
Using Problem Structure for Efficient Clause Learning

Ashish Sabharwal�, Paul Beame�, and Henry Kautz�

Computer Science and Engineering
University of Washington, Seattle WA 98195-2350

{ashish,beame,kautz}@cs.washington.edu

Abstract. DPLL based clause learning algorithms for satisfiability testing are
known to work very well in practice. However, like most branch-and-bound tech-
niques, their performance depends heavily on the variable order used in making
branching decisions. We propose a novel way of exploiting the underlying prob-
lem structure to guide clause learning algorithms toward faster solutions. The
key idea is to use a higher level problem description, such as a graph or a PDDL
specification, to generate a good branching sequence as an aid to SAT solvers.
The sequence captures hierarchical structure that is lost in the CNF translation.
We show that this leads to exponential speedups on grid and randomized pebbling
problems. The ideas we use originate from the analysis of problem structure re-
cently used in [1] to study clause learning from a theoretical perspective.

1 Introduction

The NP-complete problem of determining whether or not a given CNF formula is sat-
isfiable has been gaining wide interest in recent years as solutions to larger and larger
instances from a variety of problem classes become feasible. With the continuing im-
provement in the performance of satisfiability (SAT) solvers, the field has moved from
playing with toy problems to handling practical applications in a number of different
areas. These include hardware verification [2, 3], group theory [4], circuit diagnosis,
and experiment design [5, 6].

The Davis-Putnam-Logemann-Loveland procedure (DPLL) [7, 8] forms the back-
bone of most common complete SAT solvers that perform a recursive backtrack search,
looking for a satisfying assignment to the variables of the given formula. The key idea
behind it is the pruning of the search space based on falsified clauses. Various extensions
to the basic DPLL procedure have been proposed, including smart branching selection
heuristics [9], randomized restarts [10], and clause learning [11–15]. The last of these,
which this paper attempts to exploit more effectively, originated from earlier work on
explanation based learning (EBL) [16–19] and has resulted in tremendous improvement
in performance on many useful problem classes. It works by adding a new clause to the
set of given clauses (“learning” this clause) whenever the DPLL procedure fails on a
partial assignment and needs to backtrack. This typically saves work later in the search
process when another assignment fails for a similar reason.

Both random CNF formulas and those encoding various real-world problems are
hard for current SAT solvers. However, while DPLL based algorithms with lookahead

� Research supported by NSF Grant ITR-0219468

but no learning (such as satz [20]) and those that try only one carefully chosen assign-
ment without any backtracks (such as SurveyProp [21]) are our best tools for solving
random formula instances, formulas arising from various real applications seem to re-
quire clause learning as a critical ingredient. The key thing that makes this second class
of formulas different is the inherent structure, such as dependence graphs in scheduling
problems, causes and effects in planning, and algebraic structure in group theory.

Trying to understanding clause learning from the theoretical point of view of proof
complexity has lead to many useful insights. In [1], we showed that on certain classes
of formulas, clause learning is provably exponential stronger than a proof system called
regular resolution. This in turn implies an even larger exponential gap between the
power of DPLL and that of clause learning, thus explaining the performance gains
observed empirically. It also shows that for such structured formulas, our favorite non-
learning SAT solvers for random formulas such as satz and SurveyProp are doomed
to fail, whereas clause learning provides potential for small proofs. However, in order
to leverage their strength, clause learning algorithms must use the “right” variable order
for their branching decisions for the underlying DPLL procedure. While a good vari-
able order may result in a polynomial time solution, a bad one can make the process
as slow as basic DPLL without learning. This leads to a natural question: can such in-
sights from theoretical analysis of problem structure help us further? For example, for
the domains where we can deduce analytically that small solutions exist, can we guide
clause learning algorithms to find these solutions efficiently?

As we mentioned previously, most theoretical and practical problem instances of
satisfiability problems originate, not surprisingly, from a higher level description, such
as a graph or Planning Domain Definition Language (PDDL) specification [22]. Typ-
ically, this description contains more structure of the original problem than is visible
in the flat CNF representation in DIMACS format [23] to which it is converted before
being fed into a SAT solver. This structure can potentially be used to gain efficiency
in the solution process. While there has been work on extracting structure after conver-
sion into a CNF formula by exploiting variable dependency [24], constraint redundancy
[25], symmetry [26], binary clauses [27] and partitioning [28], using the original higher
level description itself to generate structural information is likely to be more effective.
The latter approach, despite its intuitive appeal, remains largely unexplored, except for
suggested use in bounded model checking [29] and the separate consideration of cause
variables and effect variables in planning [30].

In this paper, we further open this line of research by proposing an effective method
for exploiting problem structure to guide the branching decision process of clause learn-
ing algorithms. Our approach uses the original high level problem description to gen-
erate not only a CNF encoding but also a branching sequence [1] that guides the SAT
solver toward an efficient solution. This branching sequence serves as auxiliary struc-
tural information that was possibly lost in the process of encoding the problem as a
CNF formula. It makes clause learning algorithms learn useful clauses instead of wast-
ing time learning those that may not be reused in future at all. We give an exact sequence
generation algorithm for pebbling formulas. The high level description used is a peb-
bling graph. Our sequence generator works for the 1UIP learning scheme [15], which is

one of the best known. Our empirical results are based on our extension of the popular
SAT solver zChaff [14].

We show that the use of branching sequences produced by our generator leads to
exponential speedups for the class of grid and randomized pebbling formulas. These
formulas, more commonly occurring in theoretical proof complexity literature [31–34],
can be thought of as representing precedence graphs in dependent task systems and
scheduling scenarios. They can also be viewed as restricted planning problems. Al-
though admitting a polynomial size solution, both grid and randomized pebbling prob-
lems are not so easy to solve deterministically, as is indicated by our experimental
results for unmodified zChaff. From a broader perspective, our result for pebbling
formulas serves as a proof of concept that analysis of problem structure can be used
to achieve dramatic improvements even in the current best clause learning based SAT
solvers.

2 Preliminaries

A Conjunctive Normal Form (CNF) formula F is an AND (∧) of clauses, where each
clause is an OR (∨) of literals, and a literal is a variable or its negation (¬). The Davis-
Putnam-Logemann-Loveland (DPLL) procedure [7, 8] for testing satisfiability of such
formulas works by branching on variables, setting them to TRUE or FALSE, until either
an initial clause is violated (i.e. has all literals set to FALSE) or all variables have been
set. In the former case, it backtracks to the last branching decision whose other branch
has not been tried yet, reverses the decision, and proceeds recursively. In the latter, it ter-
minates with a satisfying assignment. If all possible branches have been unsuccessfully
tried, the formula is declared unsatisfiable. To increase efficiency, pure literals (those
whose negation does not appear) and unit clauses (those with only one unset literal) are
immediately set to true. In this paper, by DPLL we will mean this basic procedure along
with additions such as randomized restarts [10] and local or global branching heuristics
[9], but no learning.

Clause learning (see e.g. [11]) can be thought of as an extension of the DPLL proce-
dure that caches causes of assignment failures in the form of learned clauses. It proceeds
by following the normal branching process of DPLL until there is a “conflict” after unit
propagation. If this conflict occurs without any branches, the it declares the formula
unsatisfiable. Otherwise, it analyzes the “conflict graph” and learns the cause of the
conflict in the form of a “conflict clause” (see Fig. 1). It now backtracks and contin-
ues as in ordinary DPLL, treating the learned clause just like initial ones. One expects
that such cached causes of conflicts will save computation later in the process when an
unsatisfiable branch due to fail for a similar reason is explored.

Different implementations of clause learning algorithms vary in the strategy they
use to choose the clause to learn from a given conflict [15]. For instance, grasp [12]
uses the Decision scheme among others, zChaff [14] uses the 1UIP scheme, and we
proposed in [1] a new learning scheme called FirstNewCut. The results in this paper are
for the 1UIP scheme, but can be obtained for certain other schemes as well, including
FirstNewCut.

FirstNewCut clause
(x1 ∨ x2 ∨ x3)

Decision clause
(p ∨ q ∨ ¬ b)

1UIP clause
t

rel-sat clause
(¬ a ∨ ¬ b)

¬ p

¬ q

b

a

¬ t

¬ x1

¬ x2

¬ x3

y

¬¬¬¬ y

Λ

Fig. 1. A conflict graph with various conflict clauses that can potentially be learned

2.1 Branching Sequence

The notion of branching sequence was used in [1] to prove exponential separation be-
tween DPLL and clause learning. It generalizes the idea of a static variable order by
letting it differ from branch to branch in the underlying DPLL procedure. In addition,
it also specifies which branch (TRUE or FALSE) to explore first. This can clearly be
useful for satisfiable formulas, and can also help on unsatisfiable ones by making the
algorithm learn useful clauses earlier in the process.

Definition 1 ([1]). A branching sequence for a CNF formula F is a sequence σ =
(l1, l2, . . . , lk) of literals of F , possibly with repetitions. A DPLL based algorithm A
on F branches according to σ if it always picks the next variable v to branch on in
the literal order given by σ, skips it if v is currently assigned a value, and otherwise
branches further by setting the chosen literal to FALSE and deleting it from σ. When σ
becomes empty, A reverts back to its default branching scheme.

Definition 2. A branching sequence σ is complete for F under an algorithm A if A
branching according to σ terminates before or as soon as σ becomes empty.

Clearly, how well a branching sequence works for a formula depends on the specifics
of the clause learning algorithm used, such as its learning scheme and backtracking pro-
cess. One needs to keep these in mind when generating the sequence. It is also important
to note that while the size of a variable order is always the same as the number of vari-
ables in the formula, that of an effective branching sequence is typically much more. In
fact, the size of a branching sequence complete for an unsatisfiable formula F is equal
to the size of an unsatisfiability proof of F , and when F is satisfiable, it is proportional
to the time needed to find a satisfying assignment.

2.2 Pebbling Formulas

Pebbling formulas are unsatisfiable CNF formulas whose variations have been used re-
peatedly in proof complexity to obtain theoretical separation results between different

proof systems [31–34]. The version we will use in this paper is known to be easy for
regular resolution but hard for tree-like resolution (and hence for DPLL without learn-
ing) [33].

A Pebbling formula pblG is an unsatisfiable CNF formula associated with a directed,
acyclic pebbling graph G (see Fig. 2). Nodes of G are labeled with disjunctions of
variables. A node labeled (x1∨x2) with, say, three predecessors labeled (p1∨p2∨p3),
q1 and (r1∨r2) generates six clauses (¬pi∨¬qj∨¬rk∨x1∨x2), where i ∈ {1, 2, 3}, j ∈
{1} and k ∈ {1, 2}. Intuitively, a node labeled (x1 ∨x2) is thought of as pebbled under
a (partial) variable assignment σ if (x1 ∨ x2) = TRUE under σ. The clauses mentioned
above state that if all predecessors of a node are pebbled, then the node itself must also
be pebbled. For every indegree zero source node of G labeled (s1 ∨ s2), pblG has a
clause (s1 ∨ s2), stating that all source nodes are pebbled. For every outdegree zero
target node of G labeled (t1 ∨ t2), pblG has clauses ¬t1 and ¬t2, saying that target
nodes are not pebbled, and thus providing a contradiction.

(a1 ∨ a2) b (c ∨ c ∨ c)

d1 ∨ d2 ∨ d3)

l1

(h1 ∨ h2)

(i1 ∨ i2 ∨ i3 ∨ i4)e1

(g1 ∨ g2)

f1

(n1 ∨ n2)

m1

Fig. 2. A general pebbling graph with distinct node labels, and a grid pebbling graph with 4 layers

Grid pebbling formulas are based on simple pyramid shaped layered pebbling graphs
with distinct variable labels, 2 predecessors per node, and disjunctions of size 2 (see
Fig. 2). Randomized pebbling formulas are more complicated and correspond to ran-
dom pebbling graphs. In general, they allow multiple target nodes. However, the more
the targets, the easier it is to produce a contradiction because we can focus only on the
(relatively smaller) subgraph under the lowest target. Hence, for our experiments, we
add a simple grid structure at the top of randomly generated pebbling formulas to make
them have exactly one target.

All pebbling formulas with a single target are minimally unsatisfiable, i.e. any strict
subset of their clauses admits a satisfying assignment. For each formula PblG we use
for our experiments, we also use a satisfiable version of it, called PblSAT

G , obtained by
randomly choosing a clause of PblG and deleting it. When G is viewed as a task graph,

PblSAT
G corresponds to a single fault task system, and finding a satisfying assignment

for it corresponds to locating the fault.

3 Branching Sequence for Pebbling Formulas

In this section, we will give an efficient algorithm to generate an effective branching
sequence for pebbling formulas. This algorithm will take as input the underlying peb-
bling graph (which is the high level description of the pebbling problem), and not the
pebbling formula itself. As we will see in Section 4, the generated branching sequence
gives exponential empirical speedup over zChaff for both grid and randomized peb-
bling formulas.

zChaff, despite being one of the current best clause learners, by default does not
perform very well on seemingly simple pebbling formulas, even on the uniform grid
version. Although clause learning should ideally need only polynomial (in fact, linear
in the size of the formula) time to solve these problem instances, choosing a good
branching order is critical for this to happen. Since nodes are intuitively pebbled in a
bottom up fashion, we must also learn the right clauses (i.e. clauses labeling the nodes)
in a bottom up order. However, branching on variables labeling lower nodes before those
labeling higher ones prevents any DPLL based learning algorithm to backtrack the right
distance and proceed further. To make this clear, consider the general pebbling graph
of Fig. 2. Suppose we branch on and set d1, d2, d3 and a1 to FALSE. This will lead to a
contradiction through unit propagation by implying a2 is TRUE and b1 is FALSE. We will
learn (d1 ∨ d2 ∨ d3 ∨ ¬a2) as the associated 1UIP conflict clause and backtrack. There
will still be a contradiction without any further branches, making us learn (d1∨d2∨d3)
and backtrack. At this stage, we have learned the correct clause but are stuck with the
two branches on d1 and d2. Unless we already branched on e1, there is no way we can
now learn it as a clause corresponding to the next higher node.

3.1 Sequence Generation: GenSeq1UIP

Algorithm 1, GenSeq1UIP, describes a way of generating a good branching sequence
for pebbling formulas. It works on any pebbling graph G with distinct label variables
as input and produces a branching sequence linear in the size of the associated pebbling
formula. In particular, the sequence size is linear in the number of variables as well
when the indegree as well as label size are bounded by a constant.

GenSeq1UIP starts off by handling the setU of all nodes labeled with unit clauses.
Their outgoing edges are deleted and they are treated as pseudo sources. The procedure
first generates branching sequence for non-target nodes in U in increasing order of
height. The key here is that when zChaff learns a unit clause, it fast-backtracks to
decision level zero, effectively restarting at that point. We make use of this fact to learn
these unit clauses in a bottom up fashion, unlike the rest of the process which proceeds
top down in a depth-first way.

GenSeq1UIP now adds branching sequences for the targets. Note that for an un-
satisfiability proof, we only need the sequence corresponding to the first (lowest) target.
However, we process all targets so that this same sequence can also be used when

Input : Pebbling graph G with no repeated labels
Output : Branching sequence for G for the 1UIP learning scheme
begin

foreach v in BottomUpTraversal(G) do
v.height← 1 + maxu∈v.preds{u.height}
Sort(v.preds, increasing order by height)

// First handle unit clause labeled nodes and generate their sequence
U ← {v ∈ G.nodes : |v.labels| = 1}
G.edges← G.edges \ {(u, v) ∈ G.edges : u ∈ U}
G.sources← G.sources ∪ U
Sort(U , increasing order by height)
foreach u ∈ U \G.targets do

Output u.label
GenSubseq1UIPWrapper(u)

// Now add branching sequence for targets by increasing height
Sort(G.targets, increasing order by height)
foreach t ∈ G.targets do

GenSubseq1UIPWrapper(t)

end

GenSubseq1UIPWrapper(node v) begin
if |v.preds| > 0 then

GenSubseq1UIP(v, |v.preds|)
end

GenSubseq1UIP(node v, int i) begin
u← v.preds[i]

// If this is the lowest predecessor . . .
if i = 1 then

if !u.visited and u /∈ G.sources then
u.visited← TRUE

GenSubseq1UIPWrapper(u)

return

// If this is not the lowest one . . .
Output u.labels \ {u.lastLabel}
if !u.visitedAsHigh and u /∈ G.sources then

u.visitedAsHigh← TRUE

Output u.lastLabel
if !u.visited then

u.visited← TRUE

GenSubseq1UIPWrapper(u)

GenSubseq1UIP(v, i− 1)

for j ← (|u.labels| − 2) downto 1 do
Output u.labels[1], . . . , u.labels[j]
GenSubseq1UIP(v, i− 1)

GenSubseq1UIP(v, i− 1)

end

Algorithm 1: GenSeq1UIP

the formula is made satisfiable by deleting enough clauses. The subroutine GenSub-
seq1UIP runs on a node v, looking at its ith predecessor u in increasing order by
height. No labels are output if u is the lowest predecessor; the negations of these vari-
ables will be indirectly implied during clause learning. However, it is recursed upon if
not already visited. This recursive sequence results in learning something close to the
clause labeling this lowest node, but not quite that exact clause. If u is a higher prede-
cessor (it will be marked as visitedAsHigh), GenSubseq1UIP outputs all but one
variables labeling u. If u is not a source and has not already been visited as high, the
last label is output as well, and u recursed upon if necessary. This recursive sequence
results in learning the clause labeling u. Finally, GenSubseq1UIP generates a recur-
sive pattern, calling the subroutine with the next lower predecessor of v. The precise
structure of this pattern is dictated by the 1UIP learning scheme and fast backtracking
used in zChaff. Its size is exponential in the degree of v with label size as the base.

3.2 Complexity Analysis

Let graph G have n nodes, indegree of non-source nodes between dmin and dmax,
and label size between lmin and lmax. For simplicity of analysis, we will assume that
lmin = lmax = l and dmin = dmax = d (l = d = 2 for a grid graph).

Let us first compute the size of the pebbling formula associated withG. The running
time of GenSeq1UIP and the size of the branching sequence generated will be given in
terms of this size. The number of clauses in the pebbling formula PblG is nld, ignoring
a slight counting error for the source and target nodes. Taking clause sizes into account,
the size of the formula, |PblG|, is n(l + d)ld. Note that size of the CNF formula itself
grows exponentially with the indegree and gets worse as label size increases. The best
case is when G is the grid graph, where |PblG| = Θ(n). This explains the degradation
in performance of zChaff, both original and modified, as we move from grid graphs
to random graphs (see section 4). Since we construct PblSAT

G by deleting exactly one
randomly chosen clause from PblG (assuming G has only one target node), the size
|PblSAT

G | of the satisfiable version is also essentially the same.
Let us now compute the running time of GenSeq1UIP. Initial computation of

heights and predecessor sorting takes time Θ(nd log d). Assuming nu unit clause la-
beled nodes and nt target nodes, the remaining node sorting time is Θ(nu log nu +
nt log nt). Since GenSubseq1UIPWrapper is called at most once for each node, the
total running time of GenSeq1UIP isΘ(nd log d+nu log nu+nt log nt+nTwrapper),
where Twrapper denotes the running time of GenSubseq1UIPWrapper without in-
cluding recursive calls to itself. When nu and nt are much smaller than n, which we
will assume as the typical case, this simplifies to Θ(nd log d+ nTwrapper). Let T (v, i)
denote the running time of GenSubseq1UIP(v,i), again without including recur-
sive calls to the wrapper method. Then Twrapper = T (v, d). However, T (v, d) =
lT (v, d − 1) + Θ(l), which gives Twrapper = T (v, d) = Θ(ld+1). Substituting this
back, we get that the running time of GenSeq1UIP is Θ(nld+1), which is about the
same as |PblG|.

Finally, we consider the size of the branching sequence generated. Note that for each
node, most of its contribution to the sequence is from the recursive pattern generated
near the end of GenSubseq1UIP. Let us denote that by Q(v, i). Then Q(v, i) =

(l − 2)(Q(v, i − 1) + Θ(l)), which gives Q(v, i) = Θ(ld+2). Hence, the size of the
sequence generated is Θ(nld+2), which again is about the same as |PblG|.
Theorem 1. Given a pebbling graph G with label size at most l and indegree of non-
source nodes at most d, algorithm GenSeq1UIP produces a branching sequence σ of
size at most S in time Θ(dS), where S = |PblG| ≈ |PblSAT

G |. Moreover, the sequence
σ is complete for PblG as well as for PblSAT

G under any clause learning algorithm
using fast backtracking and 1UIP learning scheme (such as zChaff).

Proof. The size and running time bounds follow from the previous discussion in this
section. That this sequence is complete can be verified by a simple hand calculation
simulating clause learning with fast backtracking and 1UIP learning scheme.

4 Experimental Results

We conducted experiments on a Linux machine with a 1600 MHz AMD Athelon pro-
cessor, 256 KB cache and 1024MB RAM. Time limit was set to 1 day and memory limit
to 512MB; the program was set to abort as soon as either of these was exceeded. We
took the base code of zChaff [14] and modified it to incorporate branching sequence
given as part of the input, along with a CNF formula. When a branching sequence is
specified but gets exhausted before a satisfying assignment is found or the formula is
proved to be unsatisfiable, the code reverts to the default variable selection scheme of
zChaff. We analyzed the performance with random restarts turned off. For all other
parameters, we used the default values of zChaff.

Table 1 shows the performance on grid pebbling formulas. Results are reported
for zChaff with no learning or specified branching sequence (DPLL), with speci-
fied branching sequence only, with clause learning only (original zChaff), and both.
Table 2 shows similar results for randomized pebbling formulas. In both cases, the
branching sequence used was generated according to Algorithm 1, GenSeq1UIP. Note
that randomized pebbling graphs typically have a more complex structure. In addition,
higher indegree and larger disjunction labels make both the CNF formula size as well
as the required branching sequence larger. This explains the difference between the per-
formance of zChaff, both original and modified, on grid and randomized pebbling
instances. For all instances considered, the time taken to generate the branching se-
quence from an input graph was substantially less than that for generating the pebbling
formula itself.

5 Discussion and Future Work

This paper has developed the idea of using a high level description of a satisfiability
problem for generating auxiliary information that can guide a SAT algorithm trying to
solve it. Our preliminary experimental results show a clear exponential improvement in
performance when such information is used to solve both grid and randomized pebbling
problems. Although somewhat artificial, these problems are interesting in their own
right and provide hard instances for some of the best existing SAT solvers like zChaff.

Table 1. zChaff on grid pebbling formulas. Note that problem size substantially increases as
we move down the table. ‡ denotes out of memory

Grid formula Runtime in seconds
Solver Layers Variables Unsatisfiable Satisfiable

5 30 0.24 0.12
DPLL 6 42 110 0.02

7 56 > 24 hrs 0.07
8 72 > 24 hrs > 24 hrs

Branching 5 30 0.20 0.00
sequence 6 42 105 0.00
only 7 56 > 24 hrs 0.00

9 90 > 24 hrs > 24 hrs
Clause 20 420 0.12 0.05
learning 40 1,640 59 36
only (original 65 4,290 ‡ 47
zChaff) 70 4,970 ‡ ‡
Clause 100 10,100 0.59 0.62
learning + 500 250,500 254 288
branching 1,000 1,001,000 4,251 5,335
sequence 1,500 2,551,500 21,097 ‡

Table 2. zChaff on random pebbling formulas with distinct labels, indegree ≤ 5, and disjunc-
tion label size≤ 6. Note that problem size increases as we move down the table. ‡ denotes out of
memory

Random pebbling formula Runtime in seconds
Solver Nodes Variables Clauses Unsatisfiable Satisfiable

9 33 300 0.00 0.00
DPLL 10 29 228 0.58 0.00

10 48 604 > 24 hrs > 24 hrs
Branching 10 29 228 0.09 0.00
sequence 10 48 604 115 0.02
only 12 42 2,835 > 24 hrs 8.88

12 43 1,899 > 24 hrs > 24 hrs
Clause 50 154 3,266 0.91 0.03
learning 87 296 9,850 ‡ 65
only (original 109 354 11,106 584 0.78
zChaff) 110 354 18,467 ‡ ‡
Clause 110 354 18,467 0.28 0.29
learning + 4,427 14,374 530,224 48 49
branching 7,792 25,105 944,846 181 ‡
sequence 13,324 43,254 1,730,952 669 ‡

This bolsters our belief that high level structure can be recovered and exploited to make
clause learning more efficient.

Extending our results to more practical problems such as generalized STRIPS plan-
ning [35] is an obvious direction for future work. These problems induce a natural
layered graph structure similar to but more complicated than pebbling graphs. A sim-
ilar layered structure is seen in bounded model checking problems [36]. We hope that
some of the ideas mentioned in this paper will help relate pebbling with planning and
bounded model checking, and allow one to use our solution for the former to create
an effective strategy for the latter. On another front, there has been a lot of work on
generating variable orders for BDD (Binary Decision Diagram) based algorithms (see
e.g. [37, 38]), where using a good order is perhaps even more critical. Some of the ideas
there extend to the BED (Boolean Expression Diagram) model [39] which combines
BDDs with propositional satisfiability for model checking. There has also been work
on using BDD variable orders for DPLL algorithms without learning [40]. It would
be interesting to see if any of these variable ordering strategies provide new ways of
capturing structural information in our context.

The form in which we extract and use problem structure is a branching sequence.
Although capable of capturing more information than a static variable order, branching
sequences suffer from a natural drawback. The exactness they seem to require for peb-
bling formulas might pose problems when we try to generate branching sequences for
harder problems where we know that a polynomial size sequence is unlikely to exist.
The usefulness of an incomplete or approximately perfect branching sequence is still
unclear. It is not unlikely that we get substantial (but not exponential) improvement as
long as the approximate sequence makes correct decisions most of the time, especially
near the top of the underlying DPLL tree. However, this needs to be tested experimen-
tally.

Finally, the entire approach of generating auxiliary information by analyzing the
problem domain has the inherent disadvantage of requiring the knowledge of higher
level problem description. This makes it different from blackbox approaches that try to
extract structure after the problem has been translated into a CNF formula. This pre-
cluded us, for example, from testing the approach on most of the standard CNF bench-
marks for which such a description is not available. However, given that the source of
non-random formulas encoding real-world problems is always a high level description,
this, we believe, is not a real drawback.

References

1. Beame, P., Kautz, H., Sabharwal, A.: Understanding the power of clause learning. In:
Proceedings of the 18th International Joint Conference on Artificial Intelligence, Acapulco,
Mexico (2003) To appear.

2. Velev, M., Bryant, R.: Effective use of boolean satisfiability procedures in the formal verifica-
tion of superscalar and vliw microprocessors. In: Proceedings of the 38th Design Automation
Conference. (2001) 226–231

3. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using
SAT procedures instead of BDDs. In: Proceedings of the 36th Design Automation Confer-
ence, New Orleans, LA (1999) 317–320

4. Zhang, H., Hsiang, J.: Solving open quasigroup problems by propositional reasoning. In:
Proceedings of the International Computer Symp., Hsinchu, Taiwan (1994)

5. Konuk, H., Larrabee, T.: Explorations of sequential ATPG using boolean satisfiability. In:
11th VLSI Test Symposium. (1993) 85–90

6. Gomes, C.P., Selman, B., McAloon, K., Tretkoff, C.: Randomization in backtrack search:
Exploiting heavy-tailed profiles for solving hard scheduling problems. In: Proceedings of
the 4th International Conference on Artificial Intelligence Planning Systems, Pittsburgh, PA
(1998)

7. Davis, M., Putnam, H.: A computing procedure for quantification theory. Communications
of the ACM 7 (1960) 201–215

8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Commu-
nications of the ACM 5 (1962) 394–397

9. Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability problems. In:
IJCAI (1). (1997) 366–371

10. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through randomization.
In: Proceedings, AAAI-98: 15th National Conference on Artificial Intelligence, Madison,
WI (1998) 431–437

11. Bayardo Jr., R.J., Schrag, R.C.: Using CST look-back techniques to solve real-world SAT
instances. In: Proceedings, AAAI-97: 14th National Conference on Artificial Intelligence.
(1997) 203–208

12. Marques-Silva, J.P., Sakallah, K.A.: GRASP – a new search algorithm for satisfiability.
In: Proceedings of the International Conference on Computer Aided Design, San Jose, CA,
ACM/IEEE (1996) 220–227

13. Zhang, H.: SATO: An efficient propositional prover. In: Proceedings of the International
Conference on Automated Deduction, LNAI. Volume 1249. (1997) 272–275

14. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
efficient SAT solver. In: Proceedings of the 38th Design Automation Conference, Las Vegas,
NV, ACM/IEEE (2001) 530–535

15. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven learning in
a boolean satisfiability solver. In: Proceedings of the International Conference on Computer
Aided Design, San Jose, CA, ACM/IEEE (2001) 279–285

16. de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artificial Intelligence 32 (1987)
97–130

17. Stallman, R., Sussman, G.J.: Forward reasoning and dependency-directed backtracking in a
system for computer-aided circuit analysis. Artificial Intelligence 9 (1977) 135–196

18. Genesereth, R.: The use of design descriptions in automated diagnosis. Artificial Intelligence
24 (1984) 411–436

19. Davis, R.: Diagnostic reasoning based on structure and behavior. Artificial Intelligence 24
(1984) 347–410

20. Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability problems. In:
Proceedings of the 15th International Joint Conference on Artificial Intelligence, Nagoya,
Japan (1997) 366–371

21. Mézard, M., Zecchina, R.: Random k-satisfiability problem: From an analytic solution to an
efficient algorithm. Physical Review E 66 (2002) 056126

22. Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D.,
Wilkins, D.: PDDL – the planning domain definition language. Technical report, Yale Uni-
versity, New Haven, CT (1998)

23. Johnson, D.S., Trick, M.A., eds.: Cliques, Coloring and Satisfiability: Second DIMACS Im-
plementation Challenge. Volume 26 of DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science. American Mathematical Society (1996)

24. Giunchiglia, E., Maratea, M., Tacchella, A.: Dependent and independent variables in propo-
sitional satisfiability. In: Proceedings of the 8th European Conference on Logics in Artificial
Intelligence (JELIA). Volume 2424 of Lecture Notes in Computer Science., Cosenza, Italy,
Springer-Verlag (2002) 296–307

25. Ostrowski, R., Grégoire, E., Mazure, B., Sais, L.: Recovering and exploiting structural
knowledge from cnf formulas. In: 8th Principles and Practice of Constraint Programming.
Volume 2470 of Lecture Notes in Computer Science., Ithaca, NY, Springer-Verlag (2002)
185–199

26. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult SAT instances in
presence of symmetry. In: Proceedings of the 39th Design Automation Conference, New
Orleans, LA (2002) 731–736

27. Brafman, R.I.: A simplifier for propositional formulas with many binary clauses. In: Pro-
ceedings of the 17th International Joint Conference on Artificial Intelligence, Seattle, WA
(2001) 515–522

28. Amir, E., McIlraith, S.A.: Partition-based logical reasoning. In: Proceedings of the 7th
International Conference on Principles of Knowledge Representation and Reasoning, Breck-
enridge, CO (2000) 389–400

29. Shtrichman, O.: Tuning SAT checkers for bounded model checking. In: Proceedings of the
12th International Conference on Computer Aided Verification, Chicago, IL (2000) 480–494

30. Kautz, H.A., Selman, B.: Pushing the envelope: Planning, propositional logic, and stochas-
tic search. In: Proceedings, AAAI-96: 13th National Conference on Artificial Intelligence,
Portland, OR (1996) 1194–1201

31. Bonet, M.L., Esteban, J.L., Galesi, N., Johansen, J.: On the relative complexity of resolution
refinements and cutting planes proof systems. SIAM Journal on Computing 30 (2000) 1462–
1484

32. Bonet, M.L., Galesi, N.: A study of proof search algorithms for resolution and polynomial
calculus. In: Proceedings 40th Annual Symposium on Foundations of Computer Science,
New York, NY, IEEE (1999) 422–432

33. Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near-optimal separation of treelike and
general resolution. Technical Report TR00-005, Electronic Colloquium in Computation
Complexity, http://www.eccc.uni-trier.de/eccc/ (2000)

34. Beame, P., Impagliazzo, R., Pitassi, T., Segerlind, N.: Memoization and DPLL: Formula
caching proof systems. In: Proceedings 18th Annual IEEE Conference on Computational
Complexity, Aarhus, Denmark (2003) To appear.

35. Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings of the 10th European
Conference on Artificial Intelligence, Vienna, Austria (1992) 359–363

36. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In:
Proceedings of the 5th International Conference on Tools and Algorithms for Construction
and Analysis of Systems, Amsterdam, The Netherlands (1999) 193–207

37. Aziz, A., Tasiran, S., Brayton, R.K.: BDD variable orderings for interacting finite state ma-
chines. In: Proceedings of the 31th Design Automation Conference, San Diego, CA (1994)
283–288

38. Harlow, J.E., Brglez, F.: Design of experiments in BDD variable ordering: Lessons learned.
In: Proceedings of the International Conference on Computer Aided Design, San Jose, CA
(1998) 646–652

39. Hulgaard, H., Williams, P.F., Andersen, H.R.: Equivalence checking of combinational cir-
cuits using boolean expression diagrams. IEEE Transactions on Computer-Aided Design of
Integrated Circuits 18 (1999) 903–917

40. Reda, S., Drechsler, R., Orailoglu, A.: On the relation between SAT and BDDs for equiv-
alence checking. In: Proceedings of the International Symposium on Quality Electronic
Design, San Jose, CA (2002) 394–399

