α, x > 0, (1)

where 0< α < 2 andC > 0 are constants. These are distributions whose tails
have apower-lawdecay.

An important source of heavy-tailed distributions is the class of so-calledsta-
ble distributions. Stable distributions have been proposed in the study of several
types of physical and economic systems. This class of distributions was extensively
studied by Paul Lévy to model phenomena characterized by sums of independent
identically distributed random variables. Informally, a random variableX is stable
if the distribution of the sum of independent copies of it has the same shape as
the distribution ofX. The name of these distributions emphasizes the fact that the
shape of a stable distribution isstableunder addition.

? The tail of the standard normal distribution (mean 0 and standard deviation 1) decays as P{X >
x} ∼ 1

x
√

2π
e−x2/2 [16]. We writeh(x) ∼ g(x) to mean limx→∞h(x)/g(x) = 1.
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Formally, a random variableX is stable if we have the following relation
betweenX and two copies ofX,X1, andX2, and any positive constantsa andb:

aX1+ bX2
D= cX + d (2)

for some positivec andd ∈ R. The symbol
D= means equality in distribution; that

is, both expressions have the same probability law, possibly with different scale
and location parameters [16]. In effect, (2) states that the distribution of the sum
of two copies ofX behaves essentially the same asX itself (up to a location and
scaling factor).

Most standard probability distributions are not stable. For example, although
the sum of two independently distributed gamma distribution is still a gamma, the
shape of the resulting gamma is generally not preserved. The normal or Gaussian
distribution, however, is stable. There are two more cases of stable distributions for
which one can write down explicit (closed form) expressions for their probability
density functions. These are the Cauchy distribution and the Lévy distribution.?

These distributions differ, however, in a fundamental way from the normal distrib-
ution in that the Cauchy and the Lévy distributions are heavy-tailed distributions:
That is, the tails decay as in Equation (1). Stable distributions are heavy tailed,
with the notable exception of the normal distribution [51]. The normal distribution
is a stable distribution but not heavy tailed. The other standard distributions, such
as the exponential, Weibull, lognormal, and gamma, are neither stable nor heavy
tailed. Such standard distributions all have exponentially decaying tails and finite
moments.

In Table I, we compare the tail probabilities for the three distributions. It is
clear that the tail probability for the normal quickly becomes negligible, whereas
the other two distributions have a significant probability mass in the tail.

Theα in (1) is referred to as theindex of stabilityof the distribution. The lower
the index, the heavier the tail. For example, the Cauchy hasα = 1.0, and the Lévy
distribution hasα = 0.5.

Heavy-tailed distributions have a number of surprising properties. For example,
let’s consider the moments (mean, variance, etc.) of these distributions. For stan-
dard distributions, these moments are well defined. In the case of heavy-tailedness,
due to the large probability mass in the tails, some of the integrals that define the
moments do not converge. In particular, forα < 2, moments ofX of order less
thanα are finite while all higher-order moments are infinite, that is,α = sup{b >
0 : E|X|b < ∞}. So, when 1< α < 2, the distribution has a finite mean but no
finite variance. Withα ≤ 1, the distribution has neither a finite mean nor a finite
variance.

? For the normal distribution,X ∼ N(ν, σ2), the probability density is given byf (x) =
1√
2πσ

e
− (x−ν)2

2σ2 . For the Cauchy,X ∼ Cauchy(γ, δ), we havef (x) = 1
π

γ

γ 2+(x−δ)2 . And forX ∼
Lévy(γ, δ), f (x) =

√
γ
2π

1
(x−δ)3/2 e−

γ
2(x−δ) [51].
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Table I. Comparison of tail probabilities,
P{X > c}, for standard normal, Cauchy,
and Ĺevy distributions. (Adapted from
[51].)

c Normal Cauchy Ĺevy

0 0.5000 0.5000 1.0000

1 0.1587 0.2500 0.6827

2 0.0228 0.1476 0.5205

3 0.001347 0.1024 0.4363

4 0.00003167 0.0780 0.3829

5 0.0000002866 0.0628 0.3453

Many aspects of random walks involve heavy-tailed distributions [16, 17]. Con-
sider a one-dimensional random walk, where at each time step one takes a unit-step
to the left or right with equal probability. One can show that after starting at the
origin, with probability one, the walk will eventually return to the origin. However,
theexpectedtime before return is infinite, and, on average, the walk will reach all
values on thex-axis before its return. Another intriguing phenomenon involves the
expected number of returns to the origin (“zero-crossings”) in a given number of
steps. Intuition would dictate that if ink steps one has on averagel crossings, then
in a walk that ism times as long, one would expect on averagem × l crossings.
However, it can be shown that inm × l steps, one will observe, on average, only√
m× l crossings. This means that there can be surprisingly long periods in a walk

between two crossings. In fact, in a series ofr random walks, each terminating at
the first crossing, on average, some of the walks will be of the same order as the
length of all other walks combined,no matter what the value ofr is. Such events
would normally be dismissed as outliers, but with heavy-tailed distributions, they
are far from rare and are an inherent aspect of the distribution. These distribu-
tions are therefore good models for dealing with phenomena that exhibit extreme
fluctuations.

To provide a visual illustration of the heavy-tail effect in random walks, consider
Figure 4. The figure shows simulation data for 10,000 runs of a symmetric random
walk. For each walk we recorded the number of steps before the walk returned
to the origin. In the figure, we plot the complement-to-one of the cumulative dis-
tribution, that is, 1− F(x) = 1− P{X ≤ x} = P{X > x}, with F(x) being the
cumulative distribution off (x). The probability function,f (x), gives the probabil-
ity of returning to the origin in exactlyx steps. So, 1−F(x) gives us the probability
of returning in more thanx steps. It can be seen thatf (1) = 0 andf (2) = 0.5, so
we haveF(x) = 0.5, which means that with 50% chance the walk returns to the
origin in at most two steps. In the figure, we give the log-log plot for 1−F(x). (In
the figure, the walk data is given by the diagonal straight line.) As we can see, we
obtain a nearly straight line for the tail of the distribution. This suggests that the
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Figure 4. The heavy-tailed nature of a random walk with the exponential decay of the normal
distribution for comparison.

1− F(x) has power law decay, that is, we have 1− F(x) = P{X > x} ∼ Cx−α ,
and thus the distribution is heavy-tailed according to our definition (1) above. The
slope of the line gives us an estimate of the index of stability,α, which in this case
is equal to 0.5 (also known by rigorous analysis). The relatively high frequency
of large outliers is clear from the figure. For example, although 50% of the walks
return in just 2 steps or less, 1% of the walks take more than 5,000 steps to return
to the origin, and about 0.1% take over 200,000 steps. In fact, several of the walks
in our sample take almost 1,000,000 steps.

To demonstrate how different such a heavy-tailed distribution is from a stan-
dard distribution, we included simulation data of the complement-to-one of the
cumulative distribution for a normal distribution. We used a mean value of 2 and
give the curves for two different standard deviations (σ = 1, left-most curve, and
σ = 106, right-most curve). The key property to observe is the sharp, faster-than-
linear decay of the normal distribution in the log-log plot, which is consistent with
the exponential decay in the tail of the distribution. We included a normal distrib-
ution with σ = 106 to show that the drop-off of the tail remains sharp even when
the normal distribution has a large standard deviation. (The normal distribution is
symmetrical; the figure gives only the right-hand side.)

There is a substantial literature on heavy-tailed distributions. Mandelbrot in [44]
provides a good introduction to these distributions, with a discussion of their inher-
ently self-similar or fractal nature. For a complete treatment of stable distributions,
see either [66] or the more modern approach of [56].

3.2. EMPIRICAL RESULTS

In order to check for the existence of heavy tails in our runtime distributions for
backtrack search, we proceed in two steps. First, we graphically analyze the tail
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(a) (b)

(c) (d)

Figure 5. Log-log plot of heavy-tailed behavior for (a) quasigroup completion (CSP formu-
lation); (b) timetabling (SAT formulation); (c) logistics planning (SAT formulation), and (d)
register allocation (SAT formulation).

behavior of the sample distributions. Second, we formally estimate the index of
stability.

From (1), we have 1− F(x) = P{X > x} ∼ Cx−α . As in the case of the
random-walk example, given the power law decay of 1− F(x), its log-log plot
should show an approximate linear decrease in the tail. Moreover, the slope of
the curve provides an estimate of the indexα. In contrast, for a distribution with
an exponentially decreasing tail, the log-log plot should show a faster-than-linear
decrease.

Figure 5 displays the log-log plots of the complement-to-one of the cumulative
distributions for our experimental domains. In Figure 5(a), we give the data for
a solvable critically constrained instance of the quasigroup completion problem
(order 15, 40% pre-assignment), and two solvable underconstrained instances of
the quasigroup completion problem (one of order 15, 30% pre-assignment and the
other of order 11, 30% pre-assignment, the same instance as used in Figures 1(a)
and 3(a)). Figure 5(b) gives the data for the school timetabling problem; 5(c) for the
logistics planning problem; and 5(d) for the register allocation problem. The linear
nature of the tails in these log-log plots directly reveals the heavy-tailed behavior.
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Note that our data is based on solvable problem instances. We considered ad-
ditional distributions of over two dozen randomly picked quasigroup completion
problems, from both the underconstrained and the critically constrained area, and
other instances from the domains described above, as well as some ensembles of
instances at various degrees of constrainedness. For sufficiently large instances
(and therefore requiring substantial search), we found heavy-tailed distributions
for most of our solvable instances. Some easy solvable instances did not exhibit
heavy tails. We also have not encountered inconsistent instances with heavy-tailed
behavior, which is consistent with the work on unsolvable instances by [18].

Figure 6(a) shows a comparison between two different SAT procedures on the
logistics planning problem. We compare Satz [39] with Relsat [6]. As mentioned
earlier, both procedures use sophisticated propagation rules and heuristics to guide
their search. However, the Relsat backtracking strategy also includes look-back,
based on conflict directed backjumping and relevance bounded learning [52, 5].
We present this comparison to consider the possible influence of such look-back
strategies on the heavy-tailed behavior. From the figure, we see that Relsat still
results in heavy-tailed behavior but the slope of the distribution in the log-log plot
is steeper than for Satz. This means the index of stability for Relsat is higher,
meaning a tail that is somewhat less heavy. This observation is consistent with
related work where look-back strategies were shown to be effective for solving
so-called exceptionally hard SAT instances [6]. In effect, the look-back approach
reduces the variability in the search, even though it may not necessarily eliminate it.

We now consider the effect on heavy-tailed behavior of more compute-intensive
propagation methods. For the quasigroup completion problem, when using so-
called “all-different-constraints”, one can solve substantially larger problems, as
discovered by Shaw et al. [59]. In this approach, one maintains general arc consis-
tency on theN-ary all different constraints using the algorithm of Regin [54]. This
method uses a matching algorithm to ensure that at each point during the search,
in each row, the set of remaining colors for the yet to be assigned cells is such that
there is a different color available for each cell (similarly for the columns). Using an
efficient Ilog-based implementation, we can solve instances of order 30 in under
five minutes, which allows us to gather runtime information within a reasonable
time frame.?

By using the all-different-constraint method, we observed that the heavy-tailed
phenomenon disappears for quasigroups of low orders. The reason for this is that
the instances are solved mostly by propagation, almost without any search. How-
ever, as we increase the order of the quasigroups, the heavy-tail phenomenon reap-
pears. Figure 6(b) shows the heavy tail for an instance of order 30 with 55%
preassigned when using the all-different-constraints (55% is close to the phase
transition for order 30).

? We thank Jean Charles Regin for his highly efficient Ilog implementation of this propagation
strategy. A similar propagation, more efficient but somewhat less powerful, can be obtained by using
so-called conjugate constraints [63].
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(a)

(b)

Figure 6. (a) Comparing Satz with Relsat on logistics planning (SAT formulations); (b) heavy
tail for quasigroup completion with extensive propagation (CSP formulation).

To complement our visual check of heavy-tailed behavior, we have calculated
maximum likelihood estimates of the indices of stability (the values ofα). There
is a standard estimator for the index, called the Hill estimator [26, 24]. We adapted
this estimator, since some of our data is not observable because we ran our ex-
periments with a certain high cutoff (usually 106) for the maximum number of
backtracks, to avoid literally getting stuck in the most extreme outliers in the tail
of the distribution during our data collection.
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Table II. Estimates of the index of stability,α, with sam-
ple sizek. The values within parentheses are the estimated
asymptotic standard deviations. (Quasigroup instances en-
coded as CSP; other instances encoded as SAT.)

Cases k α

Quasigroup (order 11, 30%) 9731 0.466 (0.009)

Quasigroup (order 15, 30%) 10000 0.319 (0.006)

Quasigroup (order 15, 40%) 10000 0.153 (0.003)

Quasigroup (order 30, 55%) 10000 0.392 (0.007)

School Timetabling 10000 0.219 (0.004)

Logistics Planning (Satz) 1442 0.360 (0.017)

Logistics Planning (Relsat) 1000 0.670 (0.009)

Register Allocation 10000 0.102 (0.002)

As shown in Appendix A, following an argument similar to the one in [26], we
can derive the following maximum likelihood estimator for the index of stability
α, which takes into account the data truncation:

α̂r,u =
(

1

r

r−1∑
j=1

lnXn,n−r+j + u+ 1

r
lnXn,n − u+ r

r
lnXn,n−r

)−1

(3)

Xn,1 ≤ Xn,2 ≤ · · · ≤ Xn,n give the order statistics, that is, the ordered values of
the sampleX1,X2 . . . , Xn of the observed number of backtracks for different runs
of our procedure. The highly extreme variable valuesXn,n+1 ≤ Xn,n+2 ≤ · · · ≤
Xn,n+u are not observable because of the limit that we imposed on the maximum
number of backtracks allowed in the experiments. We used a limit of 106. The
parameterr (< n) is a lower-bound cutoff on search cost, which enables us to focus
only on the tail end of the distribution, that is, observationsXn,n−r ≤ Xn,n−r+1 ≤
· · · ≤ Xn,n. Without a practical limit on extreme values (u = 0), the estimator
reduces to the Hill estimator. In our analysis, we considered tails that correspond
to roughly 30% of each sample (i.e.,r = 0.3k, with k the size of the sample).

Table II displays the maximum likelihood estimates of the indices of stability
(the values ofα) for the instances shown in the various figures. Note that for all the
instances shown in the table, the estimates ofα are consistent with the hypothesis
of infinite mean and infinite variance, sinceα < 1.?

? Of course, the computational cost of complete backtrack algorithms has a finite upper bound.
Technically speaking, we are dealing with “truncated heavy-tails”. That is, when allowing for a
very large number of backtracks such that one can explore most of the complete search tree, one
will observe truncation effects in the heavy-tailed distribution. (Personal communication, Holger
Hoos, Dec., 1999.) Nevertheless, the heavy-tailed model provides a good approximation for the
tail-behavior of the search cost when dealing with realistic-size NP-complete problems. The heavy-
tailed model emphasizes the power law decay over several orders of magnitude of the tail of the
distribution. Also, since the upper-bound of the search space is exponential in the size of the problem,
it is generally not reached in practice.
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(a)

(b)

Figure 7. No heavy tails: (a) local search (SAT formulation) and (b) unsolvable instances
(CSP formulation).

For contrast with our heavy-tailed results, in Figure 7(a), we show the log-log
plot for the same instance from the logistics planning domain used in Figure 5(c),
but rather than using a randomized complete search method, we used Walksat [57],
a randomized local search procedure. It is clear from that plot that the distribution
does not exhibit heavy-tailed behavior, given the faster-than-linear decrease of the
tail. This observation is consistent with the recent (independent) results by Hoos
[29], showing that the exponential distribution generally provides a good model for
the runtime profile of local search.



HEAVY-TAILED PHENOMENA IN SATISFIABILITY 85

Another example of nonheavy-tailed behavior is given in Figure 7(b), which
shows the log-log plots of two unsolvable instances from the quasigroup comple-
tion domain. We see the sharp rounded drop-off of both curves – indicating the
absence of heavy tails. One is a rare unsolvable instance in the underconstrained
area (best fit: a gamma distribution); the other is an unsolvable instance in the
critically constrained region (best fit: normal distribution). As noted above, we
have not found unsolvable instances with heavy-tailed behavior, again consistent
with Frost et al. [18].

3.3. HEAVY-TAILS ON THE LEFT-HAND SIDE OF THE DISTRIBUTION

The heavy-tailed behavior we have seen so far shows that in backtrack search,
extremely long runs can occur much more often than one would expect if the
process were covered by a standard probability distribution. Similarly, in further
experiments, we have found an indication that, when dealing with relatively hard
problem instances, short runs may also occur much more frequently than expected.
Figure 8 gives the log-log plot of the cumulative distribution (F(x) = P{X ≤ x})
for a 14-team round-robin scheduling problem (panel a) and for a logistics planning
problem (panel b). The data from Figure 8(a) shows that even though 70% of
the runs take more than 25,000 backtracks, roughly 1% of the runs take fewer
than 650 backtracks. In the case of the 16-team scheduling instance, we observed
that roughly 1% of the runs takes fewer than 10,000 backtracks, compared with a
median value of the distribution, which is over 2,000,000. For the logistics problem
in Figure 8(b), we found that roughly 2% of the runs find a solution in at most 200
backtracks, while 70% of the runs take more than 100,000 backtracks. Figure 8
reveals a substantial fraction of very short runs. However, the left-hand side tails in
Figure 8 are not heavy enough to qualify as “heavy”. Nevertheless, our conjecture
is that very hard instances may indeed exhibit heavy-tailed behavior on the left-
hand side. We are currently investigating such a conjecture. The existence of a
considerable mass of probability on the left-hand side of the distribution, as well as
the heavy-tailed phenomena on the right-hand side, have significant consequences
for algorithmic strategies.? In particular, we will show in the next section how,
by rapid restarting a randomized backtrack procedure, one can take advantage of
the left-hand side probability mass and eliminate the heavy-tailed behavior on the
right-hand side.

3.4. HEAVY-TAILEDNESS AND STRUCTURE OF SEARCH SPACE

Why do heavy-tailed distributions occur in backtrack search? An intuitive explana-
tion involves the notion ofcritically constrainedvariables. In most combinatorial

? The long tails on the left also provide an explanation for the so-called superlinear speedup
phenomenon, observed in practice when solving hard combinatorial problems using several parallel
runs [15, 41, 28, 60]. Basically, a long tail on the left implies that some of the parallel runs have a
non-negligible probability of finishing early.
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(a)

(b)

Figure 8. Log-log plot of left-hand side tail of the distribution for (a) 14-team round-robin
scheduling (CSP formulation) and (b) logistics.d planning instance (SAT formulation).

problems, it is much harder to find good values for some of the variables than
for others. However, once thesecritical variables are set, the values for the other
variables are largely determined. For example, in scheduling problems it is often
the case that once a subset of critical tasks is scheduled, the other tasks immediately
fall into place. The most efficient backtrack search strategy is to first concentrate
on finding a consistent set of values for these critical variables. The variable choice
heuristic employed in backtrack search tries to identify such critical variables, but
is in practice inaccurate. The very short runs occur when the heuristic works well
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and critical variables are chosen at the beginning of the search. The very long runs
occur when the algorithm makes some unfortunate choices early on and explores an
exponential number of ways of setting noncritical variables, none of which allows
a consistent assignment to the critical variables; that is, the search explores an ex-
ponentially large subtree containing no solutions. We are currently formalizing this
intuitive explanation of critical variables by studying the close connection between
phase transition phenomena and computationally hard problems, using models
from statistical physics [25, 35, 47]. We show that the number of critical vari-
ables is linked to the nature of the phase transition underlying the computational
task. Furthermore, heavy-tailed behavior suggests that the underlying search space
for combinatorial problems is inherently self-similar in nature. We are exploring
more direct measures to characterize such self-similarity geometrically. Intuitively
speaking, self-similarity arises from repetitive patterns in the search tree, leading
to a possible fractal dimension of the overall search tree.

Another step toward a further understanding of heavy-tailed behavior can be
found in recent work by Walsh [65]. In searching graphs with so-called “small-
world” properties, Walsh [65] identifies heavy-tailed behavior. He puts forward
the conjecture that a small-world topology will induce heavy-tailed behavior. A
small-world topology is characterized by a small number of global constraints
combined with a large number of local connections. In such problems, the long-
range interactions may define the critical variables of the problem. Clearly, more
work is needed to clarify these issues.

4. Consequences for Algorithm Design

We have shown the special heavy-tailed nature of the cost distributions of ran-
domized SAT and CSP procedures, and we have seen how the distributions can
be modeled with Pareto–Lévy type (heavy) tails. Our estimates forα are consistent
with the hypothesis of infinite variance (α < 2), and infinite mean (α < 1), which is
consistent with the empirically observed erratic behavior of the mean and extreme
variance of the cost of backtrack search methods. We have also found long tails on
the left-hand side of the cost distribution for certain classes of problem instances.
Given the heavy-tailed phenomenon, a randomized backtrack procedure is, in a
sense, most effective early on in the search, which suggests that a sequence of short
runs instead of a single long run may be a more effective use of computational
resources. In this section, we show how arapid randomized restartstrategy can
take advantage of the heavy-tailed behavior.

4.1. COST DISTRIBUTIONS WITH RESTARTS

In Figure 9, we show the result of applying a strategy of fixed-length short runs
(“restarts”) of a randomized backtrack procedure. Figure 9(a) shows the results on
a quasigroup completion instance of order 20 with 5% pre-assignment. Without
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(a)

(b)

Figure 9. A rapid restart strategy to speed up backtrack search. Failure rate (1− F(x)) as a
function of the total number of backtracks for a quasigroup instance (CSP formulation; panel
(a)) and a logistics instance (SAT formulation; panel (b)). In panel (b), the leftmost curve is for
a cutoff value of 16; the middle curve for a cutoff of 250; and, the rightmost curve is without
restarts.

restarts and given a total of 300 backtracks, we have a failure rate of around 70%.
With restarts (every 4 backtracks), this failure rate drops to around 0.01%. The
figure also shows a clear downward curve for the log-log plot of the complement-
to-one of the cumulative distribution of the restart strategy, which is an indication
that the heavy-tailed nature of the original cost distribution has disappeared. In
fact, we can show that the restart strategy follows a geometric distribution and,
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therefore, does not have heavy tails. For a derivation of this result and a formal
characterization of restarts, see Appendix B.

Figure 9(b) shows the effect of restarts on the logistics.d planning problem. The
figure gives the distributions resulting from running randomized Satz with a cutoff
of 16 (near optimal) and a cutoff of 250. The sharp dropoff in the log-log plot shows
again the resulting geometric distribution. We see, for example, that with restarts
using a cutoff value of 16, after a total of around 5,000 backtracks, we obtain a
failure rate of around 5%. On the other hand,without restarts, even after 100,000
backtracks, the failure rate is still only around 70%.

4.2. RAPID RANDOMIZED RESTARTS

A restart strategy clearly eliminates the heavy tails on the right of the cost distribu-
tions. Perhaps more surprisingly, such restarts can also take advantage of the long
tails to the left of the median (Section 3.3). In general, a restart strategy exploits
any significant probability mass early on in the distribution.

Different cutoff values will result in a different overall mean solution time.
Table III shows the mean solution time (based on 100 runs)? for a range of cut-
off values on a timetabling problem (panel a, round-robin scheduling; 16 teams),
and the logistics.d planning problem (panel b). Both parts of the table show the
same overall pattern, revealing a clear optimal range of cutoff values.?? For the
timetabling problem, the mean cost is minimized with a cutoff around 50,000, and
for the planning problem the optimal cutoff value is near 16. (For both instances,
these results exploit the long tail on the left.) With a higher than optimal cutoff
value, the heavy-tailed behavior on the right of the median starts dominating the
overall mean, whereas for cutoffs below the optimal range the success rate is too
low, requiring too many restarts to give a good overall mean cost value.‡

Figure 10 gives the data from Table III(b) in a graphical form. The logarithmic
vertical scale indicates that one can shift the performance of the procedure over
several orders of magnitude by tuning the cutoff parameter.

? Note that as a result of the geometric nature of the underlying restart strategy, the standard
deviation in the runtime is of the order of the mean.
?? It should be noted that random restarts involving a cutoff value are regularly used for local search

methods. The novelty here is in the use of restarts in randomized backtrack search to eliminate the
heavy-tailed phenomena and to exploit short runs. Restarts are used in local search to avoid local
minima, but the underlying runtime distributions do not appear to be heavy tailed (Figure 7 [29]),
resulting in less dramatic speedups.

‡ Note that the long tails in Figure 8 do not extend all the way to zero. This suggests that a pure
“probing” strategy, that is, repeatedly going down a random branch of the search tree without any
backtracking, is not effective on these instances. This also is apparent from Table III. So, at least a
small number of backtracks is required. This is in contrast with the scheduling problems considered
by Crawford and Baker [11], who obtain good results with a pure probing strategy on SAT encodings
in their scheduling domain.
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Table III. Solving (a) a 16-team round-robin scheduling problem (CSP formu-
lation) and (b) the logistics.d instance (SAT formulation) for a range of cutoff
values.

Success Mean Cost Success

Cutoff Rate (×106) Cutoff Rate Mean Cost

200 0.0001 2.2 2 0.0 >300,000

5,000 0.003 1.5 4 0.00003 147,816

10,000 0.009 1.1 8 0.0016 5,509

50,000 0.07 0.7 16 0.009 1,861

100,000 0.06 1.6 32 0.014 2,405

250,000 0.21 1.2 250 0.018 13,456

1,000,000 0.39 2.5 128000 0.32 307,550

(a) (b)

Figure 10. The effect of random restarts on solution cost for the logistics.d planning problem
(SAT formulation).

4.3. RESTART RESULTS ON A RANGE OF PROBLEM INSTANCES

In Table IV we give the mean solution times of randomized backtrack procedures
with rapid restarts, for a range of problem instances. The averages were computed
over 100 runs each. For comparison, we included the runtime of the original deter-
ministic procedures (Satz for the logistics, adder, and blocks-world instances; Ilog
for the round-robin problems).?

Our deterministic Ilog procedure on the round-robin scheduling problem gives
us a solution for the 14-team problem in 411 seconds; randomization improves this
to 250 seconds. We could not find a solution for the 16- and 18-team problem with

? The deterministic runs can also be viewed as single runs of the randomized procedure with an
infinite cutoff value. Note that, of course, one might be “lucky” on any any given instance and have
the deterministic procedure branch in the right way. However, on the harder instances, we often need
several hundred restarts to find a solution. On those instances, it becomes quite unlikely that a single
deterministic run would succeed.
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Table IV. Randomized rapid restarts (RRR) versus determinis-
tic versions of backtrack search procedures (Satz solver used on
SAT encodings; Ilog solver on CSP encodings).

Deterministic RRR

Problem Solver soln. time mean soln. time

logistics.d Satz 108 min 95 sec

3bit-adder-32 Satz > 24 hrs 165 sec

3bit-adder-31 Satz > 24 hrs 17 min

round-robin 14 Ilog 411 sec 250 sec

round-robin 16 Ilog > 24 hrs 1.4 hrs

round-robin 18 Ilog > 48 hrs ≈ 22 hrs

block-world.d Satz 30 min 23 min

the deterministic version. Apparently, the subtle interaction between global and
local constraints makes the search for a globally consistent solution surprisingly
difficult. These problem instances are too hard to obtain a full cost distribution,
making it difficult to calculate an optimal cutoff value.? For example, in the 16-
team case, running with a cutoff of 1,000,000 gives a success rate of less than 40%.
So, we do not even reach the median point of the distribution. Each run takes about
2 hours to complete. (We estimate that the median value is around 2,000,000.) In
order to find a good cutoff value for very hard problem instances, one available
strategy is a trial-and-error process, where one experiments with various cutoff
values, starting at relatively low values, since the optimal cutoff for these problems
tends to lie far below the median value of the distribution. Using such a strategy
with RRR, we could solve the 16-team instance in 1.4 hours and the 18-team in
approximately 22 hours.

For the SAT encodings of the 3-bit-adder problems (examples of Boolean circuit
synthesis problems from the Dimacs benchmark [32]) the RRR solution times are
– to the best of our knowledge – the first successful runs of a backtrack search pro-
cedure (Davis–Putnam–Logemann–Loveland) on these instances. (These instances
were previously solved with local search methods [57].)

On the blocks-world problem, the table shows that we obtain little improve-
ment over our deterministic result. We ran the randomized version of Satz on this
instance over a wide range of cutoff values and with different levels of random-
ization (“heuristic equivalence” settings). However, there was no evidence of a
heavy-tailed distribution, and, therefore, randomization only slightly increases the
effectiveness of Satz.

? For problems for which we can empirically determine the overall cost profile, we can calculate
theoptimalcutoff value that minimizes expected cost of finding a solution.
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The results in Table IV show that introducing a stochastic element into a back-
track-style SAT or CSP procedure, combined with an appropriate restart strategy,
can significantly enhance the procedure’s performance. In fact, as we see here, it
allows us to solve several previously unsolved problem instances.

Niemela [49, 50], in independent work, made randomization and restarts a stan-
dard feature of his procedure for finding stable models of propositional theories.
Niemela did not study directly the cost profiles of his search procedures, but em-
pirically found that randomization and restarts can greatly boost the performance
of his solver. Although we have not studied the cost profiles of Niemela’s solver
directly, it seems likely that they will be heavy tailed, which would explain the
effectiveness of restarts.

Bayardo and Schrag [6], independently, included randomized tie-breaking and
restarts in Relsat, but with only a fixed, high cutoff value. The focus of that work
was on the effect of different backtrack techniques. The inclusion of random tie-
breaking was based on the observation of the sensitivity of any fixed heuristics to
individual problem instances [4].

Walsh [65] introduces a novel restart strategy in which the cutoff value increases
geometrically. The advantage of such a strategy is that it is less sensitive to the
details of the underlying heavy-tailed distribution. For further interesting related
work, of a more purely theoretical nature, on minimizing the expected cost of
randomized procedures and shortening the tails of randomized algorithms, see
[2, 15, 40]. Luby et al. [40] provide a universal strategy for minimizing the ex-
pected cost of randomized procedures: one that is suitable for all distributions.
For example, an efficientuniversalstrategy consists of a sequence of runs whose
lengths are powers of two, and each time a pair of runs of a given length has been
completed, a run of twice that length is immediately executed. In our case, where
we empirically determined the distribution of our search procedure, the optimal
strategy is just a sequence of runs of a fixed length. Luby et al. [40] showed that
such a fixed restart strategy is optimal when the underlying runtime distribution
of the randomized procedure is fully known. The work behind Luby’s universal
strategies was motivated by Ertel’s observation of possible long runs of theorem-
proving methods and their effect on parallel strategies [15]. Although the universal
strategy of Luby et al. is provable within a constant factor from optimal in the limit,
we found that in practice the schedule often converges too slowly.

It should be noted that Luby et al.’s analysis for the universal strategy is based
on two key assumptions: (1) no information about the prior distribution and (2)
unlimited time resources. One can show that when one has some prior knowledge
about the problem instance (which is reasonable if one has some experience with
solving previous instances of a problem class) or when one has some time con-
straints (e.g., one needs to solve this instance within, say, two days of CPU time),
then more sophisticated strategies are needed. Further work on selecting the best
restart strategy is needed.
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Other related work is that of Huberman et al. [30], who show how one can
reduce expected performance on hard combinatorial problems by running several
different heuristic algorithms in parallel in a “portfolio” approach. In [21], we show
that portfolios are quite effective when mixing heavy-tailed distributions arising
from different heuristic strategies.

5. Conclusions

Heavy-tailed probability distributions have been used to model a variety of real-
world phenomena, such as weather patterns and delays in communication net-
works. Our results show the suitability of such distributions in modeling the run-
time behavior of Davis–Putnam style satisfiability procedures, which are the cur-
rent fastest complete SAT procedures. Such procedures are based on a backtrack
search through the space of possible truth assignments. Our results elucidate a
series of puzzling characteristics of the computational cost of Davis–Putnam style
methods. In particular, the heavy-tail model explains the informally observed highly
erratic behavior of the mean and variance, as well as the long tails of the cost pro-
files. After observing such distributions in a variety of practical domains (including
CSP formulations), it appears that the heavy-tailed behavior may be the rule rather
than the exception for backtrack search methods.

The understanding of these characteristics explains why a “rapid restart” strat-
egy is an effective remedy against heavy-tailed phenomena. In addition, restarts
can exploit the mass of probability on the left of the cost distributions. Restarts
therefore reduce the variance in runtime and the probability of failure of the search
procedure, resulting in a more robust overall search method.

An interesting question for future research is to determine what characteris-
tics of SAT instances lead to heavy-tailed behavior and exactly how the heavy-
tailedness depends on the backtrack search strategy itself. For dealing with un-
solved problem instances, one would want to develop measures that are predictive
of heavy-tailedness for a problem instance without having to obtain cost profiles of
actual runs on the instance. If such measures can be found, one could develop
a priori optimal or near-optimal restart schedules. However, even without such
measures, we have found that one can often use restarts effectively because good
schedules tend to be relatively uniform within a problem domain.

Finally, as we discussed, there are still many interesting research questions
regarding the best restart policy. However, in practical terms [4, 38], we already
see that randomization and restarts are being added to the state-of-the-art complete
satisfiability procedures.
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Appendix

A. Adaptation of Hill Estimator

Assume a sample ofk = n + u i.i.d. random variables is drawn. Let the order
statistics for the smallestn (n ≤ k) values on the sample beXn1 ≤ Xn2 ≤ · · · ≤
Xnn. Assume that, forXn,n−r ≤ X ≤ Xnn, the tail distribution is of the Paul
Lévy type. We will show that the conditional maximum likelihood estimator for
the maximal moment exponentα is

α̂r,u =
(

1

r

r−1∑
j=1

lnXn,n−r+j + u+ 1

r
lnXn,n − u+ r

r
lnXn,n−r

)−1

(4)

and its variance is given by

V̂ar(α̂) = α̂2(r + 1)2

r2(r − 1)
.

In order to simplify the derivation, we will change momentarily the notation
and derive the estimator in the context of a lower tail of the Pareto–Lévy form. The
modification of the estimator for dealing with upper-tail values is straightforward.
We will follow the approach of Hill (1975). For further details, see [10].

Let the order statistics be

Z(k) ≤ Z(k−1) ≤ · · · ≤ Z(l+s) ≤ · · · ≤ Z(l+1) ≤ Z(l) ≤ · · · ≤ Z(2) ≤ Z(1).
We have a total ofk random variables. We assume that forZ ≤ Z(l), at least, these
are of the Pareto–Lévy type. However, we observe only thel + s + 1 variables
Z(l+s) ≤ · · · ≤ Z(l+1) ≤ Z(l), and not thek− l− s variablesZ(k) ≤ · · · ≤ Z(l+s+1).
Thus, only thes + 1 variablesZ(l+s) ≤ Z(l+s−1) ≤ · · · ≤ Z(l) are included in the
maximum likelihood estimator.

As in Hill (1975), the derivation is based on the Renyi (1953) representation
theorem. Assume that the cumulative distribution function forZ, F , is continuous
and strictly increasing. Then,

Z(i) = F−1

(
exp

{
−e1

k
− e2

k − 1
− · · · − ei

k − i + 1

})
,
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where theei are independent exponential random variables with mean 1. Restrict-
ing our attention to thes + 1 variablesZ(l+s) ≤ · · · ≤ Z(l+1) ≤ Z(l), we have

lnF(Z(l+i)) = −e1

k
− e2

k − 1
− · · · − el+i

k − l − i + 1

and so

(k − l − i + 1)
(
lnF(Z(l+i))− lnF(Z(l+i+1))

) = ei, for i = 0,1, . . . , s.

Unlike Hill (1975) we assume directly thatF(z) = Czα for the range above, which
rewritten as lnF(z) = C + α ln z and introduced in the previous equation shows
that the random variablesTj

Tk−l−i+1 = (k − l − i + 1)
(
lnZ(l+i) − lnZ(l+i+1)) = ei/α, for

i = 0,1, . . . , s,

are independent and exponentially distributed with parameterα. Therefore, con-
ditioning on the boundary variablesZ(l) andZ(l+s), the maximum likelihood es-
timator for α is α̂ = s/

∑
Ti. It is easy to verify that the sum

∑
Ti collapses

to

(k − l) lnZ(l) −
s−1∑
i=1

lnZ(l+i) − (k − l − s + 1) lnZ(l+s).

Therefore, the estimator becomes

α̂ =
(
k − l
s

lnZ(l) − 1

s

s−1∑
i=1

lnZ(l+i) − k − l − s + 1

s
lnZ(l+s)

)−1

.

To modify this estimator for working with upper tails of the Pareto–Lévy type,
we just note that lettingZ = X−1 we have P{Z ≤ x} = P{X ≥ x−1} = Cx−α . The
changes lead directly to Equation (4).

An estimator of the estimator’s variance can be obtained by noticing thatα̂ =
s/
∑
Ti has an inverted gamma distribution. Therefore

V̂ar(α̂) = α̂2(r + 1)2

r2(r − 1)
.

B. A Formal Characterization of Restarts

In this section, we formalize the restart strategy of a complete randomized back-
track search method. We show that the probability distribution associated with such
a restart strategy does not exhibit heavy tails. Furthermore, the moments of the
restart strategy are finite.
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Figure 11. B – number of choice points searched by the randomized backtrack procedure
(running with cutoffc); S – number of choice points searched by RRR;R – number of runs
executed by RRR. In this case, a solution was found in the third run (R = 3), with a total of
2c+m choice points(S = 2c+m). The third run of the randomized backtrack search method
tookm ≤ c choice points.

Given a randomized backtrack search procedure, we consider the number of
choice points (or backtracks) performed by such a procedure. We introduce random
variableB such that

B is the number of choice points that the backtrack search procedure takes to
find a solution or prove that it does not exist.B = {1,2, . . .}.

Now consider a Rapid Randomized Restarts (RRR) strategy for running our back-
track procedure: run the procedure up to a fixed number of choice pointsc (the
cutoff); if the procedure finds a solution or proves that no solution exists, then RRR
has also found a solution (or proven that no solution exists) and stops; otherwise
restart the backtrack procedure from the beginning (using an independent random
seed) for anotherc decision events, and so on. We associate with RRR the random
variableS such that

S is the number of choice points that RRR takes to find a solution or prove that
no solution exists.S = {1,2, . . .}.

Let’s define a “run” as the execution of the randomized backtrack search method
for up toc steps. We now define the random variableR, such that

R is the number of runs executed by RRR.

Figure 11 illustrates how the different random variables relate to each other.
The runs executed by RRR are independent (no information is carried over

between runs, and each run uses a new random seed) and therefore can be seen
as a sequence of Bernoulli trials, in which the success of a trial corresponds to
finding a solution (or proving that one does not exist) during a run; its probability
is given by P[B≤ c]. Therefore,R follows ageometric distributionwith parameter
p = P [B ≤ c].
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The probability of the tail ofS, P [S > s], corresponds to the probability of not
finding the solution in the firstbs/cc runs of RRR, and finding it with more than
(s modc) choice points in the next run. We obtain the following expression:

P [S > s] = P [B > c]bs/cc P [B > s modc]. (5)

The distribution ofS is not heavy tailed because its tail exhibits exponential decay:

P [S > s] ≤ P [B > c]bs/cc = P [R > bs/cc]. (6)

In words, the tail ofS is limited from above by the tail ofR. SinceR follows
a geometric distribution, it has finite moments, and therefore so doesS. The full
distribution ofS is given by the following expression:

P [S = s] =
{
P [B > c]bs/cc P [B = s modc], s modc 6= 0
P [B > c]bs/cc−1 P [s = c], otherwise.

(7)

Note that the second branch of (7) corresponds to the case in which the total number
of choice points executed by strategyS is a multiple ofc. This situation occurs
when the solution is found when the cutoffc is reached.

Based on the distribution ofB, we can determine a cutoff,c, that minimizes
the expected runtime ofS. Alternatively, one can determine a cutoff value that
minimizes both the expected runtime and variance of the RRR strategy, using the
tools from portfolio analysis (e.g., [30, 21]). In our experiments, we determined
the cutoff for the restart strategy (RRR) based on the empirical distribution ofB,
which was computed, when possible, by performing 10,000 runs of the backtrack
search methods with a very high cutoff.
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