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Temporal reasoning problems arise in many areas of Al, including plan-
ning, reasoning about physical systems, discourse analysis, and analysis of time-
dependent data. Work in temporal reasoning can be classified in three general
categories: algebraic systems; temporal logics; and logics of action. Although
useful for many practical tasks, there is little evidence that any of these ap-
proaches accurately model human cognition about time. Less formal but more
psychologically grounded approaches are discussed in some of the work in AT on
plan recognition (Schmidt et al. 1978), work in linguistics on SEMANTICS and
TENSE (Jackendoff 1983), and the vast psychological literature on MEMORY.

Algebraic systems concentrate on the relationships between time points
and/or time intervals, which are represented by named variables. A set of
either quantitative or qualitative equations constrain the values that could be
assigned to the temporal variables. These equations could take the form a con-
straint satisfaction problem (CSP), a set of linear equations, or even a set of
assertions in a restricted subset of first-order logic. The goal of the reasoning
problem may be to determine consistency, to find a minimal labeling of the CSP,
or to find consistent bindings for all the variables over some set of mathematical
objects. In all of the algebraic systems described below, time itself 1s modeled as
a continuous linear structure, although there has also been some investigation
of discrete linear-time models (Dechter et al. 1991) and branching-time models
(Ladkin et al. 1990).

The qualitative temporal algebra, originally devised by Allen (1983) and
formalized as an algebra by Ladkin and Maddux (1994), takes time intervals
to be primitive. There are 13 primitive possible relationships between a pair of
intervals: for example, before (j), meets (m) (the end of the first corresponds
to the beginning of the second), overlaps (o), etc. These primitive relationships
can be combined to form 23 complex relationships. For example, the constraint
I1 (< m >)I; means that I, is either before, meets, or is after Iy. Allen showed
how a set of such constraints could be represented by a CSP, and how path-
consistency could be used as a incomplete algorithm for computing a minimal set
of constraints. The general problem of determining consistency is NP-complete
(Vilain et al. 1989).

Quantitative algebras allow one to reason about durations of intervals and
other metric information. The simple temporal constraint problems (STCSP) of
Dechter et al. (1991) are a restricted form of linear equations. A time interval [
is identified with the pair of its starting point I; and ending point I,. Difference
equations allow one to place constraints on the relative ordering of points. For
example, I, — J; € [—00, 0] means that I is before J, and I, — I, € [3,5] means
that the duration of I is between 3 and 5 units. Because they are just linear



programs, STCSP’s can be solved in polynomial time. General TCSP’s allow
the right-hand side of an equation to be a union of intervals, rather than a
single interval, and solving them is NP-complete. However, TCSP’s still cannot
express certain complex constraints, such as that two intervals are disjoint but
unordered (I(<>)J), which would involve four points (I. < Js V J. < I5).

Many researchers have explored tractable subsets of these algebras. A subset
is specified by the form of the constraints allowed in the statement of the problem
instance. Vilain et al. (1989) noted that the subset of Allen’s algebra that can
be exactly translated into equalities and inequalities over start and end points
is polynomial. Nebel and Biirckert (1995) generalized this to relations that
can be translated into ”ord-Horn constraints”, the largest tractable subclass
that includes all the primitive relations. Koubarakis (1996) and Jonsson and
Béackstrom (1996) further showed that tractablity still holds if such constraints
contain linear combinations of variables. However, none of the these classes can
express interval disjointed (<>), and in fact any tractable class that includes
disjointedness cannot contain all of the primitive relations. Tractable classes
including interval disjointedness include some of the ”chordal graph” classes of
Golumbic and Shamir (1993) and two of the algebras described in Drakengren
and Jonsson (1996).

Temporal algebras say nothing about how time intervals or points are associ-
ated with events or propositions. In practice, some external mechanism (such as
a planning system) generates interval and point tokens that are used to times-
tamp or index statements in a knowledge base. This external mechanism then
computes some of the constraints between the temporal tokens that must hold
according to the semantics of the knowledge base (for example, that a token
associated with a proposition is disjoint from one associated with the negation
of that proposition), and then asks the algebraic reasoning engine to compute
consequences of those assertions.

By contrast, temporal logics (van Benthem 1983, Thayse 1989) directly rep-
resent the temporal relationships between propositions, and do away with any
explicit tokens to represent time points or intervals. These are modal logics,
which extend propositional or first-order logic with temporal operators. For
example, propositional linear time temporal logic models time as a discrete se-
quence of states, and adds the modal operators next (), always O, eventually
O, and until U. For example, the formula Op O ()¢ means that whenever p
holds, then ¢ must hold in the next state.

The most successful applications of temporal logics have been in the area
of program verification. One approach to this task exploits the fact that any
formulain linear temporal logic can be converted into a a kind of finite automata
called a Buchi automata. The input language to the automata is sequences
of states. The automata accepts exactly those sequences that are models of
the corresponding temporal logic formula. In this application, the program
to be verified is written as a finite automata, and properties one wishes to
verify are written as formulas in temporal logic. The negation of the temporal



logic formula is then converted to a Biichi automata, which is then intersected
with the program automata. It is then easy to check whether the combined
automata accepts any inputs; if it does not, then the program satisfies the
desired properties. The worst-case complexity of this procedure is high, since
the automata may be exponentially larger than the formula.

Although temporal logics are frequently used in the verification and temporal
database communities, they are just beginning to find widespread use in Al,
particularly in planning. Applications include the specification and verification
of real-time, reactive planners (Rosenschein and Kaebling 1995, Williams and
Nayak 1996), and specification of temporal-extended goals and search control
rules (Bacchus and Kabanza 1996).

Finally, temporal reasoning i1s implicitly performed by all systems used to
represent and reason about action and change, such as the situation calculus
(McCarthy and Hayes 1969) or dynamic logic (Harel 1979). The situation cal-
culus 1s simply a style of using first-order logic, in which the final argument to
a predicate represents the state in which it holds. Actions are functions from
state to state. Thus, the semantics for the situation calculus is based on a dis-
crete, forward-branching model of time. The general approach can also be used
to model continuous branching time (Reiter 1996). Successful planning systems
have also been built (Blum and Furst 1995, Kautz and Selman 1996) that use
a discrete linear model of time, where states are simply natural numbers used
to index time-varying predicates.
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