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Abstract
We present a robust framework for complex event
recognition that is well-suited for integrating informa-
tion that varies widely in detail and granularity. Con-
sider the scenario of an agent in an instrumented space
performing a complex task while describing what he is
doing in a natural manner. The system takes in a vari-
ety of information, including objects and gestures rec-
ognized by RGBD and descriptions of events extracted
from recognized and parsed speech. The system outputs
a complete reconstruction of the agent’s plan, explain-
ing actions in terms of more complex activities and fill-
ing in unobserved but necessary events. We show how
to use Markov Logic (a probabilistic extension to first-
order logic) to create a theory in which observations
can be partial, noisy, and refer to future or temporally
ambiguous events; complex events are composed from
simpler events in a manner that exposes their structure
for inference and learning; and uncertainty is handled
in a sound probabilistic manner. We demonstrate the ef-
fectiveness of the approach for tracking cooking plans
in the presence of noisy and incomplete observations.

Introduction
Consider a situation where you are observing a person
demonstrating both physically and verbally how to perform
a complex task, for example, preparing a cup of tea. The sub-
ject performs simple actions (e.g., picking up a tea kettle),
which are part of more complex activities (filling the kettle
from the sink), and which in turn are part of yet higher-level
activities (preparing hot water), ad infinitum. Actions are in-
extricably connected to changes in the state of the world
(moving the cup changes its location), even if the change
is not directly observable (stirring the tea after adding sugar
dissolves the sugar). The subject may refer to actions in the
past (“I’ve finished filling the kettle...”), the current moment
(“The water is heating...”), or in the future (“I still have to
get the milk and sugar...”), and complex events can overlap
temporally (the subject fetches the tea box while the water
is heating). The subject may describe an event at different
levels of abstraction (“I’ll heat heat water” vs “I’ll heat wa-
ter in the microwave”), or provide a partial verbal descrip-
tion, which is resolved by context (“Now I pour the water
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[from the kettle into the cup]”). Similarly, visual percepts
of events may be incomplete due to visual resolution or ob-
scuring objects, and only disambiguated by context (hand
removes something from tea box).

A human observer reflexively tries to understand the sit-
uation by explaining what he sees and hears in terms of the
subject’s plan: a coherent, connected structure of observed,
hypothesized, and predicted structure of actions and prop-
erties. When the subject is a teacher, the latter must piece
together a new plan. In other cases, the plan is one familar to
the observer, whose task becomes identifying, instantiating,
and tracking the plan; such is the case, e.g., when a teacher
observes a student at work. For this thought exercise, we fo-
cused on cooking, but the same principles apply to many
domains where there is a practical need for automated plan
recognition, such as wet labs, medical procedures, equip-
ment maintenance, and survelliance.

While there is a rich history of research on plan recogni-
tion (briefly recapped in the next section), most work makes
assumptions about the nature of actions and observations
that are violated by the simple example above. We argue
that a general framework for plan recognition should meet
the following criteria: (i) Be robust across variations in the
appearance of a scene and the language used to describe it:
i.e., provide a semantic as opposed to an appearance model.
(ii) Support easy knowledge engineering, e.g., for defining
events in terms of changes of properties of objects and/or
collections of other events. (iii) Represent both decomposi-
tion and abstraction event hierarchies, with no fixed number
of levels. (iii) Treat instances of events as entities to which
reference can be made: e.g., support event reification. (iv)
Allow events that are not temporally disjoint, and observa-
tions that arrive out of temporal order.

The contributions of this paper include defining and im-
plementing a framework meeting these criteria based on
Markov Logic, a knowledge representation and reasoning
system that combines first-order logic with probabilistic se-
mantics. Our implementation includes a capable vision sys-
tem for tracking the state of objects using an RGBD (Kinect)
camera together with an uncalibrated high-definition camera
to increase accuracy. Low level actions are defined in terms
of qualitative spatial and temporal relations rather than vi-
sual appearance, so the system does not need to be trained
on particular environments. We leverage a domain indepen-



dent natural language parser to extract action descriptions
and temporal contraints from the subject’s narration. Our
experiments demonstate accurate recognition and tracking
of complex plans, even as visual inputs to the system are
purposefully degraded. Finally, we briefly describe how our
future work on learning from demonstration builds upon the
framework.

Background & Related Work
Our project builds upon work from a wide variety of
fields: machine learning, knowledge representation, perva-
sive computing, computer vision, and computational linguis-
tics. We provide a brief overview of only the most direct
precedents.

Markov Logic [Richardson and Domingos, 2006] is a lan-
guage for representing both logical and probabilistic infor-
mation in the form of weighted logical formulas. Formulas
that include quantified variables are taken to represent the
set of ground formulas that can be formed by replacing the
variables with constants. The probability of a possible world
is proportional to the exponentiated sum of the weights of
the ground formulas that are true in that world. The task of
finding a most likely explanation of a set of data (MLE) be-
comes maximum weighted satisfiability, and can be solved
by local search or backtracking methods (e.g., [Ansótegui,
Bonet, and Levy, 2013]).

Plan recognition was identified as a core reasoning prob-
lem in early research in AI and cognitive science [Schmidt,
Sridharan, and Goodson, 1978]. Kautz (1991) developed a
logical framework for plan recognition that met the crite-
ria of expressiveness for action abstraction, decomposition,
reification, and temporal generality, but did not handle prob-
abilistic information and was never applied to observations
from sensor data. The Markov Logic framework for plan
recognition by Singla and Mooney (2011) handled probabil-
ities, but was limited to a two-level hierarchy, did not reify
actions, and was also never applied to sensor data.

Several groups explored Markov Logic for activity recog-
nition in video [Tran and Davis, 2008; Kembhavi, Yeh, and
Davis, 2010; Morariu and Davis, 2011], but did not consider
multi-level hierarchies and employed ad hocrules for infer-
ring unobserved events. Of these, Morariu et al. (2011) is
closest to our framework, in that it associated events with
time intervals rather than time points.

Lei et al. (2012) demonstrated robust tracking of low-level
kitchen objects and activities (e.g., pour, mix, etc.) using
a consumer Microsoft Kinect-style depth camera (RGBD).
Their approach is similar to ours for low-level action recog-
nition, but differs in that they inferred actions from object
constraints and appearance-based motion flow, while we use
object constraints and relative qualitative spatial position.

We employ the non-domain specific TRIPS parser [Allen,
Swift, and de Beaumont, 2008] to extract action descriptions
from narration. There is growing interest in machine learn-
ing and computational linguistics in models that unify visual
perception and natural language processing. This includes
using language to supervise machine vision (e.g., [Gupta and
Mooney, 2010]) and simultaneous learning of visual and lin-
guistic attributes (color, shape, etc.) [Matuszek et al., 2012].

Figure 1: An example frame generated by the vision sub-
system. The target objects are in green bounding boxes, the
agent’s face is in a yellow bounding box, and her hands are
in cyan bounding boxes.

The grounded language approach of Tellex et al. (2011), like
ours, integrates visual, linguistic, and background knowl-
edge in a general probabilistic model, but has not yet con-
sidered plans or complex actions.

Other general formalisms that have been developed for
representing and reasoning about hierarchically structured
actions include stochastic grammars [Moore and Essa, 2001]
and hierarchical hidden Markov models [Bui, 2003; Natara-
jan et al., 2008]; however, grammars have difficulty repre-
senting non-disjoint actions, and the HMM models also fix
the number of levels in the hierarchy. Event logic [Bren-
del, Fern, and Todorovic, 2011] provides a compact nota-
tion for probabilistic models relating interval-based actions
and properties. Propagation networks [Shi et al., 2004] use
partially-order plans to encode the transition relationship in
a dynamic Bayesian network.

Detecting Low-Level Events
To facilitate high-level inference, it is important to detect
and track the interactions between the agent and objects rel-
evant to the demonstration from sensory data. To that end,
we build a computer vision-based subsystem to detect low-
level events.

Visual Hand and Object Detection and Tracking
In order to detect the agent’s face, hands and the objects in-
teracting with the hands, a robust vision subsystem is con-
structed to incorporate RGBD information collected from
Kinect. The vision subsystem starts with detecting skin area
based on color information. With the detected skin area,
the agent’s hand is detected using discriminative connected
components analysis. By taking advantage of several com-
mon observations, the object interacting with the hand is
extracted based on hand detection and depth information.
Given a sequence of demonstration, the vision subsystem
keeps track of a small set of predefined target objects aided
by temporal smoothing of a MeanShift based tracking algo-
rithm [Comaniciu, Ramesh, and Meer, 2003]. Following is a



brief summary of the methods we employed:
Skin modeling In order to make the vision subsystem adap-

tive to different lighting conditions, an image-specific
Gaussian Mixture Model (GMM) is fitted over the pix-
els inside the detected face bounding box. Face detec-
tion is accomplished per frame according to [Viola and
Jones, 2004]. We assume that the majority of the area
inside the detected face represents skin, which corre-
sponds to the largest cluster in the fitted GMM. For a
pixel outside the face bounding box, the Mahalanobis
distance to the largest GMM component is computed
as a skin score. In order to transform this real-valued
score into a binary decision value, a two-parameter sig-
moid classifier similar to Platt scaling in SVM (support
vector machine) is trained on the fly.

Discriminative hand detection A discriminative Con-
nected Components (CC) analysis is performed over
the skin area binary map using SVM. For each CC in
the skin area binary map, the following features are
used:
• normalized CC size;
• normalized spatial distance to the detected face;
• width-height ratio of the CC bounding box;
• histogram of oriented gradients (HOG) [Dalal and

Triggs, 2005];
• distance to the face area.

Hand to object detection Taking advantage of several
common observations, we extract the objects interact-
ing with the hands by segmenting regions in the point
cloud that are are close to the hands but not part of the
hands or body.

Multi-object tracking Since there are occlusion and per-
spective variations from time to time during the demon-
stration, object detection cannot be expected to be per-
fect. A multi-object tracking module is constructed to
enforce temporal smoothing and particularly compen-
sate for the missed detections. There are two key op-
erations in a multi-object tracking system, tracking and
association. MeanShift based tracking is used for frame
to frame object tracking and color histogram distance
is used as a matching score in the common Hungarian
Algorithm to associate tracking and detections [Black-
man, 1986].

Object identification With the multi-object tracking mod-
ule, the objects interacting with the hand are tracked.
Since there are limited number of objects of interest,
we use a predefined set of named target models to per-
form object identification. Basically, the visual distance
between each target object and each tracked object is
computed, and if a good match is found, the location
of the target object is updated accordingly. For proto-
type, we use simple color histogram distance as visual
matching score, although it is trivial to extend to more
sophisticated models.

In summary, the video processing steps constructed in this
vision subsystem is able to adequately detect agent’s face,

Single Object

Orientation Straight, Tilted,
Upside-down

Motion Stationary, In-motion

Location Counter, Sink,
Cupboard

Object Pair
Relative
Location

Above, Directly-above,
Co-planar
Below, Directly-below

Distance Adjacent, Near, Far
Object-Hand Relation Held, Not-held,

Subject Location Counter, Sink,
Cupboard

Table 1: Set of visual fluents used in our “making tea” sce-
narios.

Grasp
Begins Fluent(Object, Motion, Stationary)
Ends Fluent(Object, Motion, In-motion)
Holds Fluent(Object, Hand, Held)

Release
Begins Fluent(Object, Motion, In-motion)
Ends Fluent(Object, Motion, Stationary)
Holds Fluent(Object, Hand, Held)

Pour

Begins Fluent(O1, Orientation, Tilted)
Ends Fluent(O1, Orientation, Straight)

Holds Fluent(O1, O2, RelLoc, D-Above)
Fluent(O1, Hand, Held)

Carry
Change Fluent(Object, Location, Loc1)

Fluent(Object, Location, Loc2)

Holds Fluent(Object, Motion, In-motion)
Fluent(Object, Hand, Held)

Table 2: Examples of low-level events defined by pairs of
fluents.

hands and the objects interacting with the hands, which are
supplied as low level features to infer atomic events. Preci-
sion for hand and object tracking and object identification
was 0.84 and recall was 0.89 on our test videos. Figure 1
shows example results of the vision subsystem, where hands
and objects are detected, tracked and labeled.

Low-Level Event Generation
The hands and objects identified using the vision subsys-
tem are translated into discrete visual fluents. These are vis-
ible qualitative features of the scene that span over inter-
vals throughout the session, which include subject location,
qualitative object-object and object-hand relations. A set of
visual fluents frequently used in our system is shown in
Table 1. These fluents, while being able to represent rele-
vant aspects of the scene, are also represented in a setting-
independent way, so that a set of low-level fluents in one
scene can be transferred to another without having to re-train
the vision subsystem.

Low level events are generated by the existence of one or
more visual fluents. Some fluents or changes in fluents may
trigger the start or end of a particular event, while other flu-
ents must hold over the entire event. For example, a Pour
event is triggered by an object tilting while it is directly



Dabstracts(t1, t2) Event type t1 abstracts type t2.
Dpart(t1, p, t2) Events of type t1 include a part p of type

t2.
DrelEP(t, r, p) The temporal relation r holds between any

event of type t and its part p.
DrelPP(t, r, p1, p2) The temporal relation r holds between

parts p1 and p2 of any instance of t.
Occurs(t, e) An event instance e of type t occurs.
Part(e1, pa2) Event instance e1 includes instance e2 as a

part p.
Rel(e1, r, e2) The temporal interval relation r holds be-

tween event instances e1 and e2.
Stime(e, n) Event instance e starts at the integer-valued

moment n.
Etime(e, n) Event instance e ends at the integer-valued mo-

ment n.

Table 3: Core predicates in the event theory. Predicates that
begin with “D” are used to define a domain, while Occurs,
Part, and Rel hold for particular events instances.

above another object and the object in question is in the hand
of the subject, while a Carry is triggered by a change in lo-
cation, while the object is held by the subject and is moving.
Each low-level event is described in terms of visual fluents.
Some events are defined in Table 2.

Representing and Reasoning About Complex
Events

We now describe a Markov Logic theory that meets our cri-
teria for plan recognition. Throughout this section we will
use the general term “event”, rather than action or plan. We
begin by introducing predicates that define the sets of event
types, event instances, and abstract and decomposition rela-
tionships between events. Any particular domain is specified
by defining the domains of these predicates. We then define
generic axioms for predicting future and unobserved events
on the basis of ongoing complex events, and abductively
inferring complex events from observations of subevents.
This approach simplifies domain-specific knowledge engi-
neering, and (in future work) turns the task of learning new
events into learning the extent of the definitional predicates,
rather than the unconstrained problem of learning arbitrary
logical formulas. Our implementation uses the implementa-
tion of Markov Logic called “Tuffy” [Niu et al., 2011]. Tuffy
extends first-order syntax with scoping and datalog rules,
which our implementation makes use of to substantially im-
prove performance. Tuffy also restricts Markov Logic syn-
tax by requiring that each formula be equivalent to a single
clause. In order to keep this section brief and clear, how-
evever, we we present logically equivalent axioms in pure
Markov Logic.

Table 3 lists the predicates used to define a domain and
to describe a particular situation in terms of the events that

actually occur. Instances of events are reified, that is, are
represented as individuals. Event types are organized into
hierarchy; an instance of a type is also an instance of all ab-
stractions of the type, e.g.,: By default, an event of a given
type is also an instance of some known specialization of
the type. This is expressed by a weighted (soft) axiom. The
weights for soft rules can be learned from examples or es-
timated manually; in the experiments reported in this paper,
estimated weights were sufficient. The axioms are thus:

Dabstracts(t1, t2) ∧Occurs(e, t2)⇒ Occurs(e, t1).

10 Occurs(e, t1)⇒
∃ t2 Dabstracts(t1, t2) ∧Occurs(e, t2)

Temporal relationships between events are expressed using
Allen’s interval algebra [Allen, 1983], where event instances
are treated as intervals. An integer timestamp can (option-
ally) be associated with the start and/or end time of an event.
The intended semantics is captured by two sets of axioms,
the first involving interval relations and endpoints, and the
second involving triples of interval relations. An example of
the first sort assert that if two events (intervals) meet, the end
point of the first must equal the start point of the second; an
example of the second is that “begun by” is transitive:

Meets(e1, e2) ∧ Etime(e1, n1)⇒ Stime(e2, n2).

Rel(e1,BegunBy, e2) ∧ Rel(e2,BegunBy, e3)⇒
Rel(e1,BegunBy, e3).

For example, the formula

Occurs(BoilWater,E1) ∧ Part(E1,Step1,E2)∧
Occurs(FillKettle,E2) ∧ Rel(E1,BegunBy,E2)∧
Stime(E2, 109).

asserts that an instance of the complex event boiling water
occurs, and that it is begun by the sub-event of filling a ket-
tle. The filling starts at time 109. As a consequence of the
general temporal axioms, the boiling water event also starts
at time 109; both events end at unspecified times greater than
109.

Distinct from the abstraction hierarchy is a decomposi-
tion, or part-of, hierarchy. There are three types of axioms
for complex events. The prediction axiom assert that if a
complex event occurs, each of its parts (by default) occurs.

10 Occurs(t1, e1) ∧Dpart(t1, p, t2)⇒
∃ e2 Occurs(t2, e2) ∧ Part(e1, p, e2)

The constraint axioms assert that the defined (temporal)
constraints among a complex event and its parts are satis-
fied.

DrelEP(t, r, p) ∧Occurs(t, e)∧
Occurs(t1, e1) ∧ Part(e, p, e1)⇒

Rel(e, r, e1).

DrelPP(t, r, p1, p2) ∧Occurs(t, e)∧
Occurs(t1, e1) ∧Occurs(t2, e2)∧

Part(e, p1, e1) ∧ Part(e, p2, e2)⇒
Rel(e1, r, e2).



Top
Level

Middle Level Low Level

Make
Tea

FillKettle

GraspKettle, CarryKettle,
TurnonFaucet, FillWater
TurnoffFaucet, CarryKettle
ReleaseKettle

GetIngredients
GoToCupboard,
GetCupFromCupboard
GetTeaboxFromCupboard

PrepareTeabag GraspTeabox, OpenTeabox,
PutTeabagIntoCup

BoilWater TurnOnKettle,
TurnOffKettle

PourHotWater
GraspKettle,
PourWaterIntoCup
ReleaseKettle

Table 4: Events in the “make tea” scenario.

Finally, abduction axioms allow complex events to be in-
ferred on the basis (some of) of their parts. These axioms
state that by default an event is part of a more complex event:

10 Occurs(t1, e1)⇒
∃ t2 e2 p

Dpart(t2, p, t1)∧
Occurs(t2, e2)∧
Part(e2, p, e1)

An observer should prefer more likely explanations and
should not assume events occur without evidence. These
preferences are captured by encoding a prior probability
over the occurrance of events of various types by negative
weighted clauses. For example,

−1 Occurs(MakeTea, e)

−2 Occurs(MakeCocoa, e)

indicates that prior odds ratio of making tea to making cof-
fee is exp−1 / exp−2.

Experiments
We tested our framework on a multi-modal corpus we col-
lected of people preparing beverages in an instrumented
kitchen [Swift et al., 2012]. In each of the sessions, partici-
pants were asked conduct the activity and at the same time
verbally describe what they were doing. An RGB-Depth
sensor, HD video camera, and lavalier and celing micro-
phones were used for data collection.

For the ground truth, activities in the sessions were man-
ually annotated by observing recorded videos performed by
the participants. Each low level event was annotated with
an action (e.g., grasp, carry, open) and attributes, such as ob-
jects (e.g., cup, kettle, teabox) and paths (e.g., to, from, into).

Inferring Missing Events
We axiomatized the events (actions) that occurred in mak-
ing tea into a multi level hierarchy. The domain includes

% Low-level Observations % Events Inferred
100 100

90 90
80 87
70 72
60 69
50 81
40 84
30 53
20 44
10 43

0 0

Table 5: Percentage of all events in the scenarios that were
inferred to have occurred in the “making tea” scenarios, as
the percentage of the low level events that were observed
varies.

low-level events such as “open kettle”, middle-level com-
plex events such as “boil water”, and top level events such as
“make tea”. Table 4 lists the event types involved in making
tea. Our plan library included other high-level events, such
as “make cocoa”, that shared low-level actions with “make
tea”. The “boil water” event abstracted two more specialized
events: boiling water using an electric kettle, and boiling wa-
ter using a microwave.

For our initial set of experiments, we considered the task
of inferring all of the events that occurred in the scenario
on the basis of a sparse set of observed low level events.
Table 5 shows the results on the “making tea” scenarios as
the amount of evidence varied from 100% of the low-level
events to no evidence. For each set of observations, MLE
(most likely explanation) inference was performed 10 times,
and the average percent of all the events that actually oc-
curred calculated. Averages were taken across runs of MLE
and scenarios. This shows that despite a shortage of low
level event evidence, our framework allows us to reconstruct
a significant porition of the plan using our hierarchy.

Event Recognition
Low level events, such as then ones shown in the last column
of Table 4, are generated by fluents extracted from the vi-
son subsystem. We evaluated the performance of our system
using making tea sessions conducted by five different peo-
ple from our annotated corpus. Over the five sessions, each
session generated an average of 65 fluents and 18 low-level
events.

The low level visual subsystem detects location of objects
in the scene (kettle, cup, and teabox), along with the loca-
tion of the subject and hands in 3D space. The locations are
quantifed into scene-independent visual fluents, which serve
as triggers that generate low-level events. Table 6 shows the
performance of low-level event detection for five selected
sessions. Approximately two-thirds of the events were de-
tected on average. Some high error counts were due to the
fact that participants were not limited to a particular method
of carrying on an activity and thus conducted actions that the
low-level detection was not able to either capture or detect



Session TP FP FN P R F1
C4 11 4 7 .73 .61 .66
G3 14 14 4 .50 .78 .61
K3 13 3 5 .81 .72 .76
W2 13 5 5 .72 .72 .72
Y2 8 6 10 .57 .44 .50
Total 59 32 31 .64 .66 .65

Table 6: Performance of the low-level event detection sys-
tem for each session.

Session TP FP FN CL P R F1
C4 17 2 1 2 .89 .94 .91
G3 16 4 2 10 .80 .89 .84
K3 17 2 1 1 .89 .94 .91
W2 16 3 2 2 .84 .89 .86
Y2 17 2 1 4 .89 .94 .91
Total 83 13 7 19 .86 .92 .89

Table 7: Performance of plan recognition for each session.
CL represents the number of corrected low-level events by
the plan recognition system.

accurately. However, despite having multiple people doing
the same high-level activity in different ways, we show that
our set of visual fluents is sufficient in recognizing a person
making tea. We believe that as we are able to learn more
low-level events, these errors can be minimized.

We infer mid-level and top-level events using our plan
recognition framework. Providing a structure of making tea
through the “D” predicates, we evaluated how well the sys-
tem was able to identify and match the low-level events into
the high-level plan of making tea. The plan recognition sys-
tem was able to “fill-in” many of the missing events, while
dismissing irrelevant events that are not part of making tea as
being unexplained (noted as Corrected Low-level events, or
CLs), resulting in a significant improvement in recognition.
These results are shown in Table 7.

Next Steps

This paper provides only an interim report on our imple-
mented system. As discussed in the introduction, a primary
motivation for our framework was the goal of integrating
verbal descriptions of events with the results of visual pro-
cessing. We are updating the TRIPS parser so that the pred-
icate names in the logical forms it produces are consistent
with the predicates used in our event ontology. When this is
complete, we will be able to perform a complete evaluation
of plan recognition and tracking from video and speech.

Event tracking, however, is only the first step in our larger
project of creating a system that can learn new complex
activities from demonstration. We will formalize activity
learning as the task of extending the domains of the event
definition predicates so as to reduce the overall cost (i.e.,,
increasing the probability) of the observed demonstration.
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