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Image Annotation Within the Context
of Personal Photo Collections Using
Hierarchical Event and Scene Models
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Abstract—Most image annotation systems consider a single
photo at a time and label photos individually. In this work, we
focus on collections of personal photos and exploit the contextual
information naturally implied by the associated GPS and time
metadata. First, we employ a constrained clustering method to
partition a photo collection into event-based subcollections, con-
sidering that the GPS records may be partly missing (a practical
issue). We then use conditional random field (CRF) models to
exploit the correlation between photos based on 1) time-location
constraints and 2) the relationship between collection-level annota-
tion (i.e., events) and image-level annotation (i.e., scenes). With the
introduction of such a multilevel annotation hierarchy, our system
addresses the problem of annotating consumer photo collections
that requires a more hierarchical description of the customers’
activities than do the simpler image annotation tasks. The efficacy
of the proposed system is validated by extensive evaluation using
a sizable geotagged personal photo collection database, which
consists of over 100 photo collections and is manually labeled for
12 events and 12 scenes to create ground truth.

Index Terms—Consumer photo collections, CRF, GPS, scene and
event annotation.

I. INTRODUCTION

I N recent years, the flourishing of digital photos has pre-
sented a grand challenge to both computer vision and mul-

timedia research communities: can a computer system produce
satisfactory annotations automatically for personal photos? Fur-
thermore, annotation of personal photos requires a higher level
of descriptive annotation of people’s activities. This is beyond
the scope and capability of classic image retrieval systems [38],
[30], [43], [37]: most of these systems were designed for sim-
pler data such as the popular Corel image database and typically
only provide simple image semantics (such as sunset, mountain,
and lake), while the photos taken by personal cameras are much
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more complex and involve different people and various activi-
ties (such as beach time, birthday parties, wedding, and gradu-
ation).

To answer the question “what happened in the photo col-
lection,” we adopt the concept of events to describe the high
level semantics applied to the entire collection. Although of high
value to consumers, it is difficult to detect general events from
a single image, due to the limitation in the content cues observ-
able from a single image and the ambiguity in inferring high
level semantics. In this scenario, an event label is selected to an-
notate a group of photos that form the event. In addition to the
event labels, we are also interested in the environment where a
photo was taken, e.g., was it indoors, in the city, or on the beach?
Such information will be useful for organizing personal photos,
and helpful for searching similarly themed photos from different
users. To this end, we employ scene labels for each photo, which
will not only make our annotation more descriptive but also help
the customers organize and search photos more efficiently.

Although the goal of precise and detailed annotating is ag-
gressive, we argue that it is possible to obtain descriptive anno-
tation of events and scenes for consumer photo collections. One
distinct characteristic of personal photos is that they are orga-
nized, or more accurately, stored in separate folders, in which
the photos may be related to one another in some way. Another
characteristic of consumer photos lies in the meta data recorded
in the digital photo files. Such meta data includes the date and
time when the photo is taken, and sometimes even the GPS lo-
cation of the photo, all of which can be very useful to model
the relationships between photos. While these two characteris-
tics are largely neglected and unexploited in previous research,
this paper will build a novel model which makes use of these
characteristics together with the visual features and is able to
effectively annotate the entire collection of related images in-
stead of isolated images.

II. RELATED WORK

Image retrieval has attracted much research interest since the
late 1990s, with the goal to search in large databases for im-
ages similar to the query. In a retrieval process, the system as-
signs a score to every image in the database which indicates the
similarity to the query image [38], [30], [37]. Such a similarity
score facilitates the tasks of ranking and searching, but is lim-
ited for describing the content of images. In recent years, there
has been a paradigm shift from query by visual similarity to se-
mantic similarity, which would request more specific concept
detection and annotation. A few recent studies involved image
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Fig. 1. Hierarchical annotation of photo collections.

annotation with multiple labels [5], [14], but nevertheless were
limited to annotating individual photos as opposed to photo col-
lections. As a result, these annotation systems typically focus
on concepts that are related to objects and scenes, and rarely ad-
dress what event an image corresponds to.

To understand better the image semantics, it will be benefi-
cial to consider a collection of images instead of isolated im-
ages. Sivic et al.[34] showed that it is possible to recognize ob-
jects from image collections with the same categories of sub-
jects. Simon et al. [33] tried to find the representative image
from the collection of photos taken in the location. However,
the image collections used in above work are “selected” ver-
sions that are organized by predefined themes and topics, and
furthermore do not contain photos that may not belong to any
predefined classes. We are more interested in understanding the
“natural” personal collections which are related to natural events
and subsequently loosely organized by the consumers into file
folders. Annotation of such natural personal photo collections
did not receive specific attention until recently. Wu et al. em-
ployed web images to learn concept templates in order to query
personal photo collections [40] and they also proposed an active
learning method for relevance feedback [41]. Note that Cooper
et al. [9] and Loui et al. [23] also considered consumer photo
collections, but they did not investigate the annotation problem
as in this paper.

To provide a detailed description for photo collections, this
paper tries to estimate both the scene and event categories. Scene
recognition for single images has been studied in [10], [29],
[19], which is part of the interests of this study. Although the
images in previous work differ in some degree with the con-
sumer photos (e.g., the database in [10], [29], [19] contains no
people in the images), these techniques can be considered as
the baseline of annotation for single photos upon which we can
build our system. In contrast, event recognition has not received

as much attention as scene classification because it clearly con-
cerns higher level semantics, e.g., wedding and birthday, for
which low-level visual features alone are found to be inade-
quate [22]. In previous work, event classification is limited to
video analysis [12], [22], [45] or specific sports activities [3],
[20]. However, with a collection of photos, it becomes possible
to explore the semantic correlation among multiple photos.

This paper integrates both visual content and surrounding
context, i.e., time and location for the annotation task, which
has proven to be an effective way to bridge the semantic gap in
multimedia understanding [24]. The correlation among photos
of the same event is a form of useful context. Our approach to
photo collection annotation employs both visual features and
metadata including both time and GPS. As a new technology,
GPS is mostly used in vehicle navigation and seldom used for
photo classification [1]. Some researchers proposed to use con-
tinuous GPS traces to classify certain reoccurring human ac-
tivities [21], [44]. In contrast, the GPS records associated with
photo collections are discrete, sparse and sometimes missing.
We combine such sparse GPS information together with visual
features for photo annotation. Note that Naaman and colleagues
have done extensive work related to GPS information [27], [26],
[11], [16]. However, such work differs from ours in two aspects.
First, we employ both time and GPS information as contextual
data, and combine that with visual classifiers to recognize dif-
ferent concepts. In contrast, Naaman’s work mainly used GPS
and user tags. Note that our algorithm is designed to handle par-
tially missing GPS information, which is a common problem
for current GPS devices. Naaman’s work did not consider that.
Moreover, this paper and Naaman’s work aim to solve different
problems. Our work tries to annotate photos that do not yet have
tags, while Naaman et al.’s work focused on image summariza-
tion and management by making use of existing tags.

III. OUTLINE OF OUR APPROACH

Fig. 1 illustrates the annotation task fulfilled by this work.
To provide a descriptive annotation for personal photos, we in-
troduce two-level annotation for photo collections. In the upper
level, we cluster photos into groups, and assign an event label
to each group to denote the main activity common to all the
photos in that group. The event label can either be one and only
one of the predefined event classes, or “NULL,” which indicates
nothing of specific interest or categorizable. In the lower level,
we assign each photo one or more scene class labels (a multi-
label problem as opposed to a multiclass problem as with the
event classes). In this paper, we will use the two-level model for
the photo annotation task, which we believe will provide more
specific descriptions of the photo collections.

Then the research question becomes: given a collection of
personal photos, how can we generate more reliable annota-
tions compared with using individual photos? Personal photos
are taken in different places and at different times, describing
different activities of different people. Indeed, these diverse fac-
tors make photo annotation a challenging task, especially for the
exiting systems that rely only on visual information from indi-
vidual images. Therefore, it is imperative to explore different
sources of information associated with photo collections.
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Fig. 2. Example of GPS-tagged consumer photos taken by different photogra-
phers at different time and locations. Below each photo, the first row shows the
date and time when the photo was taken, and the second row shows the GPS
tag. Note the month, year, and coordinates of GPS tag are removed to preserve
privacy.

We first explore the correlation between scene labels. We esti-
mate this type of correlation from camera metadata, a useful but
often untapped source of information. Specifically, metadata in-
cludes timestamp and GPS tags. Every digital photo file records
the date and time when the photo was taken (for example, JPEG
file stores tags in the file header). An advanced camera can even
record the location via a GPS receiver. However, due to the sen-
sitivity limitation of the GPS receiver, GPS tags can be missing
(especially for indoor photos). This paper will discuss how to
make good use of such incomplete metadata information. Fig. 2
shows an example of using GPS and time tags to estimate the
correlation between photos. The closer the GPS coordinates and
the shorter the time intervals are, the stronger the correlation ex-
ists between the neighboring photos in their annotation labels.

Second and more importantly, we also consider the relations
between scene labels and event labels. Fig. 3 shows examples
of both possible (solid lines) and impossible (dashed lines) con-
nection between scenes and events. The event “urbantour” can
be linked to “highway” and “inside-city” scene labels, while it
is unlikely to co-occur with “coast” or “kitchen.” Our system
will discover such relationships from the data, and demonstrate
that combining such relationships should improve the annota-
tion accuracy.

We build a unified model to account for the two types of cor-
relation as illustrated in Figs. 2 and 3. This model first employs
visual features to estimate the probability of isolate events and
scenes, and then use metadata features to enforce the correla-
tion between images and also labels at event and scene levels.
Our work is developed on the basis of the discriminative model
of Conditional Random Field (CRF) in [18], but is different be-
cause we introduce a hierarchical structure in order to infer se-
mantics at both scene- and event-levels in a photo collection.

This paper is organized as follows. Section IV describes our
dataset and the manual labeling needed for our experiments.
Section V presents the basic model for scene annotation, which

Fig. 3. Correlation between scene labels and event labels.

takes time and GPS information into account. Section VI con-
siders partitioning photos into event clusters. Section VII takes
into account the relationship between events and scenes and
builds our complete annotation model. Experimental results are
in Section VIII and we conclude this paper in Section IX.

IV. DATASET

We built a diverse geotagged photo dataset by camera hand-
outs to different users. Each user took photos as usual and re-
turned the camera with their photo collection. We received 103
photo collections of varying sizes (from four to 249 photos).
These collections include extensive photo content. Some exam-
ples of the dataset are shown in Fig. 2.

Each photo has a time tag, and over half of the images have
GPS tags. Both the time duration and the location range vary
across different collections. The time duration can be less than
one hour, or several days. Similarly, the GPS movement can be
as far as several hundred miles (e.g., road trips) or have negli-
gible change (e.g., one’s backyard).

The dataset is labeled by a combination of the photographers
(whenever possible) and researchers. We are interested in both
indoor and outdoor activities and social events, which are cat-
egorized into 12 events. Note that the 12 events include a null
category for “none of the above,” which means our method can
also handle the collections that are not of high interest. This is
an important feature for a practical system. Consequently, each
photo can be categorized into one and only one of these events.
To make the labeling process consistent, we clarify the defini-
tions of the event labels in Table I.

We also labeled each image with the scene labels using the
class definitions from [31]: coast, open-country, forest, moun-
tain, inside-city, suburb, highway, livingroom, bedroom, office,
and kitchen. Here inside-city includes the original inside-city,
plus street and tall-building, since our annotation task does not
need to distinguish these three. Again, we also add a null scene
class to handle the unspecified cases. Note that a photo can be-
long to more than one scene class, e.g., a beach photo may also
contain mountain, leading to a multilabel problem [6].

V. SCENE-LEVEL MODELING

To model the correlation between the labels, we employ a
conditional random field (CRF) model. CRF is a probabilistic
model first presented by Lafferty et al.for the task of segmenting
and labeling of sequential data [18]. Sutton et al. presented a
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TABLE I
DEFINITIONS OF THE 12 EVENTS

dynamic CRF to interpret natural language with long range de-
pendencies [35]. Kumar and Hebert proposed discriminative
random fields to model the spatial dependencies between image
regions [17]. Although the problems studied in [18], [35], [17]
are different from this work, their work suggested that CRF pro-
vides a powerful tool to model the correlation in sequential data.

Different from generative models such as the Hidden Markov
Model, CRF models the conditional likelihoods instead of joint
distributions, relaxing the assumption on distributions. More-
over, the feature function in CRF is more flexible than that in
HMM, which makes it easier to take more features and factors
into account. Let us first address how to model the correlation
between scene labels, using time and GPS tags, and we will gen-
eralize the model for event annotation in Section VII.

When a photographer takes pictures, the surrounding scene
is fairly stable even though he may look in different directions
and at different objects. The less the time and location change,
the less likely the scene labels of pictures can change from one
to another. For example, if one took a photo of a “coast” scene
at one time, it is unlikely that the next picture taken within five
minutes would be “inside-city.” For this reason, there are cor-
relations between the scene labels of the photos that are taken
within a short time interval and close location range.

Before introducing our event-scene model, we first define a
number of notations. In a photo collection, the photos are rep-
resented by . The time tags and GPS
tags are denoted as and , where
when the GPS is missing.

We use to denote labeling status of the th photo for scene
class , with . Here means the scene label
is true for , while means that the scene label is null.
Note that if for all , it means that is not
labeled as any of the known scene labels.

Given the time and GPS, We model the correlation using the
conditional probability of the th scene as

where “.” denotes the inner product between two vectors.
The log-likelihood function for scene is given by

(1)

where stands for the feature function of individual photos
for class , and models the correlation be-
tween consecutive photos in the collection and . stands
for a normalization constant. and are the parameter vec-
tors that are learned from the training data. acts as the objec-
tive function in both the training and testing stages. For training,
we learn the parameters which maximizes . For
testing, given a photo collection , the labeling

that maximize (1) will infer the most possible labels.
To obtain the feature function for single photos, we employ

the statistical features from [30] and [25]. An SVM classifier is
trained for the public scene dataset [19]. The feature function is

(2)

where is a sigmoid function used to shape the SVM
score, . Since there is no need to re-scale the
sigmoid function, we can simply take , so

(3)

Given that the larger the differences in time and location are,
the less correlation exists between consecutive labels. More-
over, when the consecutive labels are different, the correlation
function should contribute little to the overall log-likelihood.
With these observations, we define the correlation feature func-
tion as

(4)

where and denote changes in time and location, respec-
tively. In this study, the time change is quantized in intervals of
a quarter hour, while the location change is measured in units of
a minute of arc on the earth sphere.

Note that the correlation function defined in (4) is able to
handle the situation of partially missing GPS. If or is
NULL, we treat and thus ,
which means that the GPS tags impose no correlations on the
overall log-likelihood function.

Although (1) considers the correlation in both time and GPS,
it is not yet complete since no event labels are involved in this
model; neither is the correlation between scenes and events. In
what follows, we will add event annotation into the framework,
and improve (1) to obtain the complete annotation model.
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VI. EVENT-LEVEL MODELING

In the setting of this paper, our event annotation involves two
tasks: grouping photo into event clusters, and classifying each
cluster into different event categories. Since it is not reliable to
infer the event from single images without considering contex-
tual information, we assign an event label to each cluster instead
of single photos. In other words, all photos in the same cluster
share the same event label. In this section, we first utilize the
time and GPS tags to perform clustering, then validate the clus-
tering accuracy using several criteria, and at the end we present
the feature function for event classification.

A. Event Clustering by Time and Position

Our clustering algorithm is based on both time and GPS fea-
tures. We ignore visual features because the users tend to change
their subjects of interests when taking photos. Consequently, the
visual features often vary dramatically even at the same event.
The time tag is a useful feature for event clustering [23], and
a small time interval may also suggest that the photos were
taken in the same place. However, it cannot reliably tell whether
people stayed in the same place for a long time or they already
moved to another location. We next propose a reliable joint clus-
tering method that makes good use of both time and GPS infor-
mation and is also tolerant to missing GPS data.

Our clustering algorithm works as follows: first, we find base-
line clusters from time only using the Mean-Shift algorithm [7].
Mean-Shift does not require us to specify the number of clus-
ters. Since every photo contains a time tag, the baseline clus-
ters can always be obtained from the entire collection. Next,
for those samples with both time and GPS tags, we compute
the target clustering with the GPS information added. We itera-
tively search from the baseline clusters for a sample that is not
in but close to a sample already in. We add this sample to the
same cluster containing its closest neighbors. This iteration will
be performed until all the photos are added to. This algorithm
is very fast and can obtain real time clustering results even for
folders with more than one hundred of images. The details of
the clustering algorithm are described as follows.

Procedure of our clustering algorithm

Input: Collection of photos. Each photo has a time
stamp, but only some of photos have GPS stamps.

Procedure:

1: Obtain baseline clusters (subcollections) by
clustering all the photos using time;

2: Initialize the target clusters by clustering only the
photos with both time and GPS information;

3: Check whether there are new clusters , such
that . Add into as new clusters;

4: Repeat the following until contains all the photos:
4.1. select one example such that

. Then find the
corresponding example with

. Here is the
Euclidean distance between the time tags.
4.2. add into with the cluster label the same
as .

Output: as the final photo subcollections.

B. Clustering Evaluation

We evaluate our clustering algorithm on a small portion of
our dataset for which the photographers kindly provide ground
truth of event clusters. Since it is impractical to ask all the users
to mark all the clusters, we only evaluated our algorithm on 17
photo collections (1394 photos in total).

There are many metrics for measuring the clustering accu-
racy. In this paper, we utilize two popular ones together with a
new one that fits our requirements. The first criterion is Proba-
bilistic Rand Index (PRI) [28], which counts the fraction of pairs
of samples whose labels are consistent between the computed
cluster and the ground truth, normalized by averaging across all
the clusters in the ground truth. The second one is Local Con-
sistency Error (LCE) [36], which is defined as the sum of the
number of samples that belong to one cluster but not , di-
vided by the size of . Here and denote the cluster from
the ground truth and clustering method, respectively.

PRI and LCE use local or global normalization factors, re-
spectively. However, in this study, we have different preferences
on different types of errors: over-partition carries lower cost than
under-partition because it is more difficult to assign the correct
event label when two different events are inadvertently merged.
Neither PRI nor LCE accounts for cost. Therefore, we propose
a new metric called Partitioning Error Cost (PEC).

Suppose the computed clustering is and the
ground truth is . For each cluster , we com-
pute its contribution to the overall error:

where is the number of samples in
, and and are

the number of and in the union, respectively. And
and are empirically set as 0.1 and 0.2, respectively, which
penalizes under-partition more than over partition. Finally, we
sum up the error cost and normalize it by the total number of
samples:

Our clustering algorithm is evaluated by these three metrics.
Since there is no algorithm that can handle the missing GPS
data, we compare our algorithm with the date-time clustering
algorithm [23] and temporal similarity-based photo clustering
algorithm [9], which are the state of art clustering algorithms
using time only. To make a fair comparison, we choose the un-
supervised algorithm in [9] instead of the supervised ones. Note
that [27] present another clustering algorism based on GPS only.
However, this algorithm is not applicable for our scenarios since
GPS tags of many photos are missed. To make a more infor-
mative comparison, we also compare the simple algorithm that
applies Mean-Shift to time only. Table II summarizes the eval-
uation results. It is clear that our method obtain the lowest error
by all three metrics. Fig. 4 shows the clustering errors measured
by PEC for all 17 photo collections. Our clustering algorithm
outperforms the other two methods for virtually every folder.

Fig. 5 shows example results of our clustering algorithms
on four photo collections. The clustering results by using time
and GPS (soild red lines) are superior to those using time only
(dashed blue lines), when compared to the ground truth of
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Fig. 4. Comparison of different clustering algorithms. The horizontal axis
shows different image folders, and the vertical axis denotes the clustering errors
measured by PEC.

TABLE II
EVALUATION OF THE ACCURACY OF CLUSTERING ALGORITHMS

events. More accurate clustering lay more reliable foundation
for the subsequent event recognition. In general, using time
only often leads to under-segmentation of clusters and would
cause adverse chain reaction under the event-scene model
because all the photos in each event share the same event class
label.

C. Event Annotation Based on Computed Clusters

After obtaining the event clusters, we impose a feature func-
tion on each cluster. Following the standard practice in video
concept detection [4], [2], we developed an SVM classifier for
the 12 event classes (using software courtesy of University of
Central Florida). We separately collected 200 photos for each
class, and randomly select 70% of these images for training
the multiclass SVM classifier [13]. The remaining 30% of the
photos are used for validation.

Given an event subcollection , our feature function for event
is

(5)

where is the SVM score of photo for event . For our
annotation work, stand for the 11 classes of events,
and for the null event .

VII. JOINT ANNOTATION OF EVENTS AND SCENES

Some researchers in the field of video annotation observed
that it is beneficial to explore the relationship between different

Fig. 5. Event clustering results on four photo collections (a)–(d). The dashed
blue lines denote clustering results using time only. The solid red lines represent
the results using time�GPS information. In both cases, different clusters are
separated by a vertical bar (event boundary).

labels [8], [42]. These results suggest us to consider the label de-
pendency between event and scene labels for images. As shown
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Fig. 6. Correlation between event and scene labels.

in Fig. 6, the event and scene labels are strongly correlated.
Some of them are often concurrent, e.g., the beach-time event
and the coast scene. More importantly, we find that some labels
are mutually exclusive (negative correlation), for example, the
yardpark event and the inside-city scene.

To model these two types of correlation, we employ the func-
tion

(6)

where exclusive labels mean that the two labels never appear
together, and the concurrent labels means the the correlation
between two labels are above a threshold (0.05 in this experi-
ment). By searching through the training images, our algorithm
can find concurrent and exclusive labels automatically. Fig. 6
shows these correlation pairs obtained from the training photos.

We have discussed the feature functions and
for event annotation. Taking these functions into account, the
log-likelihood function becomes

(7)

where are parameters to be learned, denotes the
feature function of scene class for each photo and denotes
for correlation function through time and GPS, as defined in
Section 4.

Our complete log-likelihood function is now more com-
plex than the simple version in (1). The number of parameters
is large, which makes it likely for the model to overfit. To re-
duce the overfitting, we add the following constraints to reduce

the model complexity, and thus make it resistant to overfitting.
We assume for and for

. Thus we only need two variables to represent the
correlation of events and scenes. Finally, we add the constraint
that for all . By observing (5) we can see that is
properly normalized, so removing the parameter is reason-
able.

After these simplifications, we can train the CRF models by
minimizing in (7). The training algorithm is summarized as
follows. Given the log-likelihood in (7), we can compute the
gradient . By denote the parameters as , we
can expand the log-likelihood using Taylor series

which attains its extremum at

(8)

Note is the Hessian matrix which can be efficiently updated
by conjugate-gradient methods as in [32].

From (8) we can obtain the updating scheme

Since is a convex function subject to , this iterative approach
will find the optimal parameters.

After learning the parameters, we can use our model to anno-
tate the testing images. This process is accomplished by maxi-
mizing (7) subject to the label variable and with the trained
parameters. The belief propagation method is employed for this
task, which iteratively passes positive real vector valued mes-
sages between the variables until convergence. Compared with
traditional mean field algorithm, belief propagation is more ro-
bust and more fast for the inference task [39].

VIII. EXPERIMENTAL RESULTS AND DISCUSSIONS

From the geotagged dataset, we randomly select 50% of all
the folders for training and the rest for testing. The testing results
are compared with ground truth. Note that the ground truth of
scene labels is for individual photos, while the ground truths
of events are for photo subcollections. Although it takes days
to train the basic concept detectors and CRF model, the testing
process is very fast. The average annotation time for each image
is less than one second.

First, we show the accuracy of scene labeling. Since scene-
level annotation is a multilabel problem, we compute the preci-
sion and recall for each label, as shown in Fig. 7. From the figure,
the recalls for most classes are satisfactory, while the precisions
are lower. In other words, false alarms are the main errors in
scene annotation. This demands more attention in future work.

At the event level, we compare our annotations with the real
events at the subcollection level. We construct a confusion ma-
trix for 11 events over subcollections, as shown in Fig. 8. Most
classes are annotated successfully. Some event pairs may be
confused because they share much visual similarity: wedding
confused with graduation when graduates happen to wear white
gown, and birthday confused with eating because both can show
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Fig. 7. Precision-recall for scene annotation.

Fig. 8. Confusion matrixes for the 11 events (74.8% average accuracy). Each
column corresponds to ground-truth label of one event class. Each row corre-
sponds to class labels predicted by the algorithm. All the numbers are percentage
numbers.

food on the table (unless we can detect the birthday cake explic-
itly).

Event annotation becomes more difficult if we also consider
the null event class. Fig. 9 shows the new confusion matrix for
all the subcollections, including those of the null class. Unfortu-
nately, some null-event subcollections are misclassified as one
of the known events. However, we are pleased that such mis-
classification is limited and almost evenly distributed among all
classes.

To test the benefit of our CRF model and the GPS informa-
tion, we compare the annotation results by our model with GPS
and time against those by using time information only, and those
by individual detectors. To make a fair comparison, we consider
only those collections with both GPS and time tags. Figs. 10
and 11 show the precision and recall for scene and event anno-

Fig. 9. Confusion matrixes with the null event class (61.4%).

Fig. 10. Comparing scene-level annotation accuracy by our CRF model using
both time and GPS, with the model using time only, and with the single detectors
(without modeling correlations).

Fig. 11. Comparing event annotation by the proposed model using both time
and GPS, with the model using time only, and with the individual detectors
without modeling correlations.

tation, respectively. Figs. 12 and 13 compare the average preci-
sion (AP) for scene and event annotation, respectively. Our hi-
erarchical event-scene model with time and GPS improves sig-
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Fig. 12. Average precision (AP) for scene annotation.

Fig. 13. AP for event annotation.

nificantly both the precision and recall in both cases, in terms of
the overall performance and those on the vast majority of indi-
vidual classes (only wedding and birthday are slightly worse).
Although the model with time only is not as competitive as the
full model, it still performed much better than the isolated single
detectors.

To illustrate the success of our hierarchical event-scene
model, Figs. 14–16 contain annotation results on three photo
collections at both event and scene levels. Due to the space
limits, we can only show the most representative photos in each
collection. Note that although each collection is a single event
based on ground truth clustering, the actual event clustering
by different algorithms may differ. The event and scene labels
in bold face are correct when compared to the ground truth. In
addition, the scene labels in italics are also semantically correct
even though the ground truth did not contain them (typical for
a multilabel problem such as scene classification). Clearly, the
proposed hierarchical event-scene model provides better anno-
tation at both event and scene levels than the isolated detectors,

Fig. 14. Example results for one photo collection (a single event based on
ground truth clustering). The event and scene labels in bold face are correct
when compared to the ground truth. The scene labels in italics (e.g., forest for
some photos) are also semantically correct even though the ground truth did not
contain them.

with the model using full time and GPS information as the best.
Most notably, all the photos in the same collection share the
same event label and more consistent scene labels, thanks to
accurate event clustering using both time and GPS information
and powerful interactions within the hierarchical model.

In general, GPS information is more available for outdoor
photos although our experience is that wood-frame houses and
rooms with large windows also allow reasonable GPS reception.
Because our framework can also handle the collections in which
the GPS information is missing for part of the photos, improved
annotation can also be obtained for the indoor photos that are
grouped together with the outdoor photos of the same events.

It is worthy noting that the goal of the event clustering al-
gorithm is to produce semantically meaningful event grouping
that is at the same time as close as possible to the group by the
owner of the photos. In that sense, the clustering is intended
to be useful on its own as an aid to photo management by the
users, as well as provide a sound basis for the hierarchical anno-
tation process. While ground truth clusters by the users would
certainly be better for the annotation process, we have shown
that the clustering algorithm proves to be adequate, precisely
because the clustering algorithm (with the combination of time-
stamp and GPS) is able to group the photos in a similar fashion
as the photo owners. Note that the users have no knowledge of
the clustering algorithm when providing the ground truth clus-
ters.
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Fig. 15. Example results for one photo collection (a single event based on
ground truth clustering).

IX. CONCLUSION AND FUTURE WORK

We addresses the problem of annotating photo collections
instead of single images. We built a sizable collection of
geotagged personal photos, and defined a compact ontology
of events and scenes suitable for consumers. We construct a
CRF-based model that accounts for two types of correlations:
1) correlation by time and GPS tags and 2) correlation be-
tween scene- and event-level labels. Extensive experiments
have shown that our hierarchical model significantly improves
annotation in both precision and recall. Future directions in-
clude exploring (better) alternative baseline scene classifiers,
integrating the physical place tags that can be derived from the
GPS coordinates [15], expanding the scene-event ontology, and
finding a solution to reduce the relative high level of confusion
between certain events.

It is important to align with contemporary interests when ex-
panding the annotation ontology. The popular tags published

Fig. 16. Example results for one photo collection (a single event based on
ground truth clustering).

by Flickr include animals, birthday, architecture, art, baby, bird,
camping, Christmas, car, cat, church, city, clouds, dog, family,
flower, football, garden, girl, hiking, house, island, kids, lake,
landscape, museum, ocean, party, people, portrait, river, rock,
show, sky, snow, street, sunset, tree, urban, water, wedding, zoo,
and so on. Many of them are related to scenes and events that
should be considered in the future work.
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