DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 00, 0000

A General Stochastic Approach to Solving
Problems with Hard and Soft Constraints

HENRY KAUTZ, BART SELMAN, AND YUEYEN JIANG

ABSTRACT. Many Al problems can be conveniently encoded as discrete
constraint satisfaction problems. It is often the case that not all solutions
to a CSP are equally desirable — in general, one is interested in a set of
“preferred” solutions (for example, solutions that minimize some cost func-
tion). Preferences can be encoded by incorporating “soft” constraints in
the problem instance. We show how both hard and soft constraints can be
handled by encoding problems as instances of weighted MAX-SAT (find-
ing a model that maximizes the sum of the weights of the satisfied clauses
that make up a problem instance). We generalize a local-search algorithm
for satisfiability to handle weighted MAX-SAT. To demonstrate the effec-
tiveness of our approach, we present experimental results on encodings of
a set of well-studied network Steiner-tree problems. This approach turns
out to be competitive with some of the best current specialized algorithms
developed in operations research.

1. Introduction

Traditional satisfiability-testing algorithms are based on backtracking search
[6]. Surprisingly few search heuristics have proven to be generally useful; in-
creases in the size of problems that can be practically solved have come mainly
from increases in machine speed and more efficient implementations [27]. Sel-
man, Levesque, and Mitchell [22] and Gu [9, 10] introduced an alternative
approach for satisfiability testing, based on stochastic local search. The algo-
rithms in this family are partial decision procedures — they cannot be used to
prove that a formulais unsatisfiable, but only find models of satisfiable ones. For
many interesting classes of formulas, they can solve problem instances that are
two orders of magnitude larger than those that can be handled by any systematic
search algorithm [23]. A recent variant, called “Walksat” [25], is currently one
of the fastest and most robust versions of the basic algorithm [26].

1991 Mathematics Subject Classification. 90C09, 90B12 68R05, 68R10, 69T15.

©0000 American Mathematical Society
0000-0000/00 $1.00 + $.25 per page

2 KAUTZ, SELMAN, AND JIANG

The success of stochastic local search in handling formulas that contain thou-
sands of discrete variables has made it a viable approach for directly solving logi-
cal encodings of interesting problems in AT and operations research (OR), such as
circuit diagnosis and planning [24]. Thus, at least on certain classes of problems;
it provides a general model-finding technique that scales to realistically-sized in-
stances, demonstrating that the use of a purely declarative, logical representation
1s not necessarily in conflict with the need for computational efficiency. But for
some kinds of problems no useful encoding in terms of propositional satisfia-
bility can be found — in particular, problems that contain both hard and soft
constraints.

Fach clause in a CNF (conjunctive normal form) formula can be viewed as a
constraint on the values (true or false) assigned to each variable. For satisfiability,
all clauses are equally important, and all clauses must evaluate to “true” in a
satisfying model. Many problems, however, contain two classes of constraints:
hard constraints that must be satisfied by any solution, and soft constraints, of
different relative importance, that may or may not be satisfied. In the language
of operations research, the hard constraints specify the set of feasible solutions,
and the soft constraints specify a function to be optimized in choosing between
the feasible solutions. When both kinds of constraints are represented by clauses,
the formula constructed by conjoining all the clauses is likely to be unsatisfiable.
In order to find a solution to the original problem using an ordinary satisfiability
procedure, it is necessary to repeatedly try to exclude different subsets of the
soft constraints from the problem representation, until a satisfiable formula 1s
found. Performing such a search through the space of soft constraints, taking
into account their relative importance, can be complex and costly in a practical
sense, even when the theoretical complexity of the entire process is the same as
ordinary satisfiability.

A more natural representation for many problems involving hard and soft con-
straints is weighted mazimum satisfiability (MAX-SAT). An instance of weighted
MAX-SAT consists of a set of propositional clauses, each associated with a posi-
tive integer weight. If a clause is not satisfied in a truth assignment, then it adds
the cost of the weight associated with the clause to the total cost associated with
the truth assignment. A solution is a truth assignment that maximizes the sum
of the weights of the satisfied clauses (or, equivalently, that minimizes the sum of
the weights of the unsatisfied clauses). Note that if the sum of the weights of all
clauses that correspond to the soft constraints in the encoding of some problem
is [, and each hard constraint is represented by a clause of weight greater than [,
then assignments that violate clauses of total weight ! or less exactly correspond
to feasible solutions to the original problem.

We have modified the Walksat algorithm mentioned above to handle weighted
MAX-SAT in an efficient manner. An important difference between simple SAT
and weighted MAX-SAT problems is that for the latter, but not the former,
near (approximate) solutions are generally of value. Local search is, in general,

A GENERAL STOCHASTIC APPROACH 3

a widely applicable heuristic method for finding approximate solutions to opti-
mization problems, and versions of it have been previously applied to MAX-SAT
[12]. Our algorithm is notable for employing a particularly simple, efficient, and
effective method for escaping from local minima in the search space.

The main experimental work described in this paper is on Boolean encodings
of network Steiner tree problems. It 1s an NP-complete problem involving finding
paths in graphs; as will be explained below. Network Steiner tree problems have
many applications in network design and routing, and have been intensively
studied in operations research for several decades [13]. We worked on a well-
known set of benchmark problems, and compared our performance with the
best published results. Omne of our implicit goals in this work is to develop
representations and algorithms that provide state-of-the-art performance, and
advance research in both the AT and operations research communities [8].

Not all possible MAX-SAT encodings of an optimization problem are equally
good. For practical applications, the final size of the encoding is crucial, and
even a low-order polynomial blowup in size may be unacceptable. The number
of clauses in a straightforward propositional encoding of a Steiner tree problem
is quadratic in the (possibly very large) number of edges in the given graph. We
therefore developed an alternative encoding, that is instead linear in the number
of edges. This savings is not completely free, because the alternative representa-
tion only approximates the original problem instance — that is, theoretically it
might not lead to an optimal solution. Nonetheless, the experimental results we
have obtained using this encoding and our stochastic local search algorithm are
competitive in terms of both solution quality and speed with the best specialized
Steiner tree algorithms from the operations research literature.

The general approach used in our alternative representation of Steiner prob-
lems is to break the problem down into small, tractable subproblems, pre-
compute a set of near-optimal solutions to each subproblem, and then use MAX-
SAT to assemble a global solution by picking elements from the pre-computed
sets. This general technique is applicable to other kinds of problems in Al and
operations research. The approach is called “partitioning” in independent work
by Gu and Puri [11, 21] in applying SAT to circuit synthesis problems.

2. A Stochastic Search Algorithm

Local search algorithms for satisfiability work by searching through the space
of truth assignments for one that satisfies all clauses [22]. The search begins
at a random complete truth assignment. The neighborhood of a point in the
search space 1s defined as the set of assignments that differ from that point by
the value assigned to a single variable. Each step in the search thus corresponds
to “flipping” the truth-value assigned to a variable. The basic search heuristic is
to move in the direction that minimizes the number of unsatisfied clauses; such
moves are called “greedy” moves. Local minima are avoided by occasionally

4 KAUTZ, SELMAN, AND JIANG

Weighted-Walksat:

input: weighted-clauses, max-flips, max-tries, target, noise.

soln := a random truth assignment;
for i := 1 to max-tries
for j := 1 to max-flips

compute the sum of the weights of clauses unsatisfied by soln;
if the sum < target then
return “Success, solution is”, soln;
c := a randomly chosen unsatisfied clause;
with probability noise
flip value assigned by soln to a randomly chosen variable from c;
with probability (1-noise)
for each variable in ¢, compute the sum of the weights of the
clauses currently satisfied by soln that would become
unsatisfied if that variable were flipped;
flip a variable in ¢ that minimizes that sum;
end;
end;
return “Failure, best assignment found is”, soln;

FIGURE 1. The Weighted-Walksat procedure.

randomly flipping a variable that appears in some unsatisfied clause [23]; such
moves are called “random walk” moves. The frequency with which random walk
moves are made is controlled by a “noise” parameter.

Fig. 1 presents a version of the Walksat algorithm [25], here modified for
weighted MAX-SAT problems. The change simply involves taking the sum of
the weights of the set of unsatisfied clauses, rather than merely counting the
number of such clauses. A new parameter, “target”, provides a threshhold for
terminating the algorithm when the current assigned is “good enough”. Hard
constraints are encoded in clauses by giving each a weight greater than the target.

Because hard constraints have greater weight than soft constraints, Weighted-
Walksat is biased toward satisfying those constraints first. However, while work-
ing on the soft constraints, one or more hard constraints may again become
unsatisfied. Thus, the search proceeds through a mixture of feasible and in-
feasible solutions. This i1s in sharp contrast with standard operations research
methods, which generally work by stepping from feasible solution to feasible
solution. Such methods are at least guaranteed (by definition) to find a local
minimum in the space of feasible solutions. On the other hand, there is no such
guarantee for our approach. It therefore becomes an empirical question as to
whether local search on a weighted MAX-SAT encoding of problems with both
hard and soft constraints would work even moderately well.

Our initial test problems were encodings of airline scheduling problems that
had been studied by researchers in constraint logic programming (CLP) [18].
The results were encouraging; we found solutions approximately 10 to 100 times
faster than the CLP approach. However, for the purposes of the paper, we wished
to work on a larger test set, that had been studied more intensively over a longer

A GENERAL STOCHASTIC APPROACH 5

period of time. We found such a set of benchmark problems in the operations
research community, as we describe in the next section.

3. Stelner Tree Problems

Network Steiner tree problem have long been studied in operations research
[13], and many well-known, hard benchmark instances are available. The prob-
lems we used can be obtained by ftp from the OR Repository at Imperial College
(msemga.ms.ic.ac.uk). We ran our experiments on these problems so that our re-
sults could be readily compared against those of the best competing approaches.
(Recently Khoury et. al. [16] have made available a test problem generator that
creates hard random Steiner tree problem instances; in future work we hope to
also compare our approach with others on instances from this source as well.)

A network Steiner tree problem consists of an undirected graph, where each
edge is assigned a positive integer cost, and a subset of its nodes, called the
“terminal” nodes. The goal is to find a subtree of the graph that spans the
terminal nodes, such that the sum of the costs of the edges of the tree is the
minimum. The nodes in this subgraph that are not terminals are called the
“Steiner nodes”. Fig. 2 shows an example of a Steiner problem. The top figure
shows the graph, where the Steiner nodes are nodes 1, 2, 3, 6, and 7. The weights
are given along the edges. The bottom figure shows a Steiner tree connecting
those nodes. Note that the solution involves two Steiner nodes (4 and 5). In
general, finding such a Steiner tree is NP-complete.

3.1. Exact Encodings. The exact translation of Steiner problems into M AX-
SAT is not entirely obvious, because of the difficulty in axiomatizing “connect-
edness”. The following translation requires O(2|E|?) variables, where |E| is the
number of edges in the entire graph. First, replace every edge e in the graph by
a pair of directed edges, f and ¢g. A Steiner tree will then correspond to a tour of
a subgraph that includes all the Steiner nodes. The tour corresponds to walking
around the perimeter of the Steiner tree — equivalently, making a depth-first
traversal of the tree. Let there be a Boolean variable for every possible position
that every possible edge could take in the tour. (Of course, some edges do not
appear in the tour at all.) For example, the proposition f§ would be true if one
of the directed edges derived from the original edge es appears as the 6th ele-
ment of the tour. This requires (2|E|)? variables. Then we include a set of hard
constraints that state that the directed-edge variables that are “true” make up a
tour that includes the terminal nodes, where parts of the tour may be repeated.
Finally, a set of soft constraints represents the costs assigned to the edges. For
example, if edge e3 has cost 30, then one simply includes the unit clause (—es)
with weight 30 in the MAX-SAT encoding.

Unfortunately this encoding is not practical for realistically-sized problems:
even a quadratic blowup in the number of variables relative to the number of
edges in original instance is too large. Many of the problems we wish to handle

6 KAUTZ, SELMAN, AND JIANG

2

F1GURE 2. An example of a network Steiner problem and its solution.

contain over 10,000 edges, and we cannot hope to solve a formula containing
100,000,000 variables on current machines.

3.2. Approximate Encodings. The desire to handle such large instances
led us to search for more compact MAX-SAT encodings. Ultimately we found
an encoding that is in linear in two factors, the number of edges in the original
problem instance, and a parameter k&, which controls how well the encoding ap-
prozimates the original problem instance. We say the encodings are approximate
because the solutions they yield are not guaranteed to be optimal solutions to
the original instances, except when k is very large — that is, O(2|E|). In prac-
tice, however, we have found good quality solutions, and often optimal solutions,
when k is quite small (e.g., & < 30 on problems with up to 25,000 edges).

The intuition behind our encoding is that the original problem can be broken
down into a set of tractable subproblems; a range of near-optimal solutions to
the subproblems are pre-computed; and then MAX-SAT is used to combine a
selection of solutions to the subproblems to create a global solution. For Steiner
tree problems, the subproblems are smaller Steiner trees that connect just pairs
of nodes from the original terminal set. Such two-node Steiner problems are

A GENERAL STOCHASTIC APPROACH 7

tractable, because a solution is simply the shortest path between the nodes. A
range of near-optimal solutions, i.e., the shortest path, the next shortest path,
etc., can be generated using a modified version of Dijkstra’s algorithm. This
approach actually only approximates the original problem instance, because we
do not generate all paths between pairs of nodes, but only the £ shortest paths
for some fixed k. (We discuss the choice of k below.) Pathological problem
instances exist that require very non-optimal subproblem solutions. However,
we shall see that the approach works quite well in practice.

We illustrate the encoding using the example from Fig. 2. First, we introduce
a variable for each edge of the graph. For example, the edge between nodes 1
and 2 is represented by variable e; 5. The interpretation of the variable is that if
the variable is true, then the corresponding edge is part of the Steiner tree. To
capture the cost of including this edge in the tree, we include a unit clause of the
form (—eq,2) with weight 2, the cost of the edge. This clause is soft constraint.
Note that when this edge is included in the solution, ¢.e., €1 5 is true, this clause
i1s unsatisfied, so the truth-assignment incurs a cost of 2. Similarly we have a
clause for every edge.

Second, we make a list of the terminal nodes, and then for each successive pair
of nodes in this list, we generate the k shortest paths between the nodes. (We
will consider the issue of how the nodes should be ordered in this list below.)
We associate a variable with each path. For example, if & = 2, then the two
shortest paths between terminal nodes 1 and 2 are 1-2 and 1-4-2. We name the
variables p; 2 and py 4 2.

Third, we introduce hard constraints that assert that a solution must contain
a path between each pair of terminal nodes. For example, the clause (p1 2Vp1 4.2)
is a hard constraint, and therefore assigned a high weight (greater than the sum
of all soft constraints). Hard constraints also assert that if a path appears in
a solution, then the edges it contains appear. For example, for the path 1-4-2
we introduce the clauses (p142 D €14) and (p1,42 D es2). This concludes the
encoding.

The encoding requires |E|+ k(|T| — 1) variables, where |F| is the number of
edges in the graph, |T| is the number of terminal nodes, and k is the number of
shortest paths pre-computed between each pair. The total number of clauses 1s
O(|E|+ kL(|T| — 1)), where L is the maximum number of edges in any of the
pre-computed paths.

3.3. Selecting Subproblems. If k is so large that all of the paths between
each pair of terminal nodes are included in each subproblem, then the solutions
to the encodings are sure to be optimal for the original problem instances. But
it is obviously impractical to make k so large — indeed, the MAX-SAT encoding
would be exponentially larger than the original problems, thus defeating the
entire approach. The key, then, is to devise a way of selecting the subproblems
so that it is likely that a good global solution can be assembled even when only

8 KAUTZ, SELMAN, AND JIANG

a few solutions are generated for each subproblem.
Given a set T' of terminal nodes, we have to choose |T'— 1| pairs of nodes. We
will consider three strategies for chosing pairs.

a) Random. Begin with an arbitrary linear ordering of the terminal nodes.
Choose pairs from every adjacent pair of nodes in the ordering. For
example, in Fig. 2, an ordering of < 1,3,7,6,2 > would correspond to
selecting the pairs (1,3), (3,7), (7,6), and (6, 2).

b) Greedy. Again begin with an arbitrary linear ordering of the termi-
nal nodes. Step through this list constructing pairs according to the
following algorithm:

for each terminal node i (except the last in the ordering)
find nearest terminal node j that does not appear earlier
in the ordering;
output pair (4, j);
end for;
The step of finding the nearest terminal node j to a node ¢ can be com-
puted using Dijkstra’s single-source shortest paths algorithm in O(|V]?)
time. Thus the overall time required is O(|V|?|T).

¢. Minimum Spanning Tree. Construct a matrix with the distances
between all pairs of terminal nodes. This can be done by using the
Floyd-Warshall all pairs shortest path algorithm in O(|V|?) time, or by
using Johnson’s algorithm for sparse graphs in O(|V|?log |V |+ |V]||E])
time. This defines a complete weighted graph, GG, on the pairs of terminal
nodes. Each edge weight gives the length of the shortest path between
two terminal nodes. Now, find a minimum spanning tree of G. Each
edge in the spanning tree defines a pair of nodes.

Note how the third strategy takes a more “global view” of the pair selection
process than the first two strategies. Selecting the shortest path between each
pair of nodes would give us an initial approximation of a Steiner tree connecting
the terminal nodes. The Greedy heuristic can be viewed as computing a “pretty
good” spanning tree over the terminal nodes, but it is not a true minimum
spanning tree algorithm. One would expect that the minimum spanning tree
strategy would give the best initial approximation, and the Random strategy
the worst. This is confirmed in our experiments below. By allowing more than
one path between each pair of nodes, Walksat can start looking for paths that fit
together better (note that paths can share edges), thereby reducing the overall
weight of the connecting spanning tree. The question i1s which ordering strategy
allows us to find the best global solutions.

4. Empirical Results

A good description of our benchmark problems appears in Beasley (1989) [2].
The set contains four classes (B, C, D, E) of problem instances of increasing size

A GENERAL STOCHASTIC APPROACH 9

and complexity. The instances in the B and C class are relatively small and easy
to solve. The D and E classes contain many hard benchmark instances. In order
to keep our presentation concise, we limit our discussion to the results on the D
class instances; we obtained qualitatively similar results for the E class.!

Table 1 contains our results on the D class instances, as well as those of the two
of the best specialized Steiner tree algorithms, as reported in papers by Beasley
[2] and Chopra [3]. In the table, |V| denotes the number of nodes in the graph,
|E| the number of edges, and |T'| the number of terminal nodes. The columns
labeled “Soln” give the weight of the best Steiner tree found by each method.
The solutions found by Chopra et al. are globally optimal. In the column marked
“basis/number paths”, we give the subproblem selection strategy (G for greedy;
M for minimum spanning tree) with which we obtained the best results. We also
give the number of path used between pairs of nodes.

As we have discussed above, our Walksat algorithm is inherently incomplete,
although it did find optimal solutions for many of the instances. Chopra’s algo-
rithm is complete. Beasley’s algorithm is complete in theory, but in practice is
incomplete, because it could not be be run to termination due to time and space
limitations on many of the instances. Recently Khoury and Pardalos [17] have
invented a new, complete algorithm for the Steiner problem, that also appears
to be quite robust and efficient; in future work, we plan to provide comparisons
with their method as well.

Walksat ran on a SGI Challenge with a 150 MHz MIPS R4400 processor.
(Execution times for Walksat on Sun Sparc 20 series machines with similar
clock speeds are virtually identical.) Beasley’s algorithm ran on Cray XMP,
and Chopra’s on a Vax 8700. Note that we have not attempted to adjust the
numbers for machine speed. However, it is unlikely that all of the differences in
performance described below can be attributed entirely to differences in machine
speed. The running times in the table do not include the time to pre-compute
the set of paths between successive terminal nodes. This is reasonable because in
practice one often deals with a fixed network, and wants to compute Steiner trees
for many different subsets of nodes. Given a fixed network, one can pre-compute,
using Dijkstra’s algorithm, sets of paths between every pair of nodes.

From Table 1, we can see that for problems with up to 10 terminal nodes,
Walksat always found an optimal solution more quickly than the other two ap-
proaches. For example, for D1 and D2, Walksat is about 100 times faster than
the other two in reaching the global optimum. For D6, Walksat runs about 50
times faster than Beasley and 30 times faster than Chopra.

The fact that we found the optimal solutions in these cases means two things.
First, it shows that the subproblem decomposition contains the global optimal
solution. Second, it shows that Weighted Walksat was able to synthesize this
global optimal solution; or in other words, it solved the weighted MAX-SAT

1Experimental data and code is available via ftp and via the home page of the first author.

10 KAUTZ, SELMAN, AND JIANG

Problem Parameters Beasley Chopra et al. Walksat
D |E| |T| | soln secs | soln secs | soln basis / CPU
(Cray) (Vax) num. (SGI)
paths
D1 1250 5 107 226 106 475 106 G,M /10 3
D2 10 228 252 220 283 220 GM/5 2
D3 167 | 1599 21 | 1565 2290 | 1640 M/1 1
D4 250 | 2170 11 | 1935 3529 | 2008 M/1 1
D6 2000 5 71 4065 67 2339 67 G/ 30 75
D7 10 103 18 103 99 103 GM/5 1
D8 167 | 1108 475 | 1072 6984 | 1156 M/1 1
D9 250 | 1684 243 | 1448 4629 | 1540 M/1 1
D11 5000 5 31 3290 29 1374 29 G/ 30 3
D12 10 42 48 42 305 42 GM /10 2
D13 167 520 36 500 1864 535 M/1 1
D14 250 688 443 667 3538 702 M/1 1
D16 25000 5 14 161 13 871 13 GM/ 10 75
D17 10 25 277 23 6965 23 G/ 25 1
D18 167 247 222 223 245192 251 M/1 1
D19 250 384 256 310 878 342 M/1 1

TaBLE 1. Computation Results for Beasley’s D class Steiner
Tree Problems

problem to optimality.?

On the instances with a larger number of terminal nodes, we found solutions
that were not optimal, but were often better than those found by Beasley (see D4,
D9, and D19). However, in these cases we used encodings that only had a single
path between terminal nodes, so all the work was essentially done by the terminal
ordering heuristic — that 1s, by the selection of subproblems. This is because the
MAX-SAT encodings using larger numbers of paths between terminals simply
became too large for the Walksat procedure to handle.

In Table 2, we compare the the various subproblem selection strategies on
selection of the instances.

Consider the 1-path solution column. This gives the global solution obtained
by simply combining the single best solution to each subproblem. Thus, it re-
flects the quality of the terminal ordering heuristics alone. As we expected, the
minimum spanning tree heuristic yields the best solutions, followed by the greedy
heuristic, with the random ordering far behind.

The story changes when we used Walksat to synthesis global solutions by
picking from several solutions to each subproblem. In this case, the greedy
heuristic gives the best global solutions. Sometimes the minimum spanning tree
heuristic 1s as good, but not in all cases — see D11. The random heuristic is
generally the worst. However, it 1s interesting to note the data for D17, where

?Recently Davenport [5] applied a complete branch and bound MAX-SAT algorithm to
the encodings we generated, including much of the data not discussed here. In every case he
considered, he discovered that Weighted Walksat had indeed found the optimal solution to the
MAX-SAT instance, and that in most cases the branch and bound algorithm required much
more running time.

A GENERAL STOCHASTIC APPROACH 11

Random Greedy Min. Span. Tree

1D 1 path best best | 1 path best best | 1 path best best

soln soln | num soln soln num soln soln | num

found | paths found | paths found | paths

D11 41 30 30 32 29 30 31 30 50
D12 67 44 30 42 42 1 42 42

D13 1252 — — 544 — — 535 — —

D14 1844 — — 740 — — 702 — —

D16 17 13 30 16 13 10 16 13 10

D17 33 25 30 26 23 25 26 26 50

D18 642 — — 262 — — 251 — —

D19 925 — — 359 — — 342 — —

TABLE 2. Comparing subproblem selection strategies.

random actually outperforms the minimum spanning tree heuristic.

One may be surprised to see the superiority of the simple greedy heuristic over
the minimum spanning heuristic, when local search is used to combine multiple
local solutions. The intuitive explanation for this that the minimum spanning
tree decomposition corresponds to a deep local minimum in the global solution
space. It is difficult for local search to escape from this local minimum. On the
other hand, the greedy decomposition allows more room for improvement.

This is an interesting lesson for local search methods: Trying to generate very
good initial solutions may actually hurt the final result! The difference between
greedy and random shows that some degree of preprocessing can be beneficial,
if 1t 18 not taken too far.

In summary, our results show that Walksat is competitive with the best spe-
cialized methods, and is often considerably faster. On problems with large num-
bers of terminal nodes our encodings become too large to handle effectively.
However, it is important to note the problems we do handle are still very large,
based on graphs containing up to 25,000 nodes (including non-terminal nodes).
Real world applications of Steiner trees often share this characteristic (for ex-
ample, in setting up a real-time connection between a small group of computers
among a network of thousands of machines).

As noted above, we used Steiner tree problems to evaluate solving MAX-SAT
encodings with Weighted Walksat because it’s a well-defined problem, and there
is well-known collection of hard benchmark instances. Nonetheless, given the fact
that Walksat is a completely general algorithm, as opposed to the specialized
algorithms of Beasley and Chopra, it performs surprisingly well on these hard
benchmark problems. Given its success in this domain, we believe that this i1s a
promising approach for tackling other other problems in Al and OR, that involve
both hard and soft constraints combined with numeric information.

5. Discussion and Conclusions

In this paper, we have shown how to adapt Walksat, a variant of the GSAT
satisfiability testing algorithm, to handle weighted MAX-SAT problems. One of

12 KAUTZ, SELMAN, AND JIANG

the problems in encoding optimization problems as propositional satisfiability
problems is the difficulty of representing both hard and soft constraints. In a
weighted MAX-SAT encoding, hard constraints simply receive a high weight (for
example, larger than the sum of the soft constraints). Any solution where the
sum of the weights of the violated clauses is less than that of any hard constraint
is guaranteed to be feasible (i.e., satisfies all hard constraints).

Another problem with translating optimization problems into satisfiability
problems is handling numeric information. Such numeric information is a cru-
cial part in many Al applications, for example in representing utility functions,
preference criteria, and probabilities. Even though in principle a polynomial
transformation often exists, SAT encodings of realistic problem instances may
become too large to solve. In our weighted MAX-SAT encoding, much of the
numeric information in the problem instances can be captured effectively in the
clause weights.

In order to test this approach, we considered a set of hard benchmark prob-
lems, and compared our results to specialized state-of-the-art algorithms. We
chose the Steiner tree problem because of its long history and the public avail-
ability of a well-established set of benchmark instances. Our results, summarized
in Table 1 show that our weighted MAX-SAT strategy is in fact competitive with
and sometimes superior to the specialized algorithms. It should be stressed that
our approach is general, in the sense that our Walksat algorithm incorporates
no heuristics specific to Steiner tree problems.

Our experiments also provided some general insights into the issue of problem
decomposition. We considered three different methods for a breaking a Steiner
tree problem into local subproblems. While a completely random decomposition
was not effective, we also found that a too sophisticated approach can create deep
local minima, that are hard to improve upon. The best approach appears to be
the middle ground: The best global solutions can be found by combining a range
of solutions to subproblems created by a somewhat sub-optimal decomposition.

As mentioned above, the search performed by Weighted Walksat proceeds
through truth-assignments that correspond to both feasible and infeasible solu-
tions to the original optimization problem. This i1s an inherent aspect of our
approach, simply because feasible solutions of the original problem may be sev-
eral variable “flips” apart. Interestingly, we found that Weighted Walksat does
not get stuck in infeasible states. Note that in constructing specialized local
search algorithms for particular problem domains, one generally makes larger
changes and only moves between feasible solutions. Our results suggest that, by
contrast, it is not always necessary to restrict search to the feasible region of a
problem space.

Part of the success of the approach is due to the particular MAX-SAT encod-
ing we developed for the problems. In particular, our encoding is significantly
shorter than a more direct one. The general approach we used, which is based
on combining solutions from tractable subproblems, could also be useful for en-

A GENERAL STOCHASTIC APPROACH 13

coding other kinds of optimization problems. In particular, Crawford and Baker
[4] have observed that a direct SAT encoding of job-shop scheduling problems
leads to formulas that are very large and hard to solve. It would be interesting to
see if our piecewise encoding technique is applicable in the job-shop scheduling
domain.

In conclusion, we have demonstrated that the use of efficient MAX-SAT en-
codings with a domain-independent stochastic local search algorithm is a promis-
ing approach for solving hard problems in Al that involve both hard and soft
constraints and numeric information.

REFERENCES

1. H.M. Adorf and M.D. Johnston, A discrete stochastic neural network algorithm for con-
straint satisfaction problems. Proceedings of the International Joint Conference on Neural
Networks, San Diego, CA, 1990.

2. J. Beasley, An SST-based algorithm for the Steiner Tree problems in graphs, Networks, 19
(1989), 1-16.

3. S. Chopra, E. Gorres, and M. Rao, Solving the Steiner Tree problem on a graph using
branch and cut, ORSA Journal on Computing, 4(3) (1982), 3-18.

4. J.M. Crawford and A.B. Baker, Ezperimental results on the application of satisfiability
algorithms to scheduling problems, Proceedings AAAI-94, Seattle, WA, 1994, 1092-1097.

5. A. Davenport, Panel on Systematic versus Stochastic Methods, First International Work-
shop on Al and OR, Timberline, OR, 1995.

6. M. Davis, and H. Putnam A computing procedure for quantification theory, J. Assoc.
Comput. Mach., 7 (1960), 201-215.

7. K. Dowsland, Hill-climbing simulated annealing and the Steiner problem in graphs, Fng.
Opt., 17 (1991), 91-107.

8. Organizational meeting for AI/OR initiative, Oct. 1994.

9. J. Gu, Efficient local search for wvery large-scale satisfiability problems, Sigart Bulletin,
3(1) (1992), 8-12.

10. J. Gu, Efficient local search for very large-scale satisfiability problems, IEEE Trans. on
Systems, Man, and Cybernetics, 23(4) (1993), 1108-1129.

11. J. Gu and R. Puri, Asynchronous Circuit Synthesis by Boolean Satisfiability, IEEE Trans-
actions on CAD of Integrated Circuits and Systems, 14(8) (1995), 961-973.

12. P. Hansen, and B. Jaumard, Algorithms for the mazimum satisfiability problem, Comput-
ing, 44 (1990), 279-303.

13. F.K. Hwang, D.S. Richards, P. Winter, The Steiner Tree Problem, North-Holland (Elsevier
Science Publishers), Amsterdam, 1992.

14. A. Kapsalis, V. Rayward-Smith, and G. Smith, G. Solving the graphical Steiner tree prob-
lem using genetic algorithms, J. Oper. Res. Soc., 44(4) (1993), 397-406.

15. H. Kautz, and B. Selman, Planning as satisfiability, Proceedings ECAI-92,, Vienna, Aus-
tria, 1992.

16. B.N. Khoury, P.M. Pardalos, and D.Z. Du, A test problem generator for the Steiner prob-
lem in graphs, ACM Transactions on Mathematical Software, 19(4) (1993), 509-522.

17. B.N. Khoury, B.N. and P.M. Pardalos, A heuristic for the Steiner Problem in Graphs,
Computational Optimization and Applications, 6 (1995), 5-14.

18. J. Lever and B. Richards, A CLP approach to flight scheduling problems, Proceedings of
the International Symposium on Methodologies for Intelligent Systems, 1994.

19. S. Minton, M.D. Johnston, A.B. Philips, and P. Laird, Solving large-scale constraint sat-
isfaction an scheduling problems using a heuristic repair method, Proceedings AAAI-90,
Boston, MA, 17-24, 1990.

20. C.H. Papadimitriou, and K. Steiglitz, Combinatorial Optimization. Prentice-Hall, Engle-
wood Cliffs, NJ, 1992.

14

21.

22.

23.

24.

25.

26.

27.

KAUTZ, SELMAN, AND JIANG

R. Puri, and J. Gu, A Modular Partitioning Approach for Asynchronous Circuit Synthesis,
Proc. 28th IEEE/ACM Design Automation Conference, San Diego, 63-69, 1994.

B. Selman, H.J. Levesque, and D.G. Mitchell, A new method for solving hard satisfiability
problems, Proceedings AAAI-92, San Jose, CA, 440-446, 1992.

B. Selman and H. Kautz, Domain-independent extensions to GSAT: solving large struc-
tured satisfiability problems, Proceedings IJCAI-93, Chambéry, France, 290-295, 1993.

B. Selman and H. Kautz, An empirical study of greedy local search for satisfiability testing,
Proceedings AAAI-93, Washington, DC, 46-51, 1993.

B. Selman, H. Kautz, and B. Cohen, Noise strategies for local search, Proceedings AAATI-
94, Seattle, WA, 1994.

B. Selman, H. Kautz, and B. Cohen, Local Search Strategies for Satisfiability Testing. In
Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, D. S.
Johnson and M. A. Trick (eds.), DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 26, American Mathematical Society, 1996.

M. Trick and D.S. Johnson (eds.), Working notes of the DIMACS Algorithm Implemen-
tation Challenge. Rutgers University, New Brunswick, NJ, 1993.

AT&T BELL LABORATORIES, 600 MOUNTAIN AVENUE, MURRAY HiLL, NJ 07974
E-mail address: kautz@research.att.com

AT&T BELL LABORATORIES, 600 MOUNTAIN AVENUE, MURRAY HiLL, NJ 07974
E-mail address: selman@research.att.com

AT&T BELL LABORATORIES, 600 MOUNTAIN AVENUE, MURRAY HiLL, NJ 07974
Current address: Pacific Telesis Tecnologies Laboratories, 5000 Executive Pky, 333, San

Ramon, CA 94583

E-mail address: jjiang@ttl.pactel.com

