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Abstract

Formal Al systems traditionally represent knowledge using logical formu-
las. We will show, however, that for certain kinds of information, a model-
based representation is more compact and enables faster reasoning than the
corresponding formula-based representation. The central idea behind our
work is to represent a large set of models by a subset of characteristic models.
More specifically, we examine model-based representations of Horn theories,
and show that there are large Horn theories that can be exactly represented by
an exponentially smaller set of characteristic models.

In addition, we will show that deduction based on a set of characteristic
models takes only linear time, thus matching the performance using Horn
theories. More surprisingly, abduction can be performed in polynomial time
using a set of characteristic models, whereas abduction using Horn theories is
NP-complete.

1 Introduction

Logical formulas are the traditional means of representing knowledge in formal Al
systems [McCarthy and Hayes, 1969]. The information implicit in a set of logical
formulas can also be captured by expliciting recording the set of models (truth
assignments) that satisfy the formulas. Indeed, standard databases are naturally
viewed as representations of a single model. However, when dealing with incom-
plete information, the set of models is generally much too large to be represented



explicitly, because a different model is required for each possible state of affairs.
Logical formulas can often provide a compact representation of such incomplete
information.

There has, however, been a growing dissatisfaction with the use of logical
formulas in actual applications, both because of the difficulty in writing consistent
theories, and the tremendous computation problems in reasoning with them. An
example of the reaction against the traditional approach is the growing body of
research and applications using case-based reasoning (CBR) [Kolodner, 1991]. By
identifying the notion of a “case” with that of a “model”, we can view the CBR
enterprise as an attempt to bypass (or reduce) the use of logical formulas by storing
and directly reasoning with a set of models. While the practical results of CBR are
promising, there has been no formal explanation of how model-based representations
could be superior to formula-based representations.!

In this paper, we will prove that for certain kinds of information, a model-based
representation is much more compact and enables much faster reasoning than the
corresponding formula-based representation. The central idea behind our work is
to represent a large set of models by a subset of characteristic models, from which
all others can be generated efficiently. More specifically, we examine model-based
representations of Horn theories, and show that there are large Horn theories that
can be exactly represented by exponentially smaller sets of characteristic models.

In addition, we will show that deduction based on a set of characteristic models
takes only linear time, thus matching the performance using Horn theories [Dowling
and Gallier, 1984]. More surprisingly, abduction can be performed in polynomial
time using a set of characteristic models, whereas abduction using Horn theories is
NP-complete [Selman and Levesque, 1990]. This result is particularly interesting
because very few other tractable classes of abduction problems are known [Bylander
etal., 1989; Selman, 1990].

2 Horn Theories and Characteristic Models

We assume a standard propositional language, and use «a, b, ¢, d, p, and ¢ to denote
propositional variables. A literal is either a propositional variable, called a positive
literal, or its negation, called a negative literal. A clause is a disjunction of literals,
and can be represented by the set of literals it contains. A clause C' subsumes a
clause C" iff all the literals in C' appear in C". A set (conjunction) of clauses is called
a clausal theory, and is represented by the Greek letter X. We use n to denote the

I'This is, of course, an oversimplified description of CBR; most CBR systems incorporate both a
logical background theory and a set of cases.



length of a theory (i.e., number of literals). A clause is Horn if and only if it contains
at most one positive literal; a set of such clauses is called a Horn theory. (Note that
we are not restricting our attention to definite clauses, which contain exactly one
positive literal. A Horn clause may be completely negative.)

A modelis acomplete truth assignment for the variables (equivalently,a mapping
from the variables to {0, 1}). We sometimes write a model as a bit vector, e.g.,
[010.. ], to indicate that variable « is assigned false, b is assigned true, ¢ is assigned
false, etc. A model satisfies a theory if the the theory evaluates to “true” in the
model. Another way of saying this is that the theory is consistent with the model.
When we speak of the “models of a theory X,” we are refering to the set of models
that satisfy the theory. This set is denoted by models(X).

We begin by developing a model-theoretic characterization of Horn theories.
The intersection of a pair of models is defined as the model that assigns “true” to
just those variables that are assigned “true” by both of the pair. The closure of a set
of models is obtained by repeatedly adding the intersection of the elements of the
set to the set until no new models are generated.

Definition: Intersection and Closure
The intersection of models 1 and m; over a set of variables is given by

gef | 1 ifmy(z) =ma(z) =1
[ Ormal(e) = { 0 otherwise

Where M is a set of models, closure( M) is the smallest set containing M that
is closed under N.

To illustrate the various definitions given in this section, we will use an example set
M, of models throughout. Let My = {[1110],[0101],[1000]}. The closure of this
set is given by M = M, U {[0100], [0000]}. See Figure 1.

The notion of closure is particularly relevant in the context of Horn theories:

Theorem 1 [McKinsey 1943)* A theory X is equivalent to a Horn theory if and
only if models(X) is closed under intersection.

Thus there is a direct correspondence between Horn theories and sets of models
that are closed under intersection. For example, consider the closure M of the

2The proof in McKinsey is for first-order equational theories, and in fact led to the original
definition of a Horn clause. A simpler, direct proof for the propositional case appears in [Dechter
and Pearl, 1992].
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Figure 1: The circled models are M, which is the closure of the example set of
models M.

models in set M, defined above. It is not difficult to verify that the models in the
closure are exactly the models of the the Horn theory ¥y = {—aV —=bV ¢, —bV-cVa,
—aV -d, bV —d, bV —el.

Next, we define the notion of a characteristic model. The characteristic models
of a closed set M can be thought of as a minimal “basis” for M, that is, a smallest
set that can generate all of M by taking intersections. In general, the characteristic
models of any finite M can be defined as those elements of A that do not appear in
the closure of the rest of M:

Definition: Characteristic Model
Where M is a finite set of models, the set of characteristic models is given by

char(M) 2 {m € M | m ¢ closure(M — {m})}

For example, the characteristic models of M{ are [1110], [1000], and [0101]. The
other two models in of M can be obtained from these characteristic models via
intersection.

Note that according to this definition the characteristic elements of any set of
models are unique and well-defined. Furthermore, we will prove that characteristic
models of a set can generate the complete closure of the set. Now, because the set
of models of a Horn theory is closed (Theorem 1), it follows that we can identify
a Horn theory with just the characteristic elements among its models. (In fact,
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henceforth we will simply say “the characteristic models of a Horn theory” to mean
the characteristic subset of its models.) In general, this set may be much smaller
than the set of all of its models. In summary:

Theorem 2 Let M be any finite set of models. Then, (1) the closure of the charac-
teristic models of M is equal to the closure of M ; and (2) if M is the models of a
Horn theory, then the closure of the characteristic models of M is equal to M.

Proof: That closure(char(M)) C closure( M) is obvious. To prove equality, for a given
M and distinct m, mg € M, define m; >psr myg iff there exists my,...,m, € M
such that mg = m; Nmy N ...N m,, while mg # my N ...N m,. Define >,y
as the reflexive and transitive closure of >3;. We make the following three claims:
(i) The directed graph corresponding to >3 is acyclic, because if m; >ps mg then
the number of variables set to “true” in m; is greater than the number set to “true”
in mg. (ii) The elements of M that are maximal under >j; are characteristic. This
is so because if m € closure(M — {m}), there must be some my,...,m, € M
such that m = m; N...N m,. But then (in particular) m; >; m, so m is not
maximal under >,7. (iif) For any m € M, there is a subset M’ of elements of
M maximal under >j; such that m = () M’. This set is simply defined by M’ =
{m’ | m" > m and m’ is maximal under >j;}. In graphical terms, M’ consists
of the sources of the graph obtained by restricting the graph of >, to nodes that are
>nr m. Therefore, M C closure(char(M)), so closure( M) = closure(char(M)).
Claim (2) then follows from the previous observations together with Theorem 1. =

As an aside, one should note that notion of a characteristic model is not the same
as the standard definition of a maximal model. By definition, any m € M is a
maximal model of M iff there is no m’ € M such that the variables assigned to
“true” by m’ are a superset of those assigned to “true” by m. It is easy to see that all
maximal models of a set (or theory) are characteristic, but the reverse does not hold.
For example, the model [1000] in M, is an example of a non-maximal characteristic
model.

3 Size of Representations

In this section we will examine the most concise way of representing the information
inherent in a Horn theory. We have three candidates: a set of Horn clauses; the
complete set of models of the theory; and the set of characteristic models of the
theory.

We can quickly eliminate the complete set of models from contention. Obvi-
ously, it is as least as large as the set of characteristic models, and often much larger.

5



Furthermore, every Horn theory with A" models over n variables can be represented
using at most K n? Horn clauses [Dechter and Pearl, 1992]. Thus up to a small
polynomial factor, the complete set of models is also always at least as large as the
clausal representation.

Neither of the other two representations strictly dominates the other. We first
show that in some cases the representation using characteristic models can be
exponentially smaller than the best representation that uses Horn clauses.

Theorem 3 There exist Horn theories with O(n*) characteristic models where the
size of the size of the smallest clausal representation is O(2").

Proof: Consider the theory X = {=z; V =z, V...V =2,| z; € {p;, ¢} }. The size of X is
O(2"). Moreover, one can show that there is no shorter clausal form for Z, by using
a proof very similar to the one in [Kautz and Selman, 1992], but the size of its set
of characteristic models is polynomial in n. This can be seen as follows. Write a
model as a truth assignment to the variables p1q;p2¢> . . . pr¢,,. From the clauses in
%, it is clear that in each model there must be some pair p; and ¢; where both letters
are be assigned false (otherwise, there is always some clause eliminating the model).
Without loss of generality, let us consider the set of models with p; and ¢, are both
assigned false. Each of the clauses in X is now satisfied, so we can set the other
letters to any arbitrary truth assignment. The characteristic models of this set are

[00111111...11] (00111111 ...11]
[00011111...11]  ...... [00111111...01]
(00101111 ...11] (00111111 ...10]

The three models in the first column represent all the settings of the second pair of
letters. (Note that 00 can be obtained by intersecting the 2nd and the 3rd model.)
Each triple handles the possible settings of one of the pairs. From these 3(n — 1)
models, we can generate via intersections all possible truth assignments to the letters
in all pairs other than the first pair. For each pair, we have a similar set of models
with that pair set negatively. And, again each set can be generated using 3(n — 1)
models. So, the total number of characteristic models is at most O(n?). m

The following theorem, however, shows that in other cases, the set of charac-
teristic models can be exponentially larger than the best equivalent set of Horn
clauses.

Theorem 4 There exist Horn theories of size O(n) with O(2"/?) characteristic
models.



Proof: Consider the theory X given by the clauses (—a V =b), (-c V =d), (ne V = f),
etc. The set M of characteristic models of this theory contains all the models where
each of the variables in each consecutive pair, such as (a,b), (¢, d), (e, f), etc.,
are assigned opposite truth values (i.e., either [01] or [10]). So, we get the models
[010101 ...],[100101 .. ],[011001..], ..., [101010..]. There are 2(*/2) of such
such models, where n is the number of variables. It is easy to see that these are
all maximal models of the theory, and as we observed earlier, all such models are
characteristic. (One can go on to argue that there are no other characteristic models
in thiscase.) =

Thus we see that sometimes the characteristic model set representation offers tremen-
dous space-savings over the clausal representation, and vice-versa. This suggests
a strategy if one wishes to compactly represent the information in a closed set of
models: interleave the generation of both representations, and stop when the smaller
one is completed.

The characteristic models in a closed set can be efficiently found by selecting
each model which is not equal to the intersection of any two models in the set. This
operation takes O(K?n) time, where K is the total number of models and n the
number of variables. The clausal theory can be found using the algorithms described
in [Dechter and Pearl, 1992] and [Kautz et al., to appear].

4 Deduction using Characteristic Models

One of the most appealing features of Horn theories is that they allow for fast
inference. In the propositional case,queries can be answered in linear-time [Dowling
and Gallier, 1984]. However, there is no apriori reason why a representation based
on characteristic models would also enable fast inference. Nevertheless, in this
section, we show that there is indeed a linear-time algorithm for deduction using
characteristic models.

We will take a query to be a formula in conjunctive normal form — that is, a
conjunction of clauses. Itis easy to determine if a query follows from a complete set
of models: you simply verify that the query evaluates to “true” on every model. But
if the representation is just the set of characteristic models, such a simple approach
does not work. For example, let the query a be the formula a V b, and let the
characteristic set of models be M, = {[1110],[0101], [1000]}, as defined earlier. It
is easy to see that « evaluates to true in each member of M,. However, a does not
logically follow from the Horn theory with characteristic model set My; in other
words, o does not hold in every model in the closure of M,. For example, the query
is false in [0101] N [1000] = [0000].



There is, however, a more sophisticated way of evaluating queries on the set of
characteristic models, that does yield an efficient sound and complete algorithm.
Our approach is based on the idea of a “Horn-strengthening”, which we introduced
in [Selman and Kautz, 1991].

Definition: Horn-strengthening
A Horn clause Cy is a Horn-strengthening of a clause C' iff Cy is a Horn
clause, Cy subsumes (', and there is no other Horn clause that subsumes C
and is subsumed by Cy.

Another way of saying this is that a Horn-strengthening of a clause is generated
by striking out positive literals from the clause just until a Horn clause is obtained.
For example, consider the clause C' = p VV ¢ V —r. The clauses p V —r and ¢ V —r
are Horn-strengthenings of C'. Any Horn clause has just one Horn-strengthening,
namely the clause itself.

Suppose the query is a single clause. Then the following theorem shows how
to determine if the query follows from a knowledge base represented by a set of
characteristic models.

Theorem 5 Let X be a Horn theory and M its set of characteristic models. Further
let C' be any clause. Then X |= C' iff there exists some Horn-strengthening Cy of C
such that Cy evaluates to “true” in every model in M .

Proof: Suppose X |= €. By Lemma 1 in [Selman and Kautz, 1991], ¥ = Cy for some
Horn-strengthening Cy of €. So C' evaluates to “true” in every model of X, and
thus in every member of M. On the other hand, suppose that there exists some
Horn-strengthening C'y of C' such that C'y evaluates to “true” in every model in M .
By Theorem 1, because the elements of M are models of a Horn theory Cy, the
elements of the closure of A are all models of Cy. But the closure of M is the
models of Z; thus X |= C'y. Since Cy |= €', we have thatX = C'. m

In the previous example, one can determine that « V b does not follow from the
theory with characteristic models A, because neither the Horn-strengthening a nor
the Horn-strengthening b hold in all of {[1110],[0101],[1000]}.

A clause containing £ literals has at most & Horn-strengthenings, so one can
determine if it follows from a set of characteristic models in % times the cost of
evaluating the clause on each characteristic model. In the more general case the
query is a conjunction of clauses. Such a query can be replaced by a sequence of
queries, one for each conjunct. We therefore obtain the following theorem:



Theorem 6 Let a Horn theory X be represented by its set of characteristic models
M, and let o be a formula in conjunctive normal form. It is possible to determine
ifX = aintime O(|M| - |a|?), where |M | is the total length of the representation
of M.

Finally, using more sophisticated data structures we can bring the complexity down
to truely linear time, O(|M| + |a|) [Kautz et al., 1993].

5 Abduction using Characteristic Models

Another central reasoning task for intelligent systems is abduction, or inference to
the best explanation [Peirce, 1958]. In an abduction problem, one tries to explain an
observation by selecting a set of assumptions that, together with other background
knowledge, logically entail the observation. This kind of reasoning is central to
many systems that perform diagnosis or interpretation, such as the ATMS.

The notion of an explanation can be formally defined as follows [Reiter and de
Kleer, 1987]:

Definition: [Explanation] Given a set of clauses X, called the background theory,
a subset A of the propositional letters, called the assumption set, and a query
letter ¢, an explanation F for ¢ is a minimal subset of unit clauses with letters
from among A such that

1. XU K = ¢,and
2. X U FE is consistent.

Note that an explanation £ is a set of unit clauses, or equivalently, a single
conjunction of literals.

For example, let the background theory be £ = {a, —a V =bV —¢ V d} and let the
assumption set A = {«a, b, ¢}. The conjunction b A ¢ is an explanation for d.

It is obvious that in general abduction is harder than deduction, because the
definition involves both a test for entailment and a test for consistency. However,
abduction can remain hard even when the background theory is restricted to lan-
guages in which both tests can be performed in polynomial time. Selman and
Levesque [1989] show that computing such an explanation is NP-complete even
when the background theory contains only Horn clauses, despite the fact that the
tests take only linear time for such theories. The problem remains hard because all



Explain(M, A, q)
For each m in M do
If m = ¢ then
E « all letters in A that
are assigned “true” by m
if closure(M) = (A F) D ¢ then
Minimize I by deleting as many
elements as possible while
maintaining the condition
that closure(M) E (A F) D q.
return
endif
endif
endfor
return “false”
end.

Figure 2: Polynomial time algorithm for abduction. M is a set of characteristic
models, representing a Horn theory; A is the assumption set; and ¢ is the letter to be
explained. The procedure returns a subset of A, or “false”, if no explanation exists.

known algorithms have to search through an exponential number of combinations
of assumptions to find an explanation that passes both tests.

There are very few restricted clausal forms for which abduction is tractable.
One of these is definite Horn clauses, which are Horn clauses that contain exactly
one positive literal — completely negative clauses are forbidden. However, the
expressive power of definite Horn is much more limited than full Horn: In particular,
one cannot assert that two assumptions are mutually incompatible.

It is therefore interesting to discover that abduction problems can be solved in
polynomial time when the background theory is represented by a set of characteristic
models. We give the algorithm for this computation in Figure 2.

The abduction algorithm works by searching for a characteristic model in which
the query holds. Then it sets 2 equal to the strongest set of assumptions that are
compatible with the model, and tests if this /' rules out all models of the background
theory in which the query does not hold. This step is performed by the test

closure(M) = (AF) D¢

and can be performed in polynomial time, using the deduction algorithm described
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in the previous section. (Note that the formula to be deduced is a single Horn clause.)
If the test succeeds, then the assumption set is minimized, by deleting unnecessary
assumptions. Otherwise, if no such characteristic model is in the given set, then no
explanation for the query exists. Note that the minimization step simply eliminates
redundant assumptions, and does not try to find an assumption set of the smallest
possible cardinality, so no combinatorial search is necessary.

It is easy to see that if the algorithm does find an explanation it is sound, because
the test above verifies that the query follows from the background theory together
with the explanation, and the fact that the model m is in M (and thus also in the
closure of M) ensures that the background theory and the explanation are mutually
consistent. Furthermore, if the algorithm searched through all models in the closure
of M, rather than just M itself, it would be readily apparent that the algorithm is
complete. (The consistency condition requires that the the explanation and the query
both hold in at least one model of the background theory.) However, we will argue
that it is in fact only necessary to consider the maximal models of the background
theory; and since, as we observed earlier, the maximal models are a subset of the
characteristic models, the algorithm as given is complete.

So suppose m is in closure( M), and F is a subset of A such that ¢ and all of £
hold in m. Let m' be any maximal model of M (and thus, also a maximal model of
closure( M)) that subsumes m — at least one such m’ must exist. All the variables
set to “true” in m are also set to “true” in m’; and furthermore, ¢ and all of £ consist
of only positive literals. Therefore, ¢ and £ both hold in m' as well.

Thus the algorithm is sound and complete. In order to bound its running time,
we note that the outer loop executes at most | M| times, the inner (minimizing) loop
at most | A| times, and each entailment test requires at most O(|M| - |A[*) steps.
Thus the overall running time is bounded by O(|M|* - | A]*). In summary:

Theorem 7 Let M be the set of characteristic models of a background Horn theory,
let A be an assumption set, and q be a query. Then one can find an abductive
explanation of q in time O(|M|* - |A]?).

Again, using better data structures, we can reduce the complexity to be quadratic in
the combined length of the query and knowledge base.

The fact that abduction is hard for clausal Horn theories, but easy when the
same background theory is represented by a set of characteristic models, does not,
of course, indicate that # = N P! It only means that it may be difficult to generate
the characteristic models of a given Horn theory: there may be exponentially many
characteristic models, or even if there are few, they may be hard to find. None the
less, it may be worthwhile to invest the effort to “compile” a useful Horn theory into
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its set of characteristic models, just in case the latter representation does indeed turn
out to be of reasonable size. This is an example of “knowledge compilation”[Selman
and Kautz, 1991], where one is willing to invest a large amount of off-line effort
in order to obtain fast run-time inference. Alternatively, one can circumvent the
use of a formula-based representation all together by constructing the characteristic
models by hand, or by learning them from empirical data.?

6 Conclusions

In this paper, we have demonstrated that, contrary to prevalent wisdom, knowledge-
based systems can efficiently use representations based on sets of models rather than
logical formulas. Incomplete information does not necessarily make model-based
representations unwieldy, because it possible to store only a subset of characteristic
models that are equivalent to the entire model set. We showed that for Horn theories
neither the formula nor the model-based representation dominates the other in terms
of size, and that sometimes one other can offer an exponential savings over the other.

We also showed that the characteristic model representation of Horn theories
has very good computational properties, in that both deduction and abduction can
be performed in polynomial time. On the other hand, all known and foreseeable al-
gorithms for abduction with Horn clauses are of worst-case exponential complexity.

This paper begins to provide a formal framework for understanding the suc-
cess and limitations of some of the more empirical work in Al that use model-
like representations. Earlier proposals to use models in formal inference, such as
Levesque’s proposal for “vivid” representations [Levesque, 19861, rely on using a
single, database-like model, and thus have difficulty handling incomplete informa-
tion. As we have seen, our approach is more general, because we represent a set of
models. We are currently investigating extensions of the notion of a characteristic
model to other useful classes of theories.
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