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ABSTRACT

Precise home location detection has been actively studied
in the past few years. It is indispensable in the research-
ing fields such as personalized marketing and disease prop-
agation. Since the last few decades, the rapid growth of
geotagged multimedia database from online social network-
s provides a valuable opportunity to predict people’s home
location from temporal, spatial and visual cues. Among the
massive amount of social media data, one important type of
data is the geotagged web images from image-sharing web-
sites. In this paper, we developed a reliable photo classifi-
er based on the Convolutional Neutral Networks to classify
photos as either home or non-home. We then proposed a
novel approach to home location prediction by fusing togeth-
er the visual content of web images and the spatiotemporal
features of people’s mobility pattern. Using a linear SVM
classifier, we showed that the robust fusion of visual and
temporal feature achieves significant accuracy improvement
over each of the features alone.

Categories and Subject Descriptors

1.5.4. [Pattern Recognition: Applications.]: Miscella-
neous, Data Mining

General Terms

Algorithms, Experimentation
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home location, mobility pattern, home picture recognition

1. INTRODUCTION

Precise home location is increasingly important in vari-
ous researching fields. Home location information is indis-
pensable in the study of geographic mobility since home is
such a crucial node in people’s activity trace. In urban
planning, knowing location-based behavior can help build
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Figure 1: Visualization of a Flickr user’s activity
trace in New York City. The four pins represent the
top 4 most frequently-visited locations, with home
colored as blue and non-home locations colored as
pink. Each pin is shown with a photo taken at that
location.

more personalized design of urban environment, including
the transportation networks and pollution management. Be-
sides these, other important researching fields such as disease
propagation and outbreak modeling all require researchers
knowing where people live.

Existing methods which can precisely detect home loca-
tion are based on surveys, GPS data or cellular telephone
records [11, 7, 4]. However, the process of obtaining such
continuous data are often time and labor consuming. Also,
due to the limitation of the dataset, GPS data and surveys
are often not adaptable for follow-up studies. For example,
although the American Time Use Survey(ATUS) provides
comprehensive records of ATUS respondents’ activity traces
and demographic information [1], these information are not
adaptable for follow-up investigations since we cannot com-
bine the user information with any other data sources. In
contrast, the availability of vast amounts of geotagged da-
ta available on social networks enables a low-cost and more
flexible way to detect home location. Previously, researcher-
s have built models to infer the home location of a person
based on his or her online activities such as tweeting [3] or
check-ins [14]. One of the main existing issues is that these
methods either suffer from coarse granularity, at city [13] or
state level, or result in a low accuracy, at around 50% [3].



In this paper, we addressed this home prediction problem
by analyzing photos mined from Flickr. As a popular image-
hosting online community, Flickr has more than 3.5 million
new images uploaded per day [8]. We apply machine learn-
ing techniques to geotagged Flickr images and automatically
predict a Flickr user’s home location within a 100-meter by
100-meter square on the basis of his or her posted images.

The result showed that the visual content of images can
provide valuable clues complementary to the metadata cap-
tured with photos and can be used to improve home lo-
cation prediction performance. We believe this is the first
time home location is predicted at such a fine-grained scale
by mining informative visual features from images collected
from social networks.

The contributions made in this study are thus twofold.
First, we developed a reliable classifier by the Convolution-
al Neutral Networks [10], which can recognize the photo-
taking scene as either “home” or “non-home” of real-life pho-
tos. Second, we fused the visual content of web images with
the spatiotemporal features of a user’s online photo-sharing
activity to construct a robust multi-source home predictor,
where each of the two features contributes to the improve-
ment in home location. The precision to which we can locate
a person allows various location-related research in greater
depth and with higher accuracy.

2. RELATED WORK

Locations such as home, working places and restaurants
are important in understanding human mobility pattern and
automatically predicting human’s future activity. In [11],
Krumm et al. developed a machine learning algorithm to
classify locations into different categories based on ATUS,
a diary survey containing detailed record on the amount of
time and the location Americans spend doing various ac-
tivities[1]. Krumm et al. used demographic and temporal
features of people’s activity to infer a place’s label and the
result showed that home location can be predicted with a
high accuracy at 92%.

As people spend more time online, social networks enable
an alternative approach to semantically label geographic lo-
cations. Cheng et al.[3] used a Twitter user’s tweet content
to predict his or her home city based on the idea that the fre-
quency and dispersion of a specific word in tweets should be
different across cities due to regional differences. By purely
analyzing the content of a user’s tweet, Cheng managed to
place a user within 100 miles of his or her actual location
with 51% accuracy.

On the other hand, our work is also closely related to
the study of semantic and geographic annotation of web im-
ages[12, 19, 6, 2]. As photographic equipments with GPS
capability become more prevalent in the market, the mas-
sive amount of web images serve as an alternative data type
to predict home location. In the last few years, many com-
putational approaches have been used to recognize objects
of certain types (faces, water, cars, buildings) and the scene
(park, residential area) in a photo. James et al. [6] esti-
mated the geographic location of an image based solely on
its image content, including color, texture and line features.
Based on a series of geotagged photos [19], Yuan et al. de-
tected the associated event by fusing visual content and the
spatiotemporal traces of geographic coordinates. The re-
sult substantiated that the visual content and GPS traces
are complementary to each other, and a proper fusion can
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improve the overall performance of event recognition. Sim-
ilarly, a photo taken by a personal camera and a satellite
image are combined to help improve picture-taking environ-
ment recognition in [12].

3. DATA

In this section, we describe how we obtained the ground
truth (users’ actual home locations) and built the dataset
used to train and evaluate the machine learning model.

Instead of using user profiles, we used the geotags of a
user’s uploaded photos to locate his or her actual home. We
selected a set of tags containing “in home”, “in kitchen”, “in
bed”, “family time” and their variants, and refer to them as
home-related tags. Note that we have manually checked the
photos tagged with these home-related words to make sure
that most of the returned photos are highly related with
home. Using the Flickr Search API, we collected all photos
with home-related tags in the Bay Area and the greater New
York City Area. We manually filtered out the photos that
are not taken at home and then clustered these photos by
users. Altogether, we have mined 2167 photos taken at home
by 192 unique users.

For each user ¢, we recorded a sequence t; = (ti1, ti2, ...),
where ¢;; represents the time point of user i’s jth photo tak-
en at home. In consideration of home moving, we queried
Flickr for all public photos posted by these 192 users in a
one-year time length, which is obtained by adding and sub-
tracting half-a-year from the median time point in sequence
t;. Each photo is associated with a geographic tag accurate
to the street-level, which is represented by a pair of longi-
tude and latitude coordinates. Altogether, we have collected
47793 photos taken by 192 users in a one-year time length.
Then we divided the Bay Area and the greater NYC Area
into 100-meter by 100-meter squares and represent each ge-
ographic location as the central point of the square it falls
into. Therefore, if we can correctly predict the square, the
distance error will be no larger than 70.7 meters.

4. METHODS

This section presents the methods we used to quantify a
Flickr user’s online photo-sharing activity and predict his
or her home location. For each user, an uploaded photo
with geographic tag is referred to as one upload event and
is considered as a visit to that geographic location. In the
Flickr dataset, there exist some locations which are visited
by more than one user, but a location can only be the home
of one user. Therefore, in order to differentiate a location by
users, we use a tuple (7, ) as an ID to represent a location j
being visited by user i¢. Altogether, we have recorded 8675
unique (user, location) IDs by 192 users.

4.1 Temporal Features

According to previous work [14], home is supposed to be
one of the most frequently visited places in a user’s mobile
trace. Therefore, we started by using the most frequently
visited location as a preliminary prediction of a Flickr user’s
home location. We consider this model as the baseline and
refer to it as the most-visited method. Built on this base-
line, we then mine a large collection of temporal features
for each unique (user, location) ID. As validated in previous
work [18, 5], human mobile behavior displays strong tem-
poral cyclic patterns and this temporal regularity can help
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Figure 2: Upload rate distribution at home on an
hourly basis. Y-axis represents the percentage of
the # of “home photo” uploaded during a specific
hour.
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Figure 3: Comparison of the # of uploads at

home/non-home locations on a monthly basis. Y-
axis represents the percentage of the # of “home
photo”/“non-home photo” uploaded during a specif-
ic month.

improve the performance of location prediction. Finally, we
explore the feasibility to automatically assign a semantic la-
bel to a photo. We test the effectiveness of photo feature
by adding visual content feature to our previous collection
of temporal features and compare the performance of home
prediction.

Similar to previous work [18, 5], the Flickr data set shows
strong evidence of yearly patterns (months across a year)
and daily patterns (hours across a day) of a Flickr user’s
online photo-sharing activity. In Fig. 2, we see that the
number of photos uploaded at home roughly follows an as-
cending trends from 3 am to midnight. The few hours before
midnight are the most active time slot at home while the dis-
tribution decays rapidly after midnight. It reveals that if a
user is still active after midnight then he or she is more likely
to be somewhere else such as night clubs or parties rather
than at home. Fig. 3 demonstrates a significant difference
between the number of uploads at home and non-home loca-
tions on a monthly basis. December stands out from all the
months in the sense that the number of uploads at home in
December is significantly higher than that in other months.
Numerically, among all photos uploaded at home, the num-
ber of photos uploaded in December accounts for nearly 30%
of the total. Note that this phenomena is specific for home
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Figure 4: Comparison of the # of active months
at home/non-home locations during a year. Y-axis
represents the percentage of home/non-home that
are active for a specific # of months. The plot on
top right corner is a magnification of the part in the
gray dotted area.

since the number of uploads at non-home locations is almost
evenly distributed over the 12 months. This distribution is
probably because people spend more time at home with fam-
ily during the Christmas and share plenty of photos during
that time.

Another interesting observation is that the number of ac-
tive months (a month is referred to as an “active month” if
the user uploads at least one image during that month) at
home are universally larger than that at non-home location-
s, as home photos can be taken at any time of the week, and
any month of the year. As shown in Fig. 4, more than 50%
of the home locations are active for at least three months
while less than 10% of the non-home locations are active for
more than 2 months. This distribution reveals that although
people may upload a massive amount of photos during cer-
tain events such as traveling, such events would only happen
once or twice during a year.

Clearly, there exists a high correlation between time and
the number of uploads in the Flickr dataset. Therefore, we
extract a large collection of temporal features to represent
each unique (user, location) ID. Since the distribution of user
uploads are highly skewed (75% of the photos are uploaded
by 20% of the users), we use the upload rate instead of the
absolute number of uploads. For example, January upload
rate is given by:

## of uploads in January by user ¢ at location j
total # of uploads by user &

(1)

Altogether, for each (user, location) ID, we extracted 40
temporal features, including monthly upload rate, hourly
upload rate, weekday upload rate, weekends upload rate, #
of active hours out of a day and # of active months out of
a year.

4.2 Visual Features

Different from tags and descriptions of online photos, which
are usually not available or informative enough, visual con-
tent is mandatory for each photo. As an inherent feature,
visual content provides us fundamental insight of where a
photo was taken. For example, a photo of family party is
highly probable to be taken at home. Therefore, to take
advantage of the rich information hidden in photos’ visu-
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Figure 5: Examples of real-life and sun database photos classified as “kitchen”, “living room” and “bedroom”

by using HOG 2x2 features.

al content, we trained a classifier to distinguish “home-like”
photos from the others.

Scenes recognition approaches can be employed to extrac-
t the visual content of pictures. In [17], HOG2x2 features
were used to classify photos into 397 categories (e.g. liv-
ing room, kitchen) and it achieved a higher accuracy than
other single feature based methods. To distinguish “home-
like” photos from the others, we extracted a 300-dimensional
HOG feature vector from each photo collected from Flick-
r. A well-trained SVM model was employed to classify the
photos as “home” or “non-home”. Although the HOG feature
works well on “clean photos” in which elements are obvious
and well constructed, the presence of real-life photos make it
extremely challenging for classification. In Fig. 5, we show
the classification result of HOG2x2+SVM. The classifica-
tion produces desirable results on the Sun database, but it
performed poorly when we applied it on real-life photos.

Inspired by some recent successes [15], we chose instead to
employ a deep network to reliably assign semantic labels to
a photo. For our purpose, each photo is classified as either
a “home photo” or a “non-home photo”. For each (user,
location) ID, we define “home photo” rate as:

# of home photos uploaded at location j by user ¢
total # of home photos uploaded by user @

(2)

and use it as the visual content feature. As described in [10],
we extract a 4096-dimensional feature vector for each photo
by using the Caffe [9] implementation of the Convolutional
Neutral Networks. We pre-trained the CNN on an image
dataset with manual labels and fine-tuned the network by
iteratively feeding back false positive and false negative im-
ages to the training set.

With the ground truth and the features mentioned above,
we trained an SVM-based metaclassifier using the Weka
toolkit [16] over the set of (user, location) IDs. Three d-
ifferent combinations of features: 1)temporal feature alone,
2)visual content feature alone, and 3)temporal+visual con-
tent feature, are examined and compared to the most-visited
baseline method. In our experiment, two-fold cross-validation
is used to test the robustness of our methods.

S. EXPERIMENTS

In this section, we first present the result of home photo
classification by CNN. The deep network is tested on all

47793 images scrawled from Flickr. Since it is impossible
to label the whole dataset, we manually check the photo
classification result to verify that the overall performance is
reliable. We then evaluate the effectiveness of the proposed
fusion of temporal and visual content features in predicting
home location on the Flickr data. Prediction accuracy is
used as the performance measure and is defined as:

# of correctly predicted users
7 of total users

3)

The second metric we use is the distance error. It represents
the granularity level of home prediction and is defined as
the distance from the geographic coordinate of the predicted
home to that of the actual home. We compare the prediction
accuracy of all four methods mentioned above with different
distance error tolerance.

A few representative examples of photos are presented in
Fig. 6 to illustrate the performance of photo classification
by CNN. Each photo is associated with an estimated score,
which can be considered as the probability of being a “home
photo”. The “home photo” examples show that the pho-
to classifier can accurately identify certain home-related ob-
jects such as sofas, tables and stoves (photo #2, #5 and #7).
However, some confusing scenes might be falsely classified
as at home due to its similar structure or layout to a home.
For example, the court (photo #6) and a discarded TV on
the street (photo #4) are misclassified as at home. Over-
all, the main confusion comes from home-related objects or
home-like structures, which are difficult to differentiate by a
computational approach. The “non-home photo” examples
reveal that the photo classifier can accurately identify out-
door photos even for a portrait-oriented photo. Comparing
photo #3 with photo #11, we see that the classifier can cor-
rectly distinguish between home and non-home as long as
the background covers roughly half of the photo.

In Fig. 7, we show the prediction accuracy of four meth-
ods with increasing distance error tolerance. Clearly, our fu-
sion predictor outperforms any other baseline methods with
evident increase in prediction accuracy at every resolution
level, from 70 meters to 1 km. Numerically, for the 70-meter
distance tolerance, the relative improvement for the fusion
predictor is 6% compared to photo feature alone, 12% com-
pared to temporal feature alone and 16% compared to the
baseline. With distance error tolerance equal to 1 km, the
fusion predictor achieves a high accuracy at 79%. To put
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Figure 6: Examples of photos classified by the trained deep networks as (a) “home photo” and (b) “non-home
photo”. Photos marked in red boxes are misclassified.
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Figure 7: The performance of the baseline and the
fusion home predictors. The plot shows the predic-
tion accuracy with increasing distance error toler-
ance(70 meters to 1000 meters).

this in context, the New York City covers a land area of 790
km? and the San Francisco city covers 121 km?.

To further illustrate the reliable prediction performance
of the fusion home predictor, Fig. 8 shows two representa-
tive user examples, where example (a) is an incorrect home
prediction of a user from the greater New York Area and
example (b) is a correct home prediction of a user from the
Bay Area. In example (a), we see that both photo #1 and
#2 are taken indoors. However, human eyes can tell from
the light screen and the empty room that photo #2 is much
more likely to be taken at a film studio rather than at home,
while the computational approach cannot identify such sub-
tle details. Also, we noticed that user (a) took a fair amount
of various portrait photos at location #2, which further im-
plies that location #2 is his or her working place. Due to
these reasons, the fusion home predictor reasonably assigned
a high probability of being home to location #2.

The positive performance of fusion predictor indicates that
the visual and the temporal feature provides complementary
information to each other. For example, restaurant is a type
of location where temporal feature can help the visual con-
tent. A photo of someone eating at restaurant is likely to be
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Figure 8: Two representative user examples showing
the performance of home predictor. For each user,
the three pins represent the top 3 most frequently-
visited locations, with home colored as blue and
non-home locations colored as pink. The location
marked in red box is predicted as home.

classified as eating at home, but the time and the frequency
people dining out is different from that people stay at home.
Thus, the unique temporal features can help the classifier
distinguish between a restaurant and someone’s home. On
the other hand, offices is a typical example where visual fea-
ture can help the temporal feature. Since people spend a
lot of time at work, sometimes even during the night, it is
possible for a classifier to mistake an office with home by
using temporal feature alone. However, based on the visual
content, the photo classifier can filter out offices to a certain
extent.

In addition, the home classifier with photo feature alone
outperforms the classifier with temporal feature for all dis-
tance error tolerances. It implies that the visual feature
offers more reliable and definite clue to home location pre-
diction.

6. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel multi-source approach
to predicting Flickr users’ homes within 70 meters with an
accuracy of 72%. To achieve this, we extract various features



from a user’s geotagged photos posted online. We employ
a deep learning engine to reliably label photos as “home” or
“non-home” to explore the visual content of real-life photo-
s. By manually checking the results, we are convinced that
our photo classifier based on CNN performs at a satisfacto-
ry precision in distinguishing real-life photos (e.g. Fig. 6),
compared with single-feature based scene recognition clas-
sifier (e.g. Fig. 5). In addition to the visual content, we
also take advantage of temporal and spatial features of one’s
mobile trace as indicated by the photo geotags, such as the
visit rate of a location and the temporal regularity of a us-
er’'s movement. Facilitated by the complementary effect of
these features, our predictor achieves a promising overall
performance. Evaluated on the ground truth, our method
performs better than any other baseline methods at every
resolution level. In particular, with distance error tolerance
equal to 1 km, the fusion predictor achieves a high accuracy
at 79%.

In the future, we will extend our method to detect other
important places such as schools, working places and vaca-
tion spots. It is also interesting to use our method to study
people’s mobility patterns, life styles, and so on. We can
also improve our home detection method by adding richer
spatio-temporal features such as the distance between the
locations visited by people.
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