This paper appeared at the
Ist International Joint Workshop on Artificial Intelligence and Operations Research,
Timberline, Oregon, 1995.

Solving Problems with Hard and Soft Constraints
Using a Stochastic Algorithm for MAX-SAT

Yuejun Jiang, Henry Kautz, and Bart Selman
AT&T Bell Laboratories
Direct correspondence to:
Henry Kautz
600 Mountain Ave., Room 2C-407
Murray Hill, NJ 07974
{kautz} @research.att.com

Abstract

Stochastic local search is an effective technique for solving certain classes
of large, hard propositional satisfiability problems, including propositional en-
codings of problems such as circuit synthesis and graph coloring (Selman,
Levesque, and Mitchell 1992; Selman, Kautz, and Cohen 1994). Many prob-
lems of interest to Al and operations research cannot be conveniently encoded
as simple satisfiability, because they involve both hard and soft constraints —
that is, any solution may have to violate some of the less important constraints.
We show how both kinds of constraints can be handled by encoding problems
as instances of weighted MAX-SAT (finding a model that maximizes the sum of
the weights of the satisfied clauses that make up a problem instance). We gen-
eralize our local-search algorithm for satisfiability (GSAT) to handle weighted
MAX-SAT, and present experimental results on encodings of the Steiner tree
problem, which is a well-studied hard combinatorial search problem. On many
problems this approach turns out to be competitive with the best current spe-
cialized Steiner tree algorithms developed in operations research. Our positive
results demonstrate that it is practical to use domain-independent logical repre-
sentations with a general search procedure to solve interesting classes of hard
combinatorial search problems.

1 Introduction

Traditional satisfiability-testing algorithms are based on backtracking search

(Davis and Putnam 1960). Surprisingly few search heuristics have proven to be
generally useful; increases in the size of problems that can be practically solved have
come mainly from increases in machine speed and more efficient implementations
(Trick and Johnson 1993). Selman, Levesque, and Mitchell (1992) introduced an
alternative approach for satisfiability testing, based on stochastic local search. This
algorithm, called GSAT, is only a partial decision procedure — it cannot be used to
prove that a formula is unsatisfiable, but only find models of satisfiable ones — and
does not work on problems where the structure of the local search space yields no
information about the location of global optima (Ginsberg and McAllester 1994).
However, GSAT is very useful in practice. For example, it is the only approach
that can solve certain very large, computationally hard, formulas derived from circuit
synthesis problems (Selman, Kautz, and Cohen 1994). It can also solve randomly
generated Boolean formulas that are two orders of magnitude larger than the largest
handled by any current backtracking algorithm (Selman and Kautz 1993a).

The success of stochastic local search in handling formulas that contain thou-
sands of discrete variables has made it a viable approach for directly solving logical
encodings of interesting problems in Al and operations research (OR), such as cir-
cuit diagnosis and planning (Selman and Kautz 1993b). Thus, at least on certain
classes of problems, it provides a general model-finding technique that scales to
realistically-sized instances, demonstrating that the use of a purely declarative, log-
ical representation is not necessarily in conflict with the need for computational
efficiency. One issue that arises in studying this approach to problem-solving is
developing problem encodings where a solution corresponds to a satisfying model
(Kautz and Selman 1992), instead of having a solution correspond to a refutation
proof (Green 1969). But for some kinds of problems no useful encoding in terms of
propositional satisfiability can be found — in particular, problems that contain both
hard and soft constraints.

Each clause in a CNF (conjunctive normal form) formula can be viewed as a
constraint on the values (true or false) assigned to each variable. For satisfiability, all
clauses are equally important, and all clauses must evaluate to “true” in a satisfying
model. Many problems, however, contain two classes of constraints: hard constraints
that must be satisfied by any solution, and soft constraints, of different relative
importance, that may or may not be satisfied. In the language of operations research,
the hard constraints specify the set of feasible solutions, and the soft constraints
specify a function to be optimized in choosing between the feasible solutions. When
both kinds of constraints are represented by clauses, the formula constructed by
conjoining all the clauses is likely to be unsatisfiable. In order to find a solution
to the original problem using an ordinary satisfiability procedure, it is necessary to
repeatedly try to exclude different subsets of the soft constraints from the problem
representation, until a satisfiable formula is found. Performing such a search through
the space of soft constraints, taking into account their relative importance, can be

complex and costly in a practical sense, even when the theoretical complexity of the
entire process is the same as ordinary satisfiability.

A more natural representation for many problems involving hard and soft con-
straints is weighted maximum satisfiability (MAX-SAT). An instance of weighted
MAX-SAT consists of a set of propositional clauses, each associated with a positive
integer weight. If a clause is not satisfied in a truth assignment, then it adds the cost
of the weight associated with the clause to the total cost associated with the truth
assignment. A solution is a truth assignment that maximizes the sum of the weights
of the satisfied clauses (or, equivalently, that minimizes the sum of the weights of the
unsatisfied clauses). Note that if the sum of the weights of all clauses that correspond
to the soft constraints in the encoding of some problem is [, and each hard constraint
is represented by a clause of weight greater than [, then assignments that violate
clauses of total weight [or less exactly correspond to feasible solutions to the original
problem. The basic GSAT algorithm can be generalized, as we will show, to handle
weighted MAX-SAT in an efficient manner. An important difference between simple
SAT and weighted MAX-SAT problems is that for the latter, but not the former, near
(approximate) solutions are generally of value.

The main experimental work described in this paper is on Boolean encodings of
network Steiner tree problems. These problems have many applications in network
design and routing, and have been intensively studied in operations research for
several decades (Hwang et al. 1992). We worked on a well-known set of benchmark
problems, and compared our performance with the best published results. One of our
implicit goals in this work is to develop representations and algorithms that provide
state-of-the-art performance, and advance research in both the Al and operations
research communities (Ginsberg 1994).

Not all possible MAX-SAT encodings of an optimization problem are equally
good. For practical applications, the final size of the encoding is crucial, and even a
low-order polynomial blowup in size may be unacceptable. The number of clauses
in a straightforward propositional encoding of a Steiner tree problem is quadratic in
the (possibly very large) number of edges in the given graph. We therefore developed
an alternative encoding, that is instead linear in the number of edges. This savings
is not completely free, because the alternative representation only approximates the
original problem instance — that is, theoretically it might not lead to an optimal
solution. Nonetheless, the experimental results we have obtained using this encoding
and our stochastic local search algorithm are competitive in terms of both solution
quality and speed with the best specialized Steiner tree algorithms from the operations
research literature.

The general approach used in our alternative representation of Steiner problems
is to break the problem down into small, tractable subproblems, pre-compute a set
of near-optimal solutions to each subproblem, and then use MAX-SAT to assemble
a global solution by picking elements from the pre-computed sets. This general

technique is applicable to other kinds of problems in Al and operations research.

In a sense this paper describes a line of research that has come full circle: much of
the initial motivation for our earlier work on local search for satisfiability testing came
from work by Adorf and Johnston (1990) and Minton et al. (1990) on using local
search for scheduling problems that did involve both hard and soft constraints. Thus,
we turned a method for optimization problems into one for decision problems, and
now are returning to optimization problems. However, instead of creating different
local search algorithms for each problem domain, we translate instances from different
domains into weighted CNF, and use one general, highly optimized search algorithm.
Thus we retain the use of purely propositional problem representations, and our
finely-tuned randomized techniques for escaping from local minima during search.

2 A Stochastic Search Algorithm

The GSAT procedure mentioned in the introduction solves satisfiability problems by
searching through the space of truth assignments for one that satisfies all clauses
(Selman, Levesque, and Mitchell 1992). The search begins at a random complete
truth assignment. The neighborhood of a point in the search space is defined as the set
of assignments that differ from that point by the value assigned to a single variable.
Each step in the search thus corresponds to “flipping” the truth-value assigned to a
variable. The basic search heuristic is to move in the direction that maximizes the
number of satisfied clauses. Similar local-search methods to satisfiability testing has
also been investigated by Hanson and Jaumard (1990) and Gu (1992).

Thus GSAT can already be viewed as a special kind of MAX-SAT procedure,
where all clauses are treated uniformly, and which is run until a completely satisfying
model is found. We have experimented with many modifications to the search heuris-
tic, and currently obtain the best performance with the following specific strategy for
picking a variable to change. First, a clause in the problem instance that is unsatisfied
by the current assignment is chosen at random — the variable to be flipped will come
from this clause. Next, a coin is flipped. If it comes up heads (with a probability
that is one of the parameters to the procedure), then a variable that appears in the
clause is chosen at random. This kind of choice is called a “random walk”. If the
coin comes up tails instead, then the algorithm chooses a variable from the clause
that, when flipped, will cause as few clauses as possible that are currently satisfied to
become unsatisfied. This kind of choice is called a “greedy” move. Note that flipping
a variable chosen in this manner will always make the chosen clause satisfied, and
will tend to increase the overall number of satisfied clauses — but sometimes will in
fact decrease the number of satisfied clauses. This refinement of GSAT was called
“WSAT” (for “walksat”) in Selman, Kautz, and Cohen (1994).

The weighted MAX-SAT version of Walksat, shown in Fig. 1, uses the sum of

procedure WalksattWEIGHTED-CLAUSES, HARD-LIMIT, MAX-FLIPS,
TARGET, MAX-TRIES, NOISE)
M := a random truth assignment over the variables that
appear in WEIGHTED-CLAUSES;
HARD-UNSAT := clauses not satisfied by M with weight > HARD-LIMIT;
SOFT-UNSAT := clauses not satisfied by M with weight < HARD-LIMIT;
BAD := sum of the weight of HARD-SAT and SOFT-UNSAT;
TOPLOORP: for I := 1 to MAX-TRIES do
for J := 1 to MAX-FLIPS do
if BAD < TARGET then break from TOPLOOP; endif
if HARD-UNSAT is not empty then
C := a random member of HARD-UNSAT;
else C := a random member of SOFT-UNSAT; endif
Flip a coin that has probability NOISE of heads;

if heads then
P := a randomly chosen variable that appears in C;
else

for each proposition Q that appears in C do
BREAKCOUNTI[Q] :=0;
for each clause C’ that contains Q do
if C’ is satisfied by M, but not
satisfied if Q is flipped then
BREAKCOUNTI[Q] + = weight of C’
endif
endfor
endfor
P := a randomly chosen variable Q that appears in C and whose
BREAKCOUNTI[Q)] value is minimal;
endif
Flip the value assigned to P by M;
Update HARD-UNSAT, SOFT-UNSAT, and BAD;
endfor
endfor
print “Weight of unsatisfied clauses is”, BAD;
print M;
end Walksat.

Figure 1: The Walksat procedure for weighted MAX-SAT problems.

the weights of the affected clauses in computing the greedy moves. The parameter
HARD-LIMIT is set by the user to indicate that any clause with that weight or greater
should be considered to be a hard constraint. The algorithm searches for MAX-FLIPS
steps, or until the sum of the weights of the unsatisfied clauses is less than or equal
to the TARGET weight. If the target is not reached, then a new initial assignment is
chosen and the process repeats MAX-TRIES times. The parameter NOISE controls
the amount of stochastic noise in the search, by adjust the ratio of random walk and
greedy moves. The best performance on the problems in this paper was found when
NOISE = 0.2.

Walksat is biased toward satisfying hard constraints before soft constraints. How-
ever, while working on the soft constraints, one or more hard constraints may again
become unsatisfied. Thus, the search proceeds through a mixture of feasible and
infeasible solutions. This is in sharp contrast with standard operations research meth-
ods, which generally work by stepping from feasible solution to feasible solution.
Such methods are at least guaranteed (by definition) to find a local minimum in the
space of feasible solutions. On the other hand, there is no such guarantee for our
approach. It therefore becomes an empirical question as to whether local search on a
weighted MAX-SAT encoding of problems with both hard and soft constraints would
work even moderately well.

Our initial test problems were encodings of airline scheduling problems that
had been studied by researchers in constraint logic programming (CLP) (Lever and
Richards 1994). The results were encouraging; we found solutions approximately 10
to 100 times faster than the CLP approach. However, for the purposes of the paper,
we wished to work on a larger test set, that had been studied more intensively over a
longer period of time. We found such a set of benchmark problems in the operations
research community, as we describe in the next section.

3 Steiner Tree Problems

Network Steiner tree problem have long been studied in operations research (Hwang
et al. 1992), and many well-known, hard benchmark instances are available. The
problems we used can be obtained by ftp from the OR Repository at Imperial College
(mscmga.ms.ic.ac.uk). We ran our experiments on these problems so that our results
could be readily compared against those of the best competing approaches. A network
Steiner tree problem consists of an undirected graph, where each edge is assigned a
positive integer cost, and a subset of its nodes, called the Steiner nodes. The goal
is to find a subtree of the graph that spans the Steiner nodes, such that the sum of
the costs of the edges of the tree is minimal. Fig. 2 shows an example of a Steiner
problem. The top figure shows the graph, where the Steiner nodes are nodes 1, 2, 3,
6, and 7. The weights are given along the edges. The bottom figure shows a Steiner

Figure 2: An example of a network Steiner problem and its solution.

tree connecting those nodes. Note that the solution involves two non-Steiner nodes
(4 and 5). In general, finding such a Steiner tree is NP-complete.

There is a direct translation of Steiner problems into MAX-SAT. The encoding
requires 2|EI? variables, where |El is the number of edges in the entire graph. While this
encoding is of theoretical interest, it is not practical for realistically-sized problems:
even a quadratic blowup in the number of variables relative to the number of edges in
original instance is simply too large. As we will see below, many of the problems we
wish to handle contain over 10,000 edges, and we cannot hope to process a formula
containing 100,000,000 variables! Therefore we developed an alternative encoding
of Steiner tree problems that is only linearly dependent on the number of edges.

The intuition behind our encoding is that the original problem is broken down into a
set of tractable subproblems; a range of near-optimal solutions to the subproblems are
pre-computed; and then MAX-SAT is used to combine a selection of solutions to the
subproblems to create a global solution. For Steiner tree problems, the subproblems
are smaller Steiner trees that connect just pairs of nodes from the original Steiner set.
Such two-node Steiner problems are tractable,because a solution is simply the shortest
path between the nodes. A range of near-optimal solutions, i.e. the shortest path,

the next shortest path, efc., can be generated using a modified version of Dijkstra’s
algorithm. This approach actually only approximates the original problem instance,
because we do not generate all paths between pairs of nodes, but only the k shortest
paths for some fixed k. (We discuss the choice of k& below.) Pathological problem
instances exist that require very non-optimal subproblem solutions. However, we
shall see that the approach works quite well in practice.

We illustrate the encoding using the example from Fig. 2. First, we introduce a
variable for each edge of the graph. For example, the edge between nodes 1 and 2 is
represented by variable e; ;. The interpretation of the variable is that if the variable
is true, then the corresponding edge is part of the Steiner tree. To capture the cost
of including this edge in the tree, we include a unit clause of the form (—e;) with
weight 2, the cost of the edge. This clause is soft constraint. Note that when this
edge is included in the solution, i.e., e is true, this clause is unsatisfied, so the
truth-assignment incurs a cost of 2. Similarly we have a clause for every edge.

Second, we list the Steiner nodes in an arbitrary order, and then for each successive
pair of nodes in this list, we generate the k& shortest paths between the nodes. We
associate a variable with each path. For example, if £ = 2, then the two shortest paths
between Steiner nodes 1 and 2 are 1-2 and 1-4-2. We name the variables p; , and
DP1,42.

Third, we introduce hard constraints that assert that a solution must contain a
path between each pair of Steiner nodes. For example, the clause (p1> V p142) is a
hard constraint, and therefore assigned a high weight (greater than the sum of all soft
constraints). Hard constraints also assert that if a path appears in a solution, then the
edges it contains appear. For example, for the path 1-4-2, we introduce the clauses
(p142 D e14) and (p142 D esp). This concludes our encoding.

The encoding requires |El+k(ISI—1) variables, where |El is the number of edges
in the graph, IS| is the number of Steiner nodes, and k is the number of shortest paths
pre-computed between each pair. The total number of clauses is O(| E| + kL(ISI-1)),
where L is the maximum number of edges in any of the pre-computed paths.

4 Empirical Results

A good description of our benchmark problems appears in Beasley (1989). The
set contains four classes (B, C, D, E) of problem instances of increasing size and
complexity. We omitted class B because the problems are small and easy to solve.
Each class has 20 instances.

Tables 1,2, and 3 contain our results, as well as those of the two best specialized
Steiner tree algorithms, as reported Beasley (1989) and Chopra et al. (1992). In the
table, IVl denotes the number of nodes in the graph, |IEl the number of edges, and ISI
the number of Steiner nodes. The columns labeled “Soln” give the weight of the best

Steiner tree found by each method. The solutions found by Chopra et al. are globally
optimal, except for instance E18. For some problems we also give the second best
solution (labeled “Soln2”) found by Walksat, to indicate how effective the procedure
can be in practice, since it may locate a near-global optimum in a very short time.

Walksat ran on a SGI Challenge with a 150 MHz MIPS R4400 processor.
Beasley’s algorithm ran on a Cray XMP, and Chopra’s on a Vax 8700. A hyphen in
the table in the case of Beasley’s algorithm indicates that the problem was not solved
after 21,600 seconds; in the case of Chopra’s algorithm, it indicates that problem was
not solved after 10 days.

We have not attempted to adjust the numbers for machine speed. Caution must
be used in comparing different algorithms running on radically different kinds of
hardware (the SGI has a RISC architecture, the Vax is CISC, and the Cray is a
parallel vector processing machine). The SGI is rated is 136 MIPS, while the Vax
is rated at 6 MIPS. This would indicate a ratio of 22 in relative speed; however, at
least one user of both machines (Johnson 1994) reports a maximum speedup factor
of 15 on combinatorial algorithms, with as small a factor as 3 on large instances.
The Cray is rated 230 peak MIPS, which would appear to be faster than the SGI;
however, Cray Research also reports that code that performs no vector processing at
all runs at only 30 MIPS. Thus, differences in hardware could account for a speedup
of between 3 and 22 when comparing Chopra’s VAX to our SGI, and of between 0.6
and 4.5 when comparing Beasley’s Cray to our SGI. In any case, this indicates that
all of the differences in performance described below cannot be attributed entirely to
differences in machine speed.

We found that we could obtain good solutions with a value of &, the number of
pre-computed paths between pairs of nodes, of up to 150 for the smaller instances
(< 10 Steiner nodes), and up to 20 for the larger instances. The timing results for
Walksat are averaged over 10 runs.

The running times in the table do not include the time to pre-compute the set
of paths between successive Steiner nodes. This is reasonable because in practice
one often deals with a fixed network, and wants to compute Steiner trees for many
different subsets of nodes. For example, in teleconferencing applications, the network
is fixed, and each problem instance involves finding a Steiner tree to connect a set of
sites. Given a fixed network, one can pre-compute, using Dijkstra’s algorithm, sets
of paths between every pair of nodes.

From the tables we can see that for problems with up to 10 Steiner nodes, Walksat
usually find an optimal solution at least as fast as the other two approaches, even
allowing differences in machine speeds. For example, for D1 and D2, Walksat is
about 100 times faster than the other two in reaching the global optimum. For D6,
Walksat runs about 50 times faster than Beasley and 30 times faster than Chopra. The
difference is particularly dramatic for E1, where Walksat finds the optimal solution
in less than 1 second, and Beasley and Chopra both take over 1,000 seconds. On

Problem Parameters Beasley Chopra et al. Walksat

ID |V] |E| |S| | Soln CPUsecs | Soln CPUsecs | Solnl CPU Soln2 CPU
(Cray XMP) (Vax 8700) (SGI) (SGI)

C1 500 625 5 85 113.57 85 273 85 1.11

C2 10 | 144 584 | 144 811.7 144 72.69 146 30.57

C3 83 | 766 15278 | 754 5434 808 0.05

C4 125 | 1094 3.61 | 1079 5096 | 1128 0.09

C5 250 | 1594 273 | 1579 4739 | 1654 0.12

Cc6 1000 5 55 48.55 55 489 55 341

C7 10 | 106 444 | 102 83.2 102 3.02 103 295

C8 83 | 524 8.63 | 509 674 .4 553 0.07

c9 125 | 722 19897 | 707 1866.3 754 0.09

C10 250 | 1112 4.53 | 1093 2456 | 1169 0.16

Cl1 2500 5 34 188.02 32 3333 32 044 34 022

Cl12 10 48 25.04 46 119.8 46 65.64 47 3941

C13 83 | 265 166.53 | 258 9170.3 286 023

Cl4 125 | 336 8.67 | 323 211.7 349 0.25

Cl15 250 | 563 7.30 | 556 210.6 587 040

Cl16 12500 5 11 32.37 11 10.1 11 625

C17 10 20 2417 18 98.0 18 19.50 19 652

C18 83| 123 10434 | 113 45847.7 130 4.89

C19 125 | 155 8648 | 146 1169 165 525

C20 250 | 269 157.80 | 267 14.9 278 5.79

Table 1: Computation Results for Beasley’s C class Steiner Tree Problems

E2, Walksat takes about 800 seconds to reach the global optimum 214, which is
comparable to Chopra’s 6000 seconds (a ratio of 7.5). Walksat takes only about 28
seconds to reach a tree with weight 216, compared to Beasley who takes 7000 seconds
to reach only 231. On E6, Walksat takes less than 2 seconds, compared to over 670
seconds for Chopra. A near-optimal solution takes less than 1 seconds, compared to
1700 seconds for Beasley.

Surprisingly, Walksat can locate some of the optimal and near-optimal solutions
for the large E-class instances that cannot be found by Beasley in a reasonable amount
of time. For example, for E12, Walksat finds a local optima of 68 which was not
reached by Beasley within the time limit of 21,600 seconds. For E7, Walksat finds
the global optimum of 145, while Beasley only reaches 157.

On problems with a larger numbers of Steiner nodes, Walksat usually produces
less optimal solutions than the other two methods. The problem Walksat has on
instances with a large number of Steiner nodes may due to the fact that the MAX-

10

Problem Parameters Beasley Chopra et al. Walksat

ID \4 |E| |S| | Soln CPUsecs | Soln CPUsecs | Solnl CPU Soln2 CPU
(Cray XMP) (Vax 8700) (SGI) (SGI)

D1 1000 1250 51 107 22627 | 106 475.6 106 2.6l 107 0385

D2 10 | 228 25247 | 220 283.5 220 154 227 098

D3 167 | 1599 21.85 | 1565 2290.1 | 1646 0.21

D4 250 | 2170 11.71 | 1935 35290 | 2044 0.28

D5 500 | 3360 11.76 | 3250 810.6 | 3419 0.3

D6 2000 5 71 4065.69 67 2339.5 67 7551 70 12.37

D7 10 | 103 1871 | 103 99.7 103 047

D8 167 | 1108 475.14 | 1072 69845 | 1180 035

D9 250 | 1684 24348 | 1448 4629.7 | 1585 041

D10 500 | 2235 20.21 | 2110 1312.1 | 2219 0.72

D11 5000 5 31 3290.48 29 13744 29 2.8 30 207

D12 10 42 48.04 42 305.0 42 0.79

D13 167 | 520 36.06 | 500 1864.0 544 1.07

D14 250 | 688 44326 | 667 35384 740 0.74

D15 500 | 1208 3225 | 1116 1409.7 | 1193 1.70

D16 25000 5 14 16143 13 871.3 13 18.29

D17 10 25 277.20 23 6965 .2 23 735 24 20

D18 167 | 247 222.15 | 223 245192.1 262 2048

D19 250 | 384 256.15 | 310 878.3 359 21.52

D20 500 | 544 1023.60 | 537 47.1 558 2445

Table 2: Computation Results for Beasley’s D class Steiner Tree Problems

SAT encodings simply become too large to be processed efficiently. (For example,
the number of flips per second goes down significantly on very large formulas.)
Nonetheless, given the fact that Walksat is a completely general algorithm, as opposed
to the specialized algorithms of Beasley and Chopra, it performs surprisingly well on
these hard benchmark problems.

It is important to note that Walksat scales up to problems based on large graphs,
especially when the set of Steiner nodes is relatively small. This should be contrasted
with some other local-search style approaches to solving Steiner trees using simulated
annealing (Dowsland 1991) and genetic algorithms (Kapsalis et al. 1993). Despite
the fact that these local search algorithms were designed specifically for solving
Steiner problems, they can only handle the smallest instances in the B and C classes.
This has led Hwang et al. (page 172) to conclude that simulated annealing and hill-
climbing (a form of local search) are ill-suited for Steiner tree problems. However,
our work demonstrates that local search can in fact be successful for Steiner problems.

11

Problem Parameters Beasley Chopra et al. Walksat

ID \4 |E| |S| | Soln CPU secs Soln CPU secs | Solnl CPU Soln2 CPU
(Cray XMP) (Vax 8700) (SGI) (SGI)

E1 1000 3250 51 115 1116.80 111 1149.6 111 0.54 113 0.35

E2 10 | 231 7124.10 214 6251.2 214 817.70 216 28.13

E3 417 | 4131 1346.05 4013 26468.4 | 4282 143

E4 625 | 5208 378.66 5101 46007.6 | 5398 2.10

E5 1250 | 8413 08.22 8128 12564.1 | 8518 3.95

E6 5000 5 78 1760.49 73 678.0 73 1.71 78 0.81

E7 10 | 157 — 145 27124.0 145 5170.50 149 275.62

E8 417 | 2733 4459.30 2640 118617.5 | 2899 2.05

E9 625 | 3721 18818,53 3604 245278 | 3913 2.65

E10 1250 | 5899 311.57 5600 39260.7 | 5957 4.94

Ell 12500 5 39 3061.45 34 1900.6 34 62271 35 747

E12 10 69 —— 67 7199.7 68 5325.67 69 374.79

E13 417 | 1336 —— 1280 207058.6 | 1417 7.21

El4 625 | 1773 —— 1732 29262.6 | 1884 8.69

E15 1250 | 3008 45798 2784 76660 | 3125 157.67

El16 62500 5 15 7880.40 15 179.0 15 352.26 16 117.26

E17 10 26 445.69 25 36039.9 27 16092

E18 417 | 840 —— | (563.03) — 667 129.33

E19 625 | 923 — 758 6371.8 853 132.70

E20 1250 | 1376 14037.13 1342 2722 | 1400 160.97

Table 3: Computation Results for Beasley’s E class Steiner Tree Problems

Our positive results are due to both an effective problem encoding and the use of an
efficient implementation of our search procedure with a good stochastic technique for
escaping from local minima.

5 Discussion and Conclusions

In this paper, we have shown how to adapt Walksat, a variant of the GSAT satisfiability
testing algorithm, to handle weighted MAX-SAT problems. One of the problems
in encoding optimization problems as propositional satisfiability problems is the
difficulty of representing both hard and soft constraints. In a weighted MAX-SAT
encoding, hard constraints simply receive a high weight (for example, larger than
the sum of the soft constraints). Any solution where the sum of the weights of the
violated clauses is less than that of any hard constraint is guaranteed to be feasible
(i.e., satisfies all hard constraints).

12

Another problem with translating optimization problems into satisfiability prob-
lems is handling numeric information. Even though in principle a polynomial trans-
formation often exists, SAT encodings of realistic problem instances may become too
large to solve. In our weighted MAX-SAT encoding, much of the numeric information
in the problem instances can be captured effectively in the clause weights.

In order to test this approach, we considered a set of hard benchmark Steiner tree
problems, and compared our results to specialized state-of-the-art algorithms. We
chose the Steiner tree problem because of its long history and the public availability of
a well-established set of benchmark instances. Our results showed that our weighted
MAX-SAT strategy is competitive with specialized algorithms, especially on (possi-
bly large and computationally difficult) instances involving small numbers of Steiner
nodes. We must stress that we are not arguing that our approach is the best way to
find Steiner trees. It is certainly the case that every particular class of combinatorial
problems has some structure that can be best exploited by some specialized algorithm.
The significance of our experiments is that they showed good performance using a
completely general algorithm, that incorporates no heuristics specific to Steiner tree
problems.

As mentioned above, the search performed by Walksat proceeds through truth-
assignments that correspond to both feasible and infeasible solutions to the original
optimization problem. This is an inherent aspect of our approach, simply because fea-
sible solutions of the original problem may be several variable “flips” apart. Note that
in constructing specialized local search algorithms for particular problem domains,
one generally makes larger changes and only moves between feasible solutions. It is
therefore surprising to discover how well Walksat performs. It is important to note
that negative performance results would have argued against our overall approach of
using a domain-independent logical representation with a general search procedure
such as Walksat.

Part of the success of the approach is due to the particular MAX-SAT encoding
we developed for the problems. In particular, our encoding is significantly shorter
than a more direct one. The general approach we used, which is based on combining
solutions from tractable subproblems, could also be useful for encoding other kinds
of optimization problems. In particular, Crawford and Baker (1994) have observed
that a direct SAT encoding of job-shop scheduling problems leads to formulas that are
very large and hard to solve. It would be interesting to see if our piecewise encoding
technique is applicable in the job-shop scheduling domain.

In conclusion, we have demonstrated that the use of efficient MAX-SAT encodings
with a domain-independent stochastic local search algorithm is a promising approach
for solving hard optimization problems in Al and operations research.

13

References

Adorf, H. M., and Johnston, M. D. (1990) A discrete stochastic neural network algorithm
for constraint satisfaction problems. Proceedings of the International Joint Conference
on Neural Networks, San Diego, CA.

Beasley, J. (1989) An SST-based algorithm for the Steiner Tree problems in graphs. Net-
works 19, 1-16.

Chopra, S., Gorres, E., and Rao, M. (1992) Solving the Steiner Tree problem on a graph
using branch and cut. ORSA Journal on Computing 4(3), 3-18.

Crawford, J. M., and Baker, A.B. (1994). Experimental results on the application of sat-
isfiability algorithms to scheduling problems. Proceedings AAAI-94, Seattle, WA,
1092-1097.

Davis, M., and Putnam, H. (1960). A computing procedure for quantification theory. J.
Assoc. Comput. Mach. 7,201-215.

Dowsland, K. (1991) Hill-climbing simulated annealing and the Steiner problem in graphs.
Eng. Opt. 17,91-107.

Ginsberg, M. and McAllester, D. (1994) GSAT and dynamic backtracking. Proceedings
KR-94, Bonn, Germany, 226-237.

Ginsberg, M. (1994) Organizational meeting for AI/OR initiative, Oct. 1994.

Green, C. (1969) Application of theorem proving to problem solving. Proceedings IJCAI-
69, Washington, DC, 219-239.

Gu, J. (1992) Efficient local search for very large-scale satisfiability problems. Sigart Bul-
letin 3(1), 8-12.

Hansen, P., and Jaumard, B. (1990) Algorithms for the maximum satisfiability problem.
Computing 44, 279-303.

Hwang, FK, Richards, D.S., and Winter, P. (1992) The Steiner Tree Problem, Amsterdam:
North-Holland (Elsevier Science Publishers).

Johnson, D.S., (1994) Personal communication.

Kapsalis, A., Rayward-Smith, V., and Smith, G. (1993) Solving the graphical Steiner tree
problem using genetic algorithms. J. Oper. Res. Soc. 44(4), 397-406.

Kautz, H., and Selman, B. (1992). Planning as satisfiability. Proceedings ECAI-92, Vienna,
Austria.

14

Lever, J., and Richards, B. (1994) A CLP approach to flight scheduling problems. Proceed-
ings of the International Symposium on Methodologies for Intelligent Systems, 1994.

Minton, S., Johnston,M.D., Philips, A.B., and Laird, P. (1990) Solving large-scale constraint
satisfaction an scheduling problems using a heuristic repair method. Proceedings
AAAI-90, Boston, MA, 17-24.

Papadimitriou, C.H., and Steiglitz, K. (1982) Combinatorial Optimization. Englewood Cliffs,
NIJ: Prentice-Hall.

Selman, B., Levesque, H.J., and Mitchell, D.G. (1992) A new method for solving hard sat-
isfiability problems. Proceedings AAAI-92, San Jose, CA, 440-446.

Selman, B., and Kautz, H. (1993a) Domain-independent extensions to GSAT: solving large
structured satisfiability problems. Proceedings IJCAI-93, Chambéry, France, 290—
295.

Selman, B. and Kautz, H. (1993b) An empirical study of greedy local search for satisfiability
testing. Proceedings AAAI-93, Washington, DC, 46-51.

Selman, B., Kautz, H., and Cohen, B. (1994) Noise strategies for local search. Proceedings
AAAI-94, Seattle, WA, 1994.

Trick, M., and Johnson, D.S. (Eds.) (1993) Working notes of the DIMACS Algorithm Im-
plementation Challenge, Rutgers University, New Brunswick, NJ.

15

