
1

A Formal Theory of Plan Recognition
and its Implementation

Henry A. Kautz

Author’s address: AT&T Labs, Room A-257, 180 Park Ave., Florham
Park, NJ 07932. Telephone: (973) 360-8310. E-mail:
kautz@research.att.com. Published in Reasoning About Plans, by J.F.
Allen, H.A. Kautz, R.N. Pelavin, and J.D. Tenenberg, Morgan Kaufmann
Publishers, San Mateo, CA, 1991, pages 69-126 (chapter 2).

1. Introduction

1.1. Background

While there have been many formal studies of plan synthesis in general [McCarthy &

Hayes 1969, Moore 1977, Pednault 1988, Tenenberg 1990, Pelavin 1990], nearly all work on the

inverse problem of plan recognition has focused on specific kinds of recognition in specific

domains. This includes work on story understanding [Bruce 1981, Schank 1975, Wilensky

1983], psychological modelling [Schmidt 1978], natural language pragmatics [Allen 1983,

Carberry 1983, Litman 1987, Grosz & Sidner 1987], and intelligent computer system interfaces

[Genesereth 1979, Huff & Lesser 1982, Goodman & Litman 1990]. In each case, the recognizer

is given an impoverished and fragmented description of the actions performed by one or more

agents and expected to infer a rich and highly interrelated description. The new description fills

out details of the setting and predicts the goals and future actions of the agents. Plan recognition

can be used to generate summaries, to provide help, and to build up a context for use in

disambiguating natural language. This chapter develops a formal theory of plan recognition.

The analysis provides a formal foundation for part of what is loosely called “frame–based

inference” [Minsky 1975], and accounts for problems of ambiguity, abstraction, and complex

temporal interactions that were ignored by previous research.

Kautz Plan Recognition 09/09/97 page 2

Plan recognition problems can be classified as cases of either “intended” or “keyhole”

recognition (the terminology developed by [Cohen, Perrault, & Allen 1981]). In the first kind

but not the second the recognizer can assume that the agent is deliberately structuring his

activities in order to make his intentions clear. Recognition problems can also be classified as to

whether the observer has complete knowledge of the domain, and whether the agent may try to

perform erroneous plans [Pollack 1986]. This chapter concentrates on keyhole recognition of

correct plans where the observer has complete knowledge.

Plan synthesis can be viewed as a kind of hypothetical reasoning, where the planner tries

to find some set of actions whose execution would entail some goal. Some previous work on

plan recognition views it as a similar kind of hypothetical reasoning, where the recognizer tries to

find some plan whose execution would entail the performance of the observed actions [Charniak

1985]. This kind of reasoning is sometimes called “abduction”, and the conclusions

“explanations”. But it is not clear what the recognizer should conclude if many different plans

entail the observations. Furthermore, even if the recognizer has complete knowledge and the

agent makes no errors cases naturally occur where no plan actually entails the observations. For

example, suppose that the recognizer knows about a plan to get food by buying it at a

supermarket. The recognizer is told that the agent walks to the A&P on Franklin Street. The

plan to get food does not entail this observation; it entails going to some supermarket, but not the

A&P in particular. One can try to fix this problem by giving it a more general plan schema that

can be instantiated for any particular supermarket. But the entailment still fails, because the plan

still fails to account for the fact that the agent chooses to walk instead of driving. Instead of

finding a plan that entails the observations, one can only find a plan that entails some weaker

statement entailed by the observations. In order to make abduction work, therefore, the plan (or

explanation) must be able to also include almost any kind of assumption (for example, that the

agent is walking); yet the assumptions should not be strong as to trivially imply the observations.

The abductive system described in [Hobbs & Stickel 88] implements this approach by assigning

costs to various kinds of assumptions, and searching for an explanation of minimum cost. The

problems of automatically generating cost assignments, and of providing a theoretical basis for

combining costs, remain open.

Other approaches to plan recognition describe it as the result of applying unsound rules of

inference that are created by reversing normally sound implications. From the fact that a

particular plan entails a particular action, one derives the unsound rule that that action “may”

Kautz Plan Recognition 09/09/97 page 3

imply that plan [Allen 1983]. Such unsound rules, however, generate staggering numbers of

possible plans. The key problems of deciding which rules to apply and when to stop applying

the rules remain outside the formal theory.

By contrast, the framework presented in this chapter specifies what conclusions are

absolutely justified on the basis of the observations, the recognizer’s knowledge, and a number of

explicit “closed world” assumptions. The conclusions follow by ordinary deduction from these

statements. If many plans could explain the observations, then the recognizer is able to conclude

whatever is common to all the simplest such plans. The technical achievement of this work is

the ability to specify the assumptions the recognizer makes without recourse to a control

mechanism lying outside the theory.

Another natural way to view plan recognition is as a kind of probabilistic reasoning

[Charniak & Goldman 1989]. The conclusions of the recognizer are simply those statements that

are assigned a high probability in light of the evidence. A probabilistic approach is similar to the

approach taken in this chapter in that reasoning proceeds directly from the observations to the

conclusions and avoids the problems described above with the construction of explanations. The

closed world assumptions employed by our system correspond to closure assumptions implicitly

made in a Bayesian analysis, where the set of possible hypotheses is assumed to be disjoint and

exhaustive. A major strength of the probabilistic approach over ours is that it allows one to

capture the fact that certain plans are a priori more likely than others. While much progress is

being made in mechanizing propositional probabilistic reasoning, first-order probabilistic

reasoning is much more difficult. A propositional system can include a data element

representing every possible plan and observation, and the effect of the change in probability of

any element on every other element can be computed. This is not always possible in a first-order

system, where the language can describe an infinite number of plans. The problem is not just

one of selecting between hypotheses, but also selectively instantiating the first-order axioms that

describe the parameterized plans. In our purely logical theory one can simply deduce the

parameters of the plans that are recognized.

1.2. Overview

In this chapter plans and actions are uniformly referred to as events. The recognizer’s

knowledge is represented by a set of first-order statements called an event hierarchy, which

Kautz Plan Recognition 09/09/97 page 4

defines the abstraction, specialization, and functional relationships between various types of

events. The functional, or “role”, relationships include the relation of an event to its component

events. There is a distinguished type, End, which holds of events that are not components of any

other events. Recognition is the problem of describing the End events that generate a set of

observed events.1

In this work we are limited to recognizing instances of plans whose types appear in the

hierarchy; we do not try to recognize new plans created by chaining together the preconditions

and effects of other plans (as is done in [Allen 1983]). Therefore it is appropriate for domains

where one can enumerate in advance all the ways of achieving a goal; in other words, where one

wants to recognize stereotypical behavior, rather than understand truly unique and idiosyncratic

behavior. This assumption of complete knowledge on the part of the system designer is

fundamental to the approach. While abandoning this assumption might increase a system’s

flexibility, it would also lead to massive increase in the size of the search space, since an infinite

number of plans could be constructed by chaining on preconditions and effects. We decided to

maintain the assumption of complete knowledge, and only construct plans by specialization and

decomposition (as described below), until we have developed methods of controlling the

combinatorial problem.

An event hierarchy does not by itself justify inferences from observations to End events.

Consider the following set of plans. There are four kinds of End events (hiking, hunting, robbing

banks, and cashing checks) and three other kinds of events (going to the woods, getting a gun,

and going to a bank). The event hierarchy can be illustrated by the following network, where the

thick grey arrows denote abstraction or “is a”, and the thin black arrows denote component or

“has part”. The labels “s1” and “s2” serve to distinguish the component arcs; they denote the

functions which map an event to the respective component. (The labels do not, by themselves,

formally indicate the temporal ordering of the components.)

1 The idea of an End event may be problematic in general; see our comments at the end of this chapter.

Kautz Plan Recognition 09/09/97 page 5

End

Go To Woods Get Gun Go To Bank

Hunt Rob Bank Cash Check

s2 s1 s2s1 s1

Go Hiking

s1

We encode this event hierarchy in first-order logic with the following axioms.

∀ x . GoHiking(x) ⊃ End(x)
∀ x . Hunt(x) ⊃ End(x)
∀ x . RobBank(x) ⊃ End(x)
∀ x . CashCheck(x) ⊃ End(x)
∀ x . GoHiking(x) ⊃ GoToWoods(s1(x))
∀ x . Hunt(x) ⊃ GetGun(s1(x)) ∧ GoToWoods(s2(x))
∀ x . RobBank(x) ⊃ GetGun(s1(x)) ∧ GoToBank(s2(x))
∀ x . CashCheck(x) ⊃ GoToBank(s1(x))

The symbols “s1” and “s2” are functions which map a plan to its steps. Suppose GetGun(C) is

observed. This statement together with the axioms does not entail ∃x.Hunt(x), or

∃x.[Hunt(x) ∨ RobBank(x)], or even ∃x.End(x). The axioms let one infer that getting a gun is

implied by hunting or going to the bank, but not vice versa.

It would not help to strengthen the implications to biconditionals in the last four axioms

above, in order to make them state sufficient as well as necessary conditions for the execution of

the End events. Even if every single step of a plan were observed, one could not deduce that the

plan occurred. For example, suppose that the recognizer learns {GetGun(C), GoToBank(D)},

and believes

∀ x . RobBank(x) ≡ GetGun(s1(x)) ∧ GoToBank(s2(x))

The statement ∃x.RobBank(x) still does not follow, because of the missing premise that

∃x.C=s1(x)∧D=s2(x). One could further strengthen the axiom to say that whenever someone

gets a gun and goes to a bank he or she commits a robbery:

[∃ x . RobBank(x)] ≡ [∃ y, z . GetGun(y) ∧ GoToBank(z)]

Kautz Plan Recognition 09/09/97 page 6

This change allows the recognizer to conclude ∃x.RobBank(x), but does not really solve the

problem. First, one cannot always give sufficient conditions for every kind of event. Second, the

recognizer is still required to observe every step of the plan to be recognized. This latter

condition is rarely the case; indeed, a primary motivation for plan recognition is the desire to

predict the actions of the agent. Finally, such an axiom doesn’t allow for a case where a person

cashes a check on his way to a hunting trip.

Nonetheless it does seem reasonable to conclude that someone is either hunting or rob-

bing a bank on the basis of GetGun(C). This conclusion is justified by assuming that the event

hierarchy is complete: that is, whenever a non-End event occurs, it must be part of some other

event, and the relationship from event to component appears in the hierarchy. We will show how

to generate a set of completeness or closed-world assumptions for a given hierarchy. The

assumption needed for this example is simply

∀ x . GetGun(x) ⊃ [∃ y . Hunt(y) ∧ x=s1(y)] ∨ [∃ y . RobBank(y) ∧ x=s1(y)]

We will also show that making these assumptions is equivalent to circumscribing the event

hierarchy in a particular way [McCarthy 1980]. We borrow the model theory of circumscription

to provide a model theory for plan recognition. Whatever deductively follows from the

observations, event hierarchy, and assumptions holds in all “covering models” of the

observations and event hierarchy. (The term “covering model” comes from the fact that every

event in such a model is explained or “covered” by some End event which contains it.) In this

example, the only covering models are isomorphic to (or contain a submodel isomorphic to) one

of the two models

{End(A), Hunt(A), GetGun(s1(A)), GoToWoods(s2(A)) }

{End(A), RobBank(A), GetGun(s1(A)), GoToBank(s2(A)) }

Any model containing just an instance of GetGun but no corresponding End event is not a

covering model.

When several events are observed, additional assumptions are needed. Suppose that

{GetGun(C), GoToBank(D)} is observed. These formulas together with the assumptions

∀ x . GetGun(x) ⊃ [∃ y . Hunt(y) ∧ x=s1(y)] ∨ [∃ y . RobBank(y) ∧ x=s1(y)]

∀ x . GoToBank(x) ⊃ [∃ y . CashCheck(y) ∧ x=s1(y)] ∨ [∃ y . RobBank(y) ∧ x=s2(y)]

Kautz Plan Recognition 09/09/97 page 7

do not entail that an instance of bank robbery occurs. The first observation could be a step of a

plan to hunt and the second could be a step of a plan to cash a check. Yet in this example the

RobBank plan is simpler than the conjunction of two other unrelated plans. It is reasonable to

assume that unless there is reason to believe otherwise, all the observations are part of the same

End event. Given the assumption

∀ x,y . End(x) ∧ End(y) ⊃ x=y

the conclusion ∃x.RobBank(x) deductively follows.2 In model theoretic terms, this assumption

corresponds to selecting out the covering models that contain a minimum number of End events:

these are the minimum covering models of the observations and hierarchy. Furthermore, this

assumption can be blocked if necessary. If it is known that the agent is not robbing the bank, that

is, if the input is {GetGun(C), GoToBank(D), ¬∃ y . RobBank(y)}, then the strongest simplicity

assumption is that there are two distinct unrelated plans. It follows that these plans are hunting

and cashing a check.

Why care about a formal theory of plan recognition? One advantage of this approach is

that the proof and model theories apply to almost any situation. They handle disjunctive

information, concurrent plans, steps shared between plans, and abstract event descriptions. We

will illustrate the theory with examples of plan recognition from the domains of cooking and

operating systems. The general nature of the theory suggests that it can be applied to problems

other than plan recognition. We will show how a medical diagnosis problem can be represented

in our system, by taking events to be diseases and symptoms rather than plans and actions. The

similarity between the kind of reasoning that goes on in plan recognition and medical diagnosis

has been noted by Charniak [1983]. Reggia, Nau, and Wang [1983] have proposed that medical

diagnosis be viewed as a set covering problem. Each disease corresponds to the set of its

symptoms, and the diagnostic task is to find a minimum cover of a set of observed symptoms.

They work within a purely propositional logic and do not include an abstraction hierarchy.

Extending their formal framework to first-order would make it quite close to the one presented

here.

The formal theory is independent of any particular implementation or algorithm. It

specifies the goal of the computation and provides an abstract mapping from the input

2 (The careful reader may note that the assumption ∀x.¬Hunt(x)∨¬RobBank(x) is also needed to make the proof
goes through; this kind of assumption will also be developed below.)

Kautz Plan Recognition 09/09/97 page 8

information to the output. The last section of this chapter provides specific algorithms for plan

recognition. The algorithms implement the formal theory, but are incomplete; they are, however,

much more efficient than a complete implementation which simply used a general-purpose

theorem prover. While the proof theory specifies a potentially infinite set of justified

conclusions, the algorithms specify which conclusions are explicitly computed. The algorithms

use a compact graph-based representation of logical formulas containing both conjunctions and

disjunctions. Logical operations (such as substitution of equals) are performed by graph

operations (such as graph matching). The algorithms use a temporal representation which is

related to but different from that discussed in Part 1. The times of specific instances of events

are represented by numeric bounds on the starting and ending instants. This metric information

is constrained by symbolic constraints recorded in the interval algebra.

1.3. Plan Recognition and the Frame Problem

Although the work described in this chapter is the first to suggest that closed world

reasoning and in particular circumscription are relevant to plan recognition, the insight behind

the connection is implicit in work on the “frame problem”. Given an axiomatization of the

changes actions make on the world, one wants to generate axioms that describe the properties

that are not changed by each action. For example, in the situation calculus the frame axiom that

states that the color (c) of an object (o) is not changed by picking it up is often written as follows:

∀ s, c, o . Color(o,c,s) ⊃ Color(o, c, result(move(pickup(o)), s))

(In this particular representation, the last argument to a fluent such as “Color” is the state (s) in

which the fluent holds. The function “result” maps an action (pickup(o)) and a state (s) to the

resulting state.) One of the primary motivations for the development of circumscription was to

be a formal tool for specifying such frame axioms.

Several researchers have observed that there is another way of writing frame axioms

[Haas 1987, Schubert 1989, Pelavin 1990 (this volume, section 4.6)]. This is to state that if a

particular property did change when any action was performed, then that action must be one of

the actions known to change that property. In this example, suppose painting and burning are the

only actions known to change the color of an object. The frame axiom for Color then becomes:

∀ s, c, o, a . [Color(o,c,s) ∧ ¬Color(o,c,result(a,s))] ⊃ [a=paint(o) ∨ a=burn(o)]

Kautz Plan Recognition 09/09/97 page 9

This frame axiom looks very much like the assumptions that are needed for plan recognition.

The frame axioms lead from the premise that a change occurred to the disjunction of all the

actions that could make that change. The recognition assumptions lead from the premise that an

action occurred to the disjunction of all plans that could contain that action as a substep.

Many difficult technical problems have arisen in applying circumscription to the frame

problem. Apparently obvious ways of using circumscription can lead to conclusions that are

much weaker than desirable [Hanks & McDermott 1986], and the formalism is in general

unwieldy. This chapter shows how circumscription can be successfully and efficiently applied to

a knowledge base of a particular kind to generate conclusions of a particular form. Like all

formalisms, circumscription is of interest only if it is of use; and we hope that the use it has

found in the present work is of encouragement to those continuing to work on understanding and

extending circumscription.

2. Representing Event Hierarchies

2.1. The Language

As described in Part 1, the representation language we will use is first-order predicate

calculus with equality. We make the following extension to the notation: a prefix ∧ (similarly

∨) applied to a set of formulas stands for the conjunction (similarly disjunction) of all the

formulas in that set. We will first introduce a standard semantics for this language and then

extend it to deal with the plan recognition problem. A model interprets the language, mapping

terms to individuals, functions to mappings from tuples of individuals to individuals, and

predicates to sets of tuples of individuals. If M is a model, then this mapping is made explicit by

applying M to a term, function, or predicate. For example, for any model M:

Loves(Sister(Joe),Bill) is true in M if and only if
〈M[Sister](M[Joe]), M[Bill]〉 ∈ M[Loves]

The domain of discourse of the model M is written Domain(M). The fact that M interprets the

constant “Joe” as an individual in its domain is written

M[Joe] ∈ Domain(M)

Meta-variables (not part of the language) that stand for domain individuals begin with a colon.

Models map free variables in sentences to individuals. The expression M{x/:C} means the

Kautz Plan Recognition 09/09/97 page 10

model that is just like M, except that variable x is mapped to individual :C. Quantification is

defined as follows:

∃x . p is true in M if and only if
there exists :C ∈ Domain(M) such that p is true in M{x/:C}

∀x . p is true in M if and only if ¬∃ x .¬p is true in M

The propositional connectives are semantically interpreted in the usual way. Proofs in

this chapter use natural deduction, freely appealing to obvious lemmas and transformations. It is

convenient to distinguish a set of constant symbols called Skolem constants for use in the

deductive rule of existential elimination. The rule allows one to replace an existentially-

quantified variable by a Skolem constant that appears at no earlier point in the proof. Skolem

constants are distinguished by the prefix “*”. No Skolem constants may appear in the final step

of the proof: they must be replaced again by existentially-quantified variables (or eliminated by

other means). This final step is omitted when it is obvious how it should be done.

2.2. Representation of Time, Properties, and Events

Most formal work on representing action has relied on versions of the situation calculus

[McCarthy & Hayes 1969]. This formalism is awkward for plan recognition: convolutions are

needed to state that some particular action actually occurred at a particular time (but see see

[Cohen 1984]). We therefore adopt the “reified” representation of time and events described in

detail in Chapter 1.

Recall from Chapter 1 that time is linear, and time intervals are individuals, each pair

related by one of Allen's interval algebra relations: Before, Meets, Overlaps, etc. The names of

several relations may be written in place of a predicate, in order to stand for the disjunction of

those relations. For example, BeforeMeets(T1,T2) abbreviates Before(T1,T2) ∨ Meets(T1,T2).

Intervals can be identified with pairs of rational numbers on some universal clock; two intervals

Meet when the first point of one is the same as the last point of the other [Ladkin & Maddux

1988].

Event tokens are also individuals, and event types are represented by unary predicates.

All event tokens are real; there are no imaginary or “possible” event tokens. Various functions

on event tokens, called roles, yield parameters of the event. Role functions include the event's

agent and time. For example, the formula

Kautz Plan Recognition 09/09/97 page 11

ReadBook(C) ∧ object(C)=WarAndPeace ∧ time(C)=T2

may be used to used to represent the fact that an instance of booking reading occurs; the book

read is War and Peace; and the time of the reading is (the interval) T2. Role functions are also

used to represent the steps of plans (or any other kind of structured event). For example, suppose

that reading a book is a kind of plan, one of whose steps is to pick up the book. The following

formula could be used to represent the fact that two events have occurred, where one is reading a

book, and the other is the substep of picking up the book.

ReadBook(C) ∧ pickupStep(C)=D ∧ Pickup(D)

All other facts are represented by ordinary predicates. For example, the fact that John is a

human may be represented by the formula Human(John). Circumstances that change over time

are also represented by predicates whose last argument is a time interval. For example, the fact

that John is unhappy over the interval T1 will be represented by the formula Unhappy(John, T1)

2.3. The Event Hierarchy

An event hierarchy is a collection of restricted-form axioms, and may be viewed as a

logical encoding of a semantic network [Hayes 1985]. These axioms represent the abstraction

and decomposition relations between event types. This section defines the formal parts of an

event hierarchy, and the next provides a detailed example. An event hierarchy H contains the

following parts, HE, HA, HEB, HD, and HG:

•HE is the set of unary event type predicates. HE contains the distinguished predicates

AnyEvent and End. Any member of the extension of an event predicate is called an event token.

AnyEvent is the most general event type, and End is the type of all events which are not part of

some larger event.

•HA is the set of abstraction axioms, each of the form:

∀x . E1(x) ⊃ E2(x)

for some E1, E2 ∈ HE. In this case we say that E2 directly abstracts E1. The transitive closure

of direct abstraction is abstraction; and the fact that E2 is the same as or abstracts E1 is written E2

abstracts= E1. AnyEvent abstracts= all event types. The inverse of abstraction is specialization.

Kautz Plan Recognition 09/09/97 page 12

•HEB is the set of basic event type predicates, those members of HE that do not abstract any

other event type.

•HD is the set of decomposition axioms, each of the form:

∀x . E0(x) ⊃ E1(f1(x)) ∧ E2(f2(x)) ∧ . . . ∧ En(fn(x)) ∧ κ

where E0, …, En ∈ HE; f1, …, fn are role functions; and κ is a subformula containing no

member of HE. The formula κ describes the constraints on E0. E1 through En are called direct

components of E0. Neither End nor any of its specializations may appear as a direct component.

•HG is the set of general axioms, those that do not contain any member of HE. HG includes the

axioms for the temporal interval relations, as well as any other facts not specifically relating to

events.

Two event types are compatible if there is an event type they both abstract or are equal to.

The parameters of an event token are the values of those role functions mentioned in a

decomposition axiom for any type of that token applied to the token.

The direct component relation may be applied to event tokens in a model M as follows.

Suppose :Ci and :C0 are event tokens. Then :Ci is a direct component of :C0 in M if and only if

(i) there are event types Ei and E0, such that :Ci ∈ M[Ei] and :C0 ∈ M[E0]

(ii) HD contains an axiom of the form:

∀x . E0(x) ⊃ E1(f1(x)) ∧ … ∧ Ei(fi(x)) ∧ . . . ∧ En(fn(x)) ∧ κ

(iii) :Ci = M[fi](:C0)

In other words, one token is a direct component of another just in case it is the value of one of the

role functions applicable to the former token. The component relation is the transitive closure of

the direct component relation, and the fact that :Cn is either the same as or a component of :C0 is

written :Cn is a component= of :C0. The component relation over event tokens does not

correspond to the transitive closure of the direct-component meta-relation over event types

because a token may be of more than one type.

A hierarchy is acyclic if and only if it contains no series of event predicates E1, E2, …,

En of odd length (greater than 1) such that:

(i) Ei is compatible with Ei+1 for odd i, 1 ≤ j ≤ n-2

Kautz Plan Recognition 09/09/97 page 13

(ii) Ei-1 is a direct component of Ei for odd i, 3 ≤ i ≤ n

(iii) En = E1

Roughly speaking, an event hierarchy is acyclic if no event token may have a component of its

own type. The definition above allows for the fact that all events are of type AnyEvent, and

therefore any event token will share at least the type AnyEvent with its components. This chapter

only considers acyclic event hierarchies.

2.4. Example: The Cooking World

The actions involved in cooking form a simple but interesting domain for planning and

plan recognition. The specialization relations between various kinds of foods are mirrored by

specialization relations between the actions that create those foods. Decompositions are

associated with the act of preparing a type of food, in the manner in which a recipe spells out the

steps in the food's preparation. A good cook stores information at various levels in his or her

abstraction hierarchy. For example, the cook knows certain actions that are needed to create any

cream-based sauce, as well as certain conditions (constraints) that must hold during the

preparation. The sauce must be stirred constantly, the heat must be moderate, and so on. A

specialization of the type cream-sauce, such an Alfredo sauce, adds steps and constraints; for

example, one should slowly stir in grated cheese at a certain point in the recipe.

We are assuming that the cook and the observer have the same knowledge of cooking, a

hierarchically arranged cookbook. Actions of the cook are reported to the observer, who tries to

infer what the cook is making. We do not assume that the reports are exhaustive — there may be

unobserved actions. A cook may prepare several different dishes at the same time, so it is not

always possible to assume that all observations are part of the same recipe. Different End events

may share steps. For example, the cook may prepare a large batch of tomato sauce, and then use

the sauce in two different dishes.

The following diagram illustrates a very tiny cooking hierarchy. Thick grey arrows

denote the abstraction meta-relation, while thin black arrows denote the direct component meta-

relation. All event types are abstracted by AnyEvent. Here there are two main categories of End

events: preparing meals and washing dishes. It is important to understand that the abstraction

hierarchy, encoded by the axioms in HA, and the decomposition hierarchy, encoded by the

Kautz Plan Recognition 09/09/97 page 14

axioms in HD, are interrelated but separate. Work on hierarchical planning often confuses these

two distinct notions in an action or event hierarchy.

End
Event

Prepare
Meal Wash

Dishes

Make
Pasta
Dish

Make
Meat
Dish

Make
Noodles

Boil

Make
Fettucini

Make
Spaghetti

Make
Marinara

Make Chicken
Marinara

Make
Sauce

Any
Event

Make
Spaghetti

Pesto

Make
Fettucini
Alfredo

Make
Afredo
Sauce

Make
Pesto

s1

s3

s2

s5

s2s1s1

Make
Spaghetti
Marinara

s2s2s1

figure 1: Cooking event hierarchy. (The abstraction arc from
MakeSauce to AnyEvent is omitted for clarity.)

The diagram illustrates some, but not all, of the information in the axioms for the cooking

domain. The formal description of the hierarchy is as follows.

•The set of event types, HE, includes PrepareMeal, MakeNoodles, MakeFettucini, and so on.

•The abstraction axioms, HA, relate event types to their abstractions. For instance,

MakeNoodles is an abstraction of both MakeSpaghetti and MakeFettucini. A traditional

planning system might call MakeSpaghetti and MakeFettucini different bodies of the

Kautz Plan Recognition 09/09/97 page 15

MakeNoodles plan. This relationship is represented by asserting that every instance of the more

specialized type is also an instance of the more abstract type. For example,

∀x . MakeSpaghetti(x) ⊃ MakeNoodles(x)

∀x . MakeFettucini(x) ⊃ MakeNoodles(x)

•The basic event types, HEB, appear at the bottom of the abstraction (grey) hierarchy. These

include the types Boil, MakeSpaghettiMarinara, MakeFettucini, and so on. Note that basic event

types may have components (but no specializations).

•The decomposition axioms, HD, include information that does not appear in the diagram.

Following is an incomplete version of the decomposition axiom for the MakePastaDish event.

This act includes at least three steps: making noodles, making sauce, and boiling the the noodles.

The equality constraints assert, among other things, that the agent of each step is the same as the

agent of the overall act;3 and that the noodles the agent makes (specified by the result role

function applied to the MakeNoodles step) are the thing boiled (specified by the input role

function applied to the Boil step). Temporal constraints explicitly state the temporal relations

between the steps and the MakePastaDish. For example, the time of each step is during the time

of the MakePastaDish, and the Boil must follow the MakeNoodles. The constraints in the

decomposition include the preconditions and effects of the events. Preconditions for

MakePastaDish include that the agent is in the kitchen during the event, and that the agent is

dexterous (making pasta by hand is no mean feat!). An effect of the event is that there exists

something which is a PastaDish, the result of the event, which is ready to eat during a time

period postTime, which immediately follows the time of the cooking event.

3 It is not necessarily the case that the agent of an event be the same as the agent of each of its components. One
could as easily write constraints that they be different. For example, a plan for a cook could include steps to be
carried out by the cook’s helper.

Kautz Plan Recognition 09/09/97 page 16

∀x . MakePastaDish(x) ⊃
MakeNoodles(step1(x)) ∧

Components MakeSauce(step2(x)) ∧
Boil(step3(x)) ∧

Equality agent(step1(x)) = agent(x) ∧
 Constraints result(step1(x)) = input(step3(x)) ∧
Temporal During(time(step1(x)), time(x)) ∧
 Constraints BeforeMeets(time(step1(x)), time(step3(x))) ∧

Overlaps(time(x), postTime(x)) ∧
Preconditions InKitchen(agent(x), time(x)) ∧

Dexterous(agent(x)) ∧
Effects ReadyToEat(result(x), postTime(x)) ∧

PastaDish(result(x))

Note that the names of the component roles, step1, step2, etc., are arbitrary; they do not indicate

temporal ordering. The event types that specialize MakePastaDish add additional constraints

and steps to its decomposition. For example, the event type MakeSpaghettiMarinara further

constrains its decomposition to include MakeSpaghetti (rather than the more generic

MakeNoodles) and MakeMarinaraSauce (rather than simply MakeSauce). One could also add

completely new steps as well.
∀x . MakeSpaghettiMarinara(x) ⊃

MakeSpaghetti(step1(x)) ∧
MakeMarinaraSauce(step2(x)) ∧ …

Assertions about particular event instances take the form of the predication of an event

type of a constant, conjoined with equality assertions about the roles of the event token, and

perhaps a proposition relating the time of the event to that of other events. The English

statement, “Yesterday Joe made the noodles on the table ” may be represented as follows:

MakeNoodle(Make33) ∧
agent(Make33) = Joe ∧
result(Make33) = Noodles72 ∧
OnTable(Noodles72, Tnow) ∧
During(time(Make33), Tyesterday)

3. The Formal Theory of Recognition

We have seen that the kind of inferences performed in plan recognition do not follow

from an event hierarchy alone. The abstraction hierarchy is strengthened by assuming that there

Kautz Plan Recognition 09/09/97 page 17

are no event types outside of HE, and that all abstraction relations between event predicates are

derivable from HA. The decomposition hierarchy is strengthened by assuming that non-End

events occur only as components of other events. These assumptions are reasonable because the

hierarchy encodes all of our knowledge of events. If the hierarchy is enlarged, the assumptions

must be revised. Finally, a simplicity assumption is used to combine information from several

observations. We now consider the various kinds of assumptions in detail.

3.1. Exhaustiveness Assumptions (EXA)

Suppose you know that the agent is making some kind of sauce that is not Alfredo sauce

and not pesto. Then you can reasonably conclude that the agent is making marinara sauce. Such

a conclusion is justified by the assumption that the known ways of specializing an event type are

the only ways of specializing it. In this case, the assumption is

∀x . MakeSauce(x) ⊃
MakeMarinara(x) ∨
MakeAlfredoSauce(x) ∨
MakePesto(x)

Another way to write this same statement is

∀x . MakeSauce(x) ∧ ¬ MakeAlfredoSauce(x) ∧ ¬MakePesto(x) ⊃
MakeMarinara(x)

This kind of assumption allows one to determine that a particular kind of event has

occurred by eliminating all other possibilities. Fans of Sherlock Holmes will recognize it as an

instance of his dictum, “When you have eliminated the impossible, whatever remains, however

improbable, must be the truth.” [Doyle 1890]

The set EXA of exhaustiveness assumptions are all statements of the following form,

where E0 is a predicate in HA, and {E1, E2, … , En} are all the predicates directly abstracted by

E0 :

∀x . E0(x) ⊃ (E1(x) ∨ E2(x) ∨ … ∨ En(x))

Kautz Plan Recognition 09/09/97 page 18

3.2. Disjointness Assumptions (DJA)

Suppose the agent is making a pasta dish. It is clear from the example hierarchy that this

particular event is not an instance of making a meat dish. That is, we make the assumption that

∀x . MakePastaDish(x) ⊃ ¬MakeMeatDish(x)

Why is this only an assumption? Suppose a new type were added to the hierarchy that

specialized both MakePastaDish and MakeMeatDish:

∀x . MakeMeatRavioli(x) ⊃ MakePastaDish(x)

∀x . MakeMeatRavioli(x) ⊃ MakeMeatDish(x)

Then the assumption that meat dishes and pasta dishes are disjoint would no longer be

reasonable. Assuming that one’s knowledge of events is complete, however, it is reasonable to

assume that two types are disjoint, unless one abstracts the other, or they abstract a common

type; that is, if they are compatible. The disjointness assumptions together with the

exhaustiveness assumptions entail that every event has a unique basic type, where the basic types

are the leaves of the abstraction hierarchy.

The set DJA of disjointness assumptions consists of all statements of the following form,

where event predicates E1 and E2 are not compatible:

∀x . ¬E1(x) ∨ ¬E2(x)

3.3. Component/Use Assumptions (CUA)

The most important assumptions for recognition let one infer the disjunction of the

possible “causes” for an event from its occurrence. They state that a plan or action implies the

disjunction of the plans which use it as a component. The simplest case is when only a single

type could have a particular event as a direct component. For instance, from the fact that the

agent is boiling water one can conclude that the agent is making a pasta dish. Formally, the

assumption is that

∀ x . Boil(x) ⊃ ∃ y . MakePastaDish(y) ∧ x = step3(y)

Kautz Plan Recognition 09/09/97 page 19

More generally, the conclusion of this kind of assumption is the disjunction of all events

that have a component that is compatible with the premise. Consider the assumption for

MakeSauce. This type is compatible with itself and all of its specializations:

MakeAlfredoSauce, MakePesto, and MakeMarinara. The following formula describes all the

events that could have a component of those types:

∀ x . MakeSauce(x) ⊃
(∃ y . MakePastaDish(y) ∧ x = step2(y)) ∨
(∃ y . MakeFettuciniAlfredo(y) ∧ x = step2(y)) ∨
(∃ y . MakeSpaghettiPesto(y) ∧ x = step2(y)) ∨
(∃ y . MakeSpaghettiMarinara(y) ∧ x = step2(y)) ∨
(∃ y . MakeChickenMarinara(y) ∧ x = step5(y))

Note that MakeChickenMarinara has MakeMarinara as a component, which is compatible with

MakeSauce. The formula can be simplified by using the abstraction axioms for MakePastaDish.

∀ x . MakeSauce(x) ⊃
(∃ y . MakePastaDish(y) ∧ x = step2(y)) ∨
(∃ y . MakeChickenMarinara(y) ∧ x = step5(y))

This example demonstrates that making such a component/use assumption is not the

same as predicate completion in the style of Clark [1978]. Predicate completion yields

∀ x . MakeSauce(x) ⊃
(∃ y . MakePastaDish(y) ∧ x = step2(y))

This assumption is too strong, because it omits the use of MakeSauce as specialized by

MakeMarinara that is implicit in event hierarchy.

The definition of the set CUA of component/use assumptions follows. For any E ∈ HE,

define Com(E) as the set of event predicates with which E is compatible. Consider all the

decomposition axioms in which any element of Com(E) appears on the right-hand side. The j-th

such decomposition axiom has the following form, where Eji is the element of Com(E):

∀x . Ej0(x) ⊃ Ej1(fj1(x)) ∧ … ∧ Eji(fji(x)) ∧ … ∧ Ejn(fjn(x)) ∧ κ

Suppose that the series of these axioms, where an axiom is repeated as many times as there are

members of Com(E) in its right-hand side, is of length m > 0. Then the following formula is the

component/use assumption for E:

Kautz Plan Recognition 09/09/97 page 20

∀x . E(x) ⊃ End(x) ∨
(∃y . E1,0(y) ∧ f1i(y)=x) ∨

 (∃y . E2,0(y) ∧ f2i(y)=x) ∨

 … ∨
 (∃y . Em,0(y) ∧ fmi(y)=x)

CUA is the set of all such formulas for a given hierarchy. It is usually possible to remove

redundant subexpressions from the right-hand side of these formulas, as in the example above.

Throughout the rest of this chapter such simplifications will be made.

3.4. Minimum Cardinality Assumptions (MCA)

The assumptions described above do not combine information from several observations.

Suppose that the agent is observed to be making spaghetti and making marinara sauce. The first

observation is explained by applying the component/use assumption that the agent is making

spaghetti marinara or making spaghetti pesto. The second observation is similarly explained by

the conclusion that the agent is making spaghetti marinara or chicken marinara. The conclusion

cannot be drawn, however, that the agent is making spaghetti marinara. The End event that

explains the first observation could be distinct from the End event that explains the second. The

theory as outlined so far sanctions only the statement

∃x . [MakeSpaghettiMarinara(x) ∨ MakeSpaghettiPesto(x)] ∧
∃y . [MakeSpaghettiMarinara(y) ∨ MakeChickenMarinara(y)]

In many cases it is reasonable to assume that the observations are related. A simple heuristic is

to assume that there is a minimal number of distinct End events. In this example, all the types

above are specializations of End. The statement above, the disjointness assumptions, and the

assumption that there is no more than one End event entails the conclusion that the agent is

making spaghetti marinara.

The three different kinds of assumptions discussed above are computed from the event

hierarchy before any observations are made. The appropriate minimum cardinality assumption

(MCA) is based on both the hierarchy and the specific observations that have been made.

Consider the following sequences of statements.

MA0. ∀x . ¬End(x)

Kautz Plan Recognition 09/09/97 page 21

MA1. ∀x,y . End(x) ∧ End(y) ⊃ x=y

MA2. ∀x,y,z . End(x) ∧ End(y) ∧ End(z)

⊃ (x=y) ∨ (x=z) ∨ (y=z)

…

The first asserts that no End events exist; the second, no more than one End event exists; the

third, no more than two; and so on. Let the observations be represented by a set of formulas Γ.

The minimum cardinality assumption appropriate for H and Γ is the formula MAi, where i is the

smallest integer such that

Γ ∪ H ∪ EXA ∪ DJA ∪ CUA ∪ MAi

is consistent. (This consistency test is, in general, undecidable; the algorithms described later in

this chapter create separate data structures corresponding to the application of each assumption to

the observations, and prune the data structures when an inconsistency is noticed. At any time the

conclusions of the system are represented by the data structure corresponding to the strongest

assumption.)

3.5. Example: The Cooking World

The following example shows how the different components of the event hierarchy and

kinds of assumptions interact in plan recognition. As noted earlier, constants prefixed with a “*”

stand in place of existentially-quantified variables. Suppose the observer initially knows that the

agent will not be making Alfredo sauce. Such knowledge could come from information the

observer has about the resources available to the agent; for example, a lack of cream. Further

suppose that the initial observation is that the agent is making some kind of noodles.

Observation
[1] MakeNoodles(Obs1)

Component/Use Assumption [1] & Existential Instantiation
[2] MakePastaDish(*I1) ∧ step1(*I1)=Obs1

Abstraction [2]
[3] PrepareMeal(*I1)

Kautz Plan Recognition 09/09/97 page 22

Abstraction [3]
[4] End(*I1)

Although the recognized plan is not fully specified, enough is known to allow the observer to

make predictions about future actions of the agent. For example, the observer can predict that

the agent will boil water:

Decomposition [2]
[5] Boil(step3(*I1)) ∧ After(time(Obs1), time(step3(*I1)))

The observer may choose to make further inferences to refine the hypothesis. The single

formula “MakePastaDish(*I1)” above does not summarize all the information gained by plan

recognition. The actual set of conclusions is always infinite, since it includes all formulas that

are entailed by the hierarchy, the observations, and the assumptions. (The algorithms discussed

later in this chapter perform a limited number of inferences and generate a finite set of

conclusions.) Several inference steps are required to reach the conclusion that the agent must be

making spaghetti rather than fettucini.

Given Knowledge
[6] ∀x . ¬MakeAlfredoSauce(x)

Exhaustiveness Assumption [2]
[7] MakeSpaghettiMarinara(*I1) ∨ MakeSpaghettiPesto(*I1)

∨ MakeFettuciniAlfredo(*I1)

Decomposition & Universal Instantiation
[8] MakeFettuciniAlfredo(*I1) ⊃ MakeAlfredoSauce(step2(*I1))

Modus Tollens [6,8]
[9] ¬MakeFettuciniAlfredo(*I1)

Disjunction Elimination [7,9]
[10] MakeSpaghettiMarinara(*I1) ∨ MakeSpaghettiPesto(*I1)

Decomposition & Universal Instantiation
[11] MakeSpaghettiMarinara(*I1) ⊃ MakeSpaghetti(step1(*I1))
[12] MakeSpaghettiPesto(*I1) ⊃ MakeSpaghetti(step1(*I1))

Kautz Plan Recognition 09/09/97 page 23

Reasoning by Cases [10,11,12]
[13] MakeSpaghetti(step1(*I1))

Suppose that the second observation is that the agent is making marinara sauce. The minimal

cardinality assumption allows the observer to intersect the possible explanations for the first

observation with those for the second, in order to reach the conclusion that the agent is making

spaghetti marinara.

Second Observation
[14] MakeMarinara(Obs2)

Component/Use Assumption [14] & Existential Instantiation
[15] MakeSpaghettiMarinara(*I2) ∨ MakeChickenMarinara(*I2)

Abstraction [15]
[16] MakePastaDish(*I2) ∨ MakeMeatDish(*I2)

Abstraction [16]
[17] PrepareMeal(*I2)

Abstraction [17]
[18] End(*I2)

Minimality Assumption
[19] ∀ x,y . End(x) ∧ End(y) ⊃ x=y

Universal Instantiation & Modus Ponens [4,17,19]
[20] *I1 = *I2

Substitution of Equals [2,30]
[21] MakePastaDish(*I2)

Disjointness Assumption
[22] ∀ x . ¬MakePastaDish(x) ∨ ¬MakeMeatDish(x)

Disjunction Elimination [21,22]
[23] ¬MakeMeatDish(*I2)

Abstraction & Existential Instantiation
[24] MakeChickenMarinara(*I2) ⊃ MakeMeatDish(*I2)

Kautz Plan Recognition 09/09/97 page 24

Modus Tollens [23,24]
[25] ¬MakeChickenMarinara(*I2)

Disjunction Elimination [15,25]
[26] MakeSpaghettiMarinara(*I2)

3.6. Circumscription and Plan Recognition

Earlier we discussed the relation of circumscription to plan recognition in informal terms.

Now we will make that relation precise, and in so doing, develop a model theory for part of the

plan recognition framework.

Circumscription is a syntactic transformation of a set of sentences representing an agent’s

knowledge. Let S[π] be a set of formulas containing a list of predicates π. The expression S[σ]

is the set of formulas obtained by rewriting S with each member of π replaced by the

corresponding member of σ. The expression σ ≤ π abbreviates the formula stating that the

extension of each predicate in σ is a subset of the extension of the corresponding predicate in π;

that is

(∀x . σ1(x) ⊃ π1(x)) ∧ … ∧ (∀x . σn(x) ⊃ πn(x))

where each x is a list of variables of the proper arity to serve as arguments to each σi. The

circumscription of π relative to S, written Circum(S,π), is the second-order formula

(∧S) ∧ ∀ σ . [(∧S[σ]) ∧ σ ≤ π] ⊃ π ≤ σ

Circumscription has a simple and elegant model theory. Suppose M1 and M2 are models

of S which are identical except that the extension in M2 of one or more of the predicates in π is a

proper subset of the extensions of those predicates in M1. This is denoted by the expression M1

>> M2 (where the expression is relative to the appropriate S and π). We say that M1 is minimal

in π relative to S if there is no such M2.

The circumscription Circum(S,π) is true in all models of S that are minimal in the π
[Etherington 1986]. Therefore to prove that some set of formulas S ∪ T entails Circum(S,π) it

suffices to show that every model of S ∪ T is minimal in π relative to S.

Kautz Plan Recognition 09/09/97 page 25

 The converse does not always hold, because the notion of a minimal model is powerful

enough to capture such structures as the standard model of arithmetic, which cannot be

axiomatized [Davis 1980]. In the present work, however, we are only concerned with cases

where the set of minimal models can be described by a finite set of first-order formulas. The

following assertion about the completeness of circumscription appears to be true, although we

have not uncovered a proof:

Supposition: If there is a finite set of first-order formulas T such that the set of models of S ∪ T

is identical to the set of models minimal in π relative to S, then that set of models is also identical

to the set of models of Circum(S,π). Another way of saying this is that circumscription is

complete when the minimal-model semantics is finitely axiomatizable.

Given this supposition, to prove that Circum(S,π) entails some set of formulas S ∪ T it

suffices to show that T holds in every model minimal in π relative to S.

3.6.1. Propositions

The major stumbling block to the use of circumscription is the lack of a general

mechanical way to determine how to instantiate the predicate parameters in the second-order

formula. The following propositions demonstrate that the first three classes of assumptions

discussed above, exhaustiveness, disjointness, and component/use, are equivalent to particular

circumscriptions of the event hierarchy. (Note: the bidirectional entailment sign ⇔ is used

instead of the equivalence sign ≡ because the left hand side of each statement is a set of formulas

rather than a single formula.)

The first proposition states that the exhaustiveness assumptions (EXA) are obtained by

circumscribing the non-basic event types in the abstraction hierarchy. Recall that the abstraction

axioms say that every instance of an event type is an instance of the abstractions of the event

type. This circumscription minimizes all the event types, except those which cannot be further

specialized. Therefore, something can be an instance of a non-basic event type only if it is also

an instance of a basic type, and the abstraction axioms entail that it is an instance of the non-

basic type. In other words, this circumscription generates the implications from event types to

the disjunctions of their specializations.

Kautz Plan Recognition 09/09/97 page 26

1. HA ∪ EXA ⇔ Circum(HA , HE–HEB)

The second proposition states that the disjointness assumptions (DJA) are obtained by

circumscribing all event types other than “AnyEvent”, the most general event type, in the

resulting set of formulas. The minimization means that something is an instance of an event type

only if it has to be, because it is an instance of AnyEvent, and the exhaustiveness assumptions

imply that it is also an instance of a chain of specializations of AnyEvent down to some basic

type. In other words, no instance is a member of two different types unless those types share a

common specialization; that is, unless they are compatible.

2. HA ∪ EXA ∪ DJA ⇔ Circum(HA ∪ EXA, HE–{AnyEvent})

The third proposition states that the component/use assumptions (CUA) result from

circumscribing all event types other than End relative to the complete event hierarchy together

with the exhaustiveness and disjointness assumptions. Note that in this case both the

decomposition and abstraction axioms are used. Intuitively, events of type End “just happen”,

and are not explained by their occurrence as a substep of some other event. Minimizing all the

non-End types means that events occur only when they are End, or a step of (a subtype of) End,

or a step of step of (a subtype of) End, etc. This is equivalent to saying that a event entails the

disjunction of all events which could have the first event as a component.

3. H ∪ EXA ∪ DJA ∪ CUA ⇔ Circum(H ∪ EXA ∪ DJA , HE–{End})

The minimum cardinality assumption cannot be generated by this kind of

circumscription. The minimum cardinality assumption minimizes the number of elements in the

extension of End, while circumscription performs setwise minimization. A model where the

extension of End is {:A, :B} would not be preferred to one where the extension is {:C}, because

the the latter extension is not a proper subset of the former.

3.6.2. Covering Models

The various completeness assumptions are intuitively reasonable and, as we have seen,

can be defined independently of the circumscription schema. The propositions above might

therefore be viewed as a technical exercise in the mathematics of circumscription, rather than as

part of an attempt to gain a deeper understanding of plan recognition. On the other hand, the

propositions do allow us to use the model theory of circumscription to construct a model theory

Kautz Plan Recognition 09/09/97 page 27

for the plan recognition. The original event hierarchy is missing information needed for

recognition — or equivalently, the original hierarchy has too many models. Each

circumscription throws out some group of models that contain extraneous events. The models of

the final circumscription can be thought of as “covering models”, because every event in each

model is either of type End or is “covered” by an event of type End that has it as a component.

(This in fact is the lemma that appears below in the proof of proposition 3.)

The minimum cardinality assumption further narrows the set of models, selecting out

those containing the smallest number of End events. Therefore the conclusions of the plan

recognition theory are the statements that hold in all “minimum covering models” of the

hierarchy and observations. This model-theoretic interpretation of the theory suggests its

similarity to work on diagnosis based on minimum set covering models, such as that of Reggia,

Nau, & Wang [1983].

3.6.3. Proof of Proposition 1

HA ∪ EXA ⇔ Circum(HA , HE–HEB)

(⇐) Suppose {E1, E2, … , En} are all the predicates directly abstracted by E0 in HA. We claim

that the statement:
∀x . E0(x) ⊃ (E1(x) ∨ E2(x) ∨ … ∨ En(x))

is true in all models of HA that are minimal in HE–HEB. Let M1 be a model of HA in which the

statement does not hold. Then there must be some :C such that
E0(x) ∧ ¬E1(x) ∧ … ∧ ¬En(x)

is true in M1{x/:C}. Define M2 by
Domain(M2) = Domain(M1)

M2[Z] = M1[Z] for Z ≠ E0
M2[E0] = M1[E0] – {:C}

That is, M2 is the same as M1, except that :C ∉ M2[E0]. We claim that M2 is a model of HA.

Every axiom that does not contain E0 on the right-hand side is plainly true in M2. Axioms of the

form
∀x . Ei(x) ⊃ E0(x) 1 ≤ i ≤ n

are false in M2 only if there is a :D such that
:D ∈ M2[Ei] ∧ :D ∉ M2[E0]

Kautz Plan Recognition 09/09/97 page 28

If :D ≠ :C, then :D ∈ M2[Ei] ⇒ :D ∈ M1[Ei] ⇒ :D ∈ M1[E0] ⇒ :D ∈ M2[E0] which is a

contradiction. Otherwise if :D = :C, then :D ∈ M2[Ei] ⇒ :D ∈ M1[Ei] ⇒ :C ∈ M1[Ei] which

also is a contradiction. Therefore there can be no such :D, so M2 is a model of HA and M1 is not

minimal.

(⇒) First we prove the following lemma: Every event in a model of HA ∪ EXA is of at least

one basic type. That is, if M1 is a model of HA ∪ EXA such that :C ∈ M1[E0], then there is a

basic event type Eb ∈ HEB such that :C ∈ M1[Eb] and E0 abstracts= Eb. The proof is by

induction. Define a partial ordering over HE by Ej < Ek iff Ek abstracts Ej. Suppose E0 ∈ HEB.

Then E0 abstracts= E0. Otherwise, suppose the lemma holds for all Ei < E0. Since
∀x . E0(x) ⊃ (E1(x) ∨ E2(x) ∨ … ∨ En(x))

and :C ∈ M1[E0], it must the case that

:C ∈ M1[E1] ∨ … ∨ :C ∈ M1[En]

Without loss of generality, suppose :C ∈ M1[E1]. Then there is an Eb such that E1 abstracts=

Eb and :C ∈ M1[Eb]. Since E0 abstracts E1, it also abstracts= Eb. This completes the proof of

the lemma.

We prove that if M1 is a model of HA ∪ EXA, then M is a model of HA minimal in HE–HEB.

Suppose not. Then there is an M2 such that M1 >> M2, and there is (at least one) E0 ∈ HE–

HEB and event :C such that
:C ∈ M1[E0] ∧ :C ∉ M2[E0]

By the lemma, there is an Eb ∈ HEB such that :C ∈ M1[Eb]. Since M1 and M2 agree on HEB,

:C ∈ M2[Eb], and because E0 abstracts Eb, :C ∈ M2[E0], which is a contradiction. Therefore

there can be no such M2, and M1 is minimal. This completes the proof of the proposition.

3.6.4. Proof of Proposition 2

HA ∪ EXA ∪ DJA ⇔ Circum(HA ∪ EXA, HE–{AnyEvent})

(⇐) We claim that if event predicates E1 and E2 are not compatible, then the statement:

∀x . ¬E1(x) ∨ ¬E2(x)

is true in all models of HA ∪ EXA that are minimal in HE–{AnyEvent}. Let M1 be a model of

HA ∪ EXA in which the statement is false and :C be an event such that

E1(x) ∧ E2(x)

is true in M1{x/:C}. Using the lemma from the proof of proposition 1, let Eb be a basic event

type abstracted by E1 such that :C ∈ M1[Eb]. Define M2 as follows.

Kautz Plan Recognition 09/09/97 page 29

Domain(M2) = Domain(M1)

M2[Z] = M1[Z] for Z ∉ HE
M2[Ei] = M1[Ei] if Ei abstracts= Eb

M1[Ei]–{:C} otherwise

In particular, note that M1[AnyEvent]=M2[AnyEvent], since AnyEvent certainly abstracts Eb.

We claim that M2 is a model of HA ∪ EXA.

(Proof that M2 is a model of HA.) Suppose not ; in particular, suppose the axiom

∀x . Ej(x) ⊃ Ei(x)

is false in M2. Since it is true in M1, and M2 differs from M1 only in the absence of :C from the

extension of some event predicates, it must be the case that
:C ∈ M2[Ej] ∧ :C ∉ M2[Ei]

while
:C ∈ M1[Ej] ∧ :C ∈ M1[Ei]

By the definition of M2, it must be the case that Ej abstracts= Eb. Since Ei abstracts Ej, then Ei
abstracts= Eb as well. But then M1 and M2 would have to agree on Ei; that is, :C ∈ M2[Ei],

which is a contradiction.
(Proof that M2 is a model of EXA.) Suppose not; in particular, suppose

∀x . Ej0(x) ⊃ (Ej1(x) ∨ Ej2(x) ∨ … ∨ Ejn(x))

is false. Then it must be the case that
:C ∈ M2[Ej0] ∧ :C ∉ M2[Ej1] ∧ … ∧ :C ∉ M2[Ejn]

But :C ∈ M2[Ej0] means that Ej0 abstracts= Eb. Since Ej0 is not basic, at least one of

Ej1, …, Ejn abstracts= Eb. Without loss of generality, suppose it is Ej1. Then :C ∈ M1[Eb]

⇒ :C ∈ M2[Eb] ⇒ :C ∈ M2[Ej1], a contradiction.

Note that because E1 and E2 are not compatible, E2 cannot abstract= Eb. Thus :C ∉ M2[E2], so

M1 and M2 differ at least on E2. Therefore M1 >> M2 so M1 is not minimal.

(⇒) First we note the following lemma: Every event in a model of HA ∪ EXA ∪ DJA is of

exactly one basic type. By the lemma in the proof of proposition 1 there is at least one such

basic type, and by DJA no event is of two basic types.

We prove that if M1 is an model of HA ∪ EXA ∪ DJA, then M1 is minimal in HE–{AnyEvent}

relative to HA ∪ EXA. Suppose there is an M2 such that M1 >> M2.and there exists (at least

one) E0 ∈ HE–{AnyEvent} and event :C such that
:C ∈ M1[E0] ∧ :C ∉ M2[E0]

Kautz Plan Recognition 09/09/97 page 30

Then :C ∈ M1[E0] ⇒ :C ∈ M1[AnyEvent] ⇒ :C ∈ M2[AnyEvent]. By the lemma in the proof

of proposition 1 there is some Eb ∈ HEB such that :C ∈ M2[Eb]. Since M1 >> M2, it must be

the case that :C ∈ M1[Eb]. By the lemma above, Eb is the unique basic type of :C in M1, and E0
abstracts= Eb. But E0 abstracts= Eb means that :C ∈ M2[Eb] ⇒ :C ∈ M2[E0], a contradiction.

Therefore there can be no such M2, and M1 must be minimal. This completes the proof of

proposition 2.

3.6.5. Proof of Proposition 3

H ∪ EXA ∪ DJA ∪ CUA ⇔ Circum(H ∪ EXA ∪ DJA , HE–{End})

(⇐) First we prove the following lemma: Suppose M1 is a model of H ∪ EXA ∪ DJA that is

minimal in HE–{End}. If :C1 ∈ M1[E1] for any event predicate E1, then either :C1 ∈ M1[End]

or there exists some event token :C2 such that :C1 is a direct component of :C2. Suppose the

lemma were false. Define M2 as follows.
M2[Z] = M1[Z] for Z ∉ HE
M2[E] = M1[E]–{:C1} for E ∈ HE

Note that M1 and M2 agree on End. We will show that H ∪ EXA ∪ DJA holds in M2 which

means that M1 >> M2, a contradiction. We consider each of the types of axioms in turn.

(Case 1) Axioms in HG must hold, because they receive the same valuation in M1 and M2.

(Case 2) Axioms in HA are of the form:
∀x . Ej(x) ⊃ Ei(x)

Suppose one is false; then for some :D,
:D ∈ M2[Ej] ∧ :D ∉ M2[Ei]

But this is impossible, because M1 and M2 must agree when :D ≠ :C1, as must be case, because

:C1 does not appear in the extension of any event type in M2.

(Case 3) Axioms in EXA must hold by the same argument.

(Case 4) Axioms in DJA must hold because they contain no positive uses of HE.

(Case 5) The j-th axiom in HD is of the form:
∀x . Ej0(x) ⊃ Ej1(fj1(x)) ∧ Ej2(fj2(x)) ∧ … ∧ Ejn(fjn(x)) ∧ κ

Suppose it does not hold in M2. Then there must be some :C2 such that

Ej0(x) ∧ {¬Ej1(fj1(x)) ∨ ¬Ej2(fj2(x)) ∨ … ∨ ¬κ }

Kautz Plan Recognition 09/09/97 page 31

is true in M2{x/:C2}. M1 and M2 agree on κ, so it must the case that for some j and i,

M2[fji](:C2) ∉ M2[Eji] while M1[fji](:C2) ∈ M1[Eji]. Because M1 and M2 differ on Eji only at

:C1, it must be the case that M1[fji](:C2) = :C1. But then :C1 is a component of :C2 in M1,

contrary to our original assumption. This completes the proof of the lemma.

Consider now an arbitrary member of CUA as defined above, which has predicate E on its left

hand side. Let M be a model of H ∪ EXA ∪ DJA that is minimal in HE–{End} such that :C

∈ M[E] and :C ∉ M[End]. By the lemma above there is an Ej0, Eji, and :D such that
:D ∈ M[Ej0]

:C ∈ M[Eji]

:C = M[fji](:D)

where fji is a role function in a decomposition axiom for Ej0. Because M is a model of DJA, E

and Eji are compatible. By inspection we see that the second half of the formula above is true in

M when x is bound to :C, because the disjunct containing Eji is true when the variable y is

bound to :D. Since the choice of :C was arbitrary, the entire formula is true in M. Finally, since

the choice of M and the member of CUA was arbitrary, all of CUA is true in all models of H

∪ EXA ∪ DJA that are minimal in HE–{End}.

(⇒) We prove that if M1 is a model of H ∪ EXA ∪ DJA ∪ CUA, then it is a model of H

∪ EXA ∪ DJA which is minimal in HE–{End}. Suppose not; then there is an M2 such that M1
>> M2, and there exists (at least one) E1 ∈ HE–{End} and event :C1 such that

:C1 ∈ M1[E1]

:C1 ∉ M2[E1]

We claim that there is a :Cn such that :Cn ∈ M1[End] and :C1 is a component= of :Cn. This is

obviously the case if :C1 ∈ M1[End]; otherwise, for the axioms in CUA to hold there must be

sequences of event tokens, types, and role functions of the following form:
:C1 :C1 :C3 :C3 :C5 :C5 …

E1 E2 E3 E4 E5 E6 …

f3i f5i …

such that
For all j, :Cj ∈ M1[Ej]

For odd j, Ej and Ej+1 are compatible

For odd j, j ≥ 3, Ej-1 is a direct component of Ej, and :Cj-2 = M1[fji](:Cj)

Kautz Plan Recognition 09/09/97 page 32

This sequence must terminate with a :Cn such that :Cn ∈ M1[End] because H is acyclic.

Therefore :C1 is a component= of Cn.

Because M1 and M2 agree on End, :Cn ∈ M2[End]. Now for any odd j, 3 ≤ j ≤ n, if :Cj
∈ M2[Ej], then since HD holds in M2, :Cj-2 ∈ M2[Ej-1]. If we prove that for all odd j, 1 ≤ j ≤ n

:Cj ∈ M2[Ej+1] ⇒ :Cj ∈ M2[Ej]

we will be done; because we would then know that :Cn ∈ M2[End] ⇒ :Cn ∈ M2[En+1] ⇒ :Cn
∈ M2[En] ⇒ :Cn-2 ∈ M2[En-1] ⇒ … ⇒ :C3 ∈ M2[E3] ⇒ :C1 ∈ M2[E2] ⇒ :C1 ∈ M2[E1]

which yields the desired contradiction. So assume the antecedent :Cj ∈ M2[Ej+1]. Because M2
is a model of HA ∪ EXA ∪ DJA, there is a unique Eb ∈ HEB such that :Cj ∈ M2[Eb]. Because

M1 >> M2, :Cj ∈ M1[Eb]. Since M1 is a model of HA ∪ EXA ∪ DJA, by the lemma in the

proof of proposition 2 it must be the case that Ej abstracts= Eb. But then since HA holds in M2,

:Cj ∈ M2[Ej], and we are done. This completes the proof of proposition 3.

4. Examples

4.1. An Operating System

Several research groups have examined the use of plan recognition in “smart” computer

operating systems that could answer user questions, watch what the user was doing, and make

suggestions about potential pitfalls and more efficient ways of accomplishing the same tasks

[Huff & Lesser 1982, Wilensky 1983]. A user often works on several different tasks during a

single session at a terminal, and frequently jumps back and forth between uncompleted tasks.

Therefore a plan recognition system for this domain must be able to handle multiple concurrent

unrelated plans. The very generality of the present approach is an advantage in this domain,

where the focus-type heuristics used by other plan recognition systems are not so applicable.

Kautz Plan Recognition 09/09/97 page 33

4.1.1. Representation

End

Rename

Modify
Rename
by Move

Rename
by Copy

CopyDelete EditMove

old
new

file

old
new

file old
new

file

backup
step

edit
step

delete
backup
step

copy
orig step

delete
orig
step

move
step

figure 2: Operating System Hierarchy.

Consider the following hierarchy. There are two End plans: to Rename a file, and to

Modify a file.

∀x . Rename(x) ⊃ End(x)

∀x . Modify(x) ⊃ End(x)

There are two ways to specialize the Rename event. A RenameByCopy involves Copying a file,

and then Deleting the original version of the file, without making any changes in the original file.

∀x . RenameByCopy(x) ⊃ Rename(x)

Kautz Plan Recognition 09/09/97 page 34

∀x . RenameByCopy(x) ⊃
Copy(s1(x)) ∧
Delete(s2(x)) ∧
old(s1(x)) = old(x) ∧
new(s1(x)) = new(x) ∧
file(s2(x)) = old(x) ∧
BeforeMeet(time(s1(x)), time(s2(x))) ∧
Starts(time(s1(x)), time(x)) ∧
Finishes(time(s2(x)), time(x))

A better way to rename a file is to RenameByMove, which simply uses the Move command.4 A

helpful system might suggest that a user try the Move command if it recognizes many instances

of RenameByCopy.

∀x . RenameByMove(x) ⊃ Rename(x)

∀x . RenameByMove(x) ⊃
Move(s1(x)) ∧
old(s1(x)) = old(x) ∧
new(s1(x)) = new(x)

The Modify command has three steps. In the first, the original file is backed up by Copying.

Then the original file is Edited. Finally, the backup copy is Deleted.

∀x . Modify(x) ⊃
Copy(s1(x)) ∧
Edit(s2(x)) ∧
Delete(s3(x)) ∧
file(x) = old(s1(x)) ∧
backup(x) = new(s1(x)) ∧
file(x) = file(s2(x)) ∧
backup(x) = file(s3(x)) ∧
BeforeMeet(time(s1(x)), time(s2(x))) ∧
BeforeMeet(time(s2(x)), time(s3(x)))

4 Another way to represent this information would be to make Move a specialization of Rename. This would mean
that every Move would be recognized as a Rename, and therefore as an End event. This alternative representation
would not be appropriate if there were End events other than Rename which included Move as a component.

Kautz Plan Recognition 09/09/97 page 35

4.1.2. Assumptions

Following are some of the statements obtained by minimizing the hierarchy. The

component/use assumptions include the statement that every Copy action is either part of a

RenameByCopy or of a Modify.

∀x . Copy(x) ⊃
(∃y . RenameByCopy(y) ∧ x=s1(y)) ∨
(∃y . Modify(y) ∧ x=s1(y))

Every Delete event is either the second step of a RenameByCopy, or the third step of a Modify,

in any covering model.

∀x . Delete(x) ⊃
(∃y . RenameByCopy(y) ∧ x=s2(y)) ∨
(∃y . Modify(y) ∧ x=s3(y))

4.1.3. The Problem

Suppose the plan recognition system observes each action the user performs. Whenever a

new file name is typed, the system generates a constant with the same name, and asserts that that

constant is not equal to any other file name constant. (We do not allow UNIX™-style “links”.)

During a session the user types the following commands.

(1) % copy foo bar

(2) % copy jack sprat

(3) % delete foo

The system should recognize two concurrent plans. The first is to rename the file “foo” to “bar”.

The second is to either rename or modify the file “jack”. Let's examine how these inferences

could be made.

Statement (1) is encoded:

Copy(C1) ∧ old(C1)=foo ∧ new(C1)=bar

The component/use assumption for Copy lets the system infer that C1 is either part of a

RenameByCopy or Modify. A new name *I1 is generated (by existential instantiation) for the

disjunctively-described event.

Kautz Plan Recognition 09/09/97 page 36

End(*I1) ∧
((RenameByCopy(*I1) ∧ C1=s1(*I1))
 ∨

(Modify(*I1) ∧ C1=s1(*I1))
)

Statement (2) is encoded:

Copy(C2) ∧ old(C2)=jack ∧ new(C2)=sprat ∧ Before(time(C1), time(C2))

Again the system creates a disjunctive description for the event *I2, which has C2 as a

component.

End(*I2) ∧
((RenameByCopy(*I2) ∧ C2=s1(*I2))
 ∨

(Modify(*I2) ∧ C2=s1(*I2))
)

The next step is to minimize the number of End events. The system might attempt to apply the

strongest minimization default, that

∀x,y . End(x) ∧ End(y) ⊃ x=y

However, doing so would lead to a contradiction. Because the types RenameByCopy and

Modify are disjoint, *I1=*I2 would imply that C1=C2; however, the system knows that C1 and

C2 are distinct -- among other reasons, their times are known to be not equal. The next strongest

minimality default, that there are two End events, cannot lead to any new conclusions.

Statement (3), the act of deleting “foo”, is encoded:

Delete(C3) ∧ file(C3)=foo ∧ Before(time(C2), time(C3))

The system infers by the decomposition completeness assumption for Delete that the user is

performing a RenameByCopy or a Modify. The name *I3 is assigned to the inferred event.

End(*I3) ∧
((RenameByCopy(*I3) ∧ C3=s2(*I3))
 ∨

(Modify(*I3) ∧ C3=s3(*I3))
)

Kautz Plan Recognition 09/09/97 page 37

Again the system tries to minimize the number of End events. The second strongest minimality

default says that there are no more than two End events.

∀x,y,z . End(x) ∧ End(y) ∧ End(z) ⊃
x=y ∨ x=z ∨ y=z

In this case the formula is instantiated as follows.

*I1=*I2 ∨ *I1=*I3 ∨ *I2=*I3

We have already explained why the first alternative is impossible. Thus the system knows

*I1=*I3 ∨ *I2=*I3

The system then reduces this disjunction by reasoning by cases. Suppose that *I2=*I3. This

would mean that the sequence

(2) % copy jack sprat

(3) % delete foo

is either part of a RenameByCopy or of a Modify, described as follows.

End(*I2) ∧
((RenameByCopy(*I2) ∧ C2=s1(*I2) ∧ C3=s2(*I2) ∧
 ✘ old(*I2) = jack ∧ old(*I2) = foo)
∨

(Modify(*I2) ∧ C2=s1(*I2) ∧ C3=s3(*I2) ∧
new(s1(*I2)) = jack ∧
file(*I2) = jack ∧
backup(*I2) = sprat ∧
file(s3(*I2)) = foo ∧

 ✘ backup(*I2) = file(s3(*I2)))
)

But both disjuncts are impossible, since the files that appear as roles of each event do not match

up (as marked with ✘ 's). Therefore, if the minimality default holds, it must be the case that

*I1=*I3

This means that the observations

(1) % copy foo bar

(3) % delete foo

Kautz Plan Recognition 09/09/97 page 38

should be grouped together, as part of a Rename or Modify. This assumption leads the system to

conclude the disjunction:

End(*I1) ∧
((RenameByCopy(*I1) ∧ C1=s1(*I1) ∧ C3=s2(*I1) ∧

old(*I1) = foo ∧ new(*I1) = bar)
∨

(Modify(*I1) ∧ C1=s1(*I1) ∧ C3=s3(*I1) ∧
new(s1(*I1)) = bar ∧
backup(*I1) = bar ∧
file(s3(*I1)) = foo ∧

 ✘ backup(*I1) = file(s3(*I1)))
)

The second alternative is ruled out, since the actions cannot be part of the same Modify. The

system concludes observations (1) and (3) make up a RenameByCopy act, and observation (2) is

part of some unrelated End action.

End(*I1) ∧
RenameByCopy(*I1) ∧
old(*I1) = foo ∧ new(*I1) = bar ∧
End(*I2) ∧
((RenameByCopy(*I2) ∧ C2=s1(*I2))
 ∨

(Modify(*I2) ∧ C2=s1(*I2))
)

Further checking of constraints may be performed, but no inconsistency will arise. At this point

the plan recognizer may trigger the “advice giver” to tell the user:

*** You can rename a file by typing
*** % move oldname newname

4.2. Medical Diagnosis

There are close links between the kinds of reasoning involved in plan recognition, and

that employed in medical diagnosis. The vocabulary of events can be mapped to one appropriate

for diagnosis in a straightforward way. Events are replaced by pathological states of a patient.

An abstraction hierarchy over pathological states is known as a nosology. The decomposition

hierarchy corresponds to a causation hierarchy. If pathological state A always causes

Kautz Plan Recognition 09/09/97 page 39

pathological state B, then B acts as a component of A. If only certain cases of A cause B, then

one can introduce a specialization of A that has component B. The most basic specializations of

End (unexplainable) events correspond to specific disease entities, while states that can be

directly observed are symptoms. (Note that a symptom may also cause other other states: for

example, high blood pressure can be directly measured, and it can cause a heart attack.)

The pattern of inference in plan recognition and diagnosis is similar as well. Each

symptom invokes a number of different diseases to consider, just as each observed event in our

framework entails the disjunction of its uses. Once several findings are obtained, the

diagnostician attempts to find a small set of diseases that accounts for, or covers, all the findings.

This step corresponds to the minimization of End events. A general medical diagnosis system

must deal with patients suffering from multiple diseases; our plan recognition framework was

designed to account for multiple concurrently executing plans. Finally, our work departs from

previous work in plan recognition by explicitly dealing with disjunctive conclusions, which are

winnowed down by obtaining more observations. These disjunctive sets correspond to the

differential diagnosis sets that play a central role in medical reasoning. In some ways medical

diagnosis is easier than plan recognition. Medical knowledge can often be represented in

propositional logic. There is usually no need for diseases to include parameters, the way plans

do, and most medical expert systems do not need to deal with the passage of time.

The following example is drawn from [Pople 1982], and was handled by CADUCEUS,

an expert system that deals with internal medicine. We have made a number of simplifications,

but the key points of the example remain. These include the need to consider specializations of a

pathological state (abstract event type) in order to explain a symptom, finding, or state, and the

process of combining or unifying the differential diagnosis sets invoked by each finding.

4.2.1. Representation

The figure below illustrates a small part of CADUCEUS's knowledge base. The thin

“component” arcs are here understood as meaning “can cause”. We have added the type End as

an abstraction of all pathological states that are not caused by other pathological states. The

basic specializations of End are called specific disease entities. We have simplified the hierarchy

by making the specializations of anemia and shock specific disease entities; in the actual

knowledge base, anemia and shock are caused by other conditions.

Kautz Plan Recognition 09/09/97 page 40

Anemia

Pallor

End

Shock Hepatobilary
Involvement

Non-Hemolyitic
Anemia

Hemolytic
Anemia

Hyperbili-
rubinemia

Unconjugated
Hyperbili-
rubinemia

Conjugated
Hyperbili-
rubinemia

Gilberts
Disease

Bilary
Tract

Hepto
Cellular

Involvement

Cirrhosis

Jaundice

figure 3: Medical Hierarchy.

The logical encoding of this network is as expected. The symptoms caused by a disease

appear in the decomposition axiom for that disease. This is a considerable simplification over

the original CADUCEUS model, in which the causal connections need only be probable.

Symptoms of high probability, however, are taken by CADUCEUS as necessary manifestations,

and CADUCEUS will rule out a disease on the basis of the absence of such symptoms. The

constraints that appear at the end of a decomposition axiom would include conditions of the

patient that are (very nearly) necessary for the occurrence of the disease, but are not themselves

pathological. These could include the age and weight of the patient, his immunization history,

and so on. Thus a constraint on Alzheimer's disease would include the fact that the patient is

over 40. Constraints are not used in this example.

For the sake of clarity the names of the role functions have been omitted from component

(symptom) arcs in the illustration, but such functions are needed in the logical encoding. We

will use the letters j, h, p for role functions, where j is used for symptoms of type jaundice, h for

symptoms of type hyperbilirubinemia, and p for symptoms of type pallor. The names used is

Kautz Plan Recognition 09/09/97 page 41

really not important, except that all the different symptoms caused by a particular disease must

be related to it by different role functions.

A few of the axioms and assumptions follow. All kinds of hyperbilirubinemia cause

jaundice , and both anemia and shock cause pallor .

∀ y . hyperbilirubinemia(y) ⊃ jaundice(j(y))

∀ y . anemia(y) ⊃ pallor(p(y))

∀ y . shock(y) ⊃ pallor(p(y))

Unconjugated hyperbilirubinemia is a kind of hyperbilirubinemia, which can be caused by

hemolytic anemia, a kind of anemia.

∀ x . unconjugated-hyperbilirubinemia(x) ⊃ hyperbilirubinemia(x)

∀ y . hemolytic-anemia(y) ⊃ hyperbilirubinemia(h(y))

∀ x . hemolytic-anemia(x) ⊃ anemia(x)

It may seem a bit odd that we need to use a first-order language, when the problem would

seem to be expressible in purely propositional terms. The problem with using propositional logic

arises from the abstract pathological states. A realistic medical knowledge base incorporates

several methods of classifying diseases, leading to a complex and intertwined abstraction

hierarchy. It is very likely that any patient will manifest at least two distinct pathological states

(perhaps causally related) that specialize the same state. In a purely propositional system such a

pair would appear to be competitors, as in a differential diagnosis set. (This corresponds to the

disjointness assumptions in our system.) But this would plainly be incorrect, if the two states

were causally related.

4.2.2. Assumptions

Now we restrict our attention to the covering models of this hierarchy. The ex-

haustiveness assumptions include the fact that every case of hyperbilirubinemia is either

conjugated or unconjugated.

Kautz Plan Recognition 09/09/97 page 42

∀ x . unconjugated-hyperbilirubinemia(x) ⊃
conjugated-hyperbilirubinemia(x) ∨
unconjugated-hyperbilirubinemia(x)

Disjointness assumptions include the fact that the pathological states of anemia, shock, and

hepatobilary involvement are distinct. It is important to note that this does not mean that the

states cannot occur simultaneously; rather, that none of these states abstract each other.

∀ x . ¬anemia(x) ∨ ¬shock(x)

∀ x . ¬anemia(x) ∨ ¬hepatobilary-involvement(x)

∀ x . ¬shock(x) ∨ ¬hepatobilary-involvement(x)

Finally, the component/use assumptions, better called the manifestation/cause assumptions,

allow one to conclude the disjunction of causes of a pathological state, thus creating a differential

diagnosis set. An important special case occurs when there is only one cause, usually at a fairly

high level of abstraction, for a state. An example of this is the association of jaundice with

hyperbilirubinemia. (Pople calls this case a constrictor relationship between the manifestation

and cause, and argues that such cases play a critical role in reducing search in diagnostic problem

solving.) A less conclusive assumption says that pallor indicates anemia or shock.

∀ x . jaundice(x) ⊃ ∃ y . hyperbilirubinemia(y) ∧ x=j(y)

∀ x . pallor(x) ⊃
(∃ y . anemia(y) ∧ x=p(y)) ∨
(∃ y . shock(y) ∧ x=p(y))

4.2.3. The Problem

We'll sketch the kind of reasoning that goes on when the diagnostician is confronted with

two symptoms, jaundice and pallor. From jaundice the diagnostician concludes hyperbili-

rubinemia. This leads (by exhaustion) to either the conjugated or unconjugated varieties.

Now CADUCEUS (and perhaps a human physician?) may try to perform tests to decide between

these alternatives at this point. The framework we have developed, however, allows us continue

inference in each alternative. The first leads to either hemolytic anemia and then anemia, or

Gilbert’s disease and then hepatobilary involvement. The second leads to either bilary tract

Kautz Plan Recognition 09/09/97 page 43

disease or hepto cellular involvement, both of which lead to hepatobilary involvement. The

following graph shows the final conclusion.

Anemia(E1)

End(E1)

Hepatobilary
Involvement(E1)

Hemolytic
Anemia(E1)

Hyperbili-
rubinemia(H1)

Unconjugated
Hyperbili-

rubinemia(H1)

Conjugated
Hyperbili-

rubinemia(H1)

Gilberts
Disease(E1)

Bilary
Tract(E1)

Hepto
Cellular

Involvement(E1)
Jaundice(J1)

figure 4: Conclusions from Jaundice.

The graph represents the following logical sentence. (Further steps in this example will be

illustrated only in the graphical form.)

Kautz Plan Recognition 09/09/97 page 44

jaundice(*J1) ∧ hyperbilirubinemia(*H1) ∧
((unconjugated-hyperbilirubinemia(*H1) ∧

((hemolytic-anemia(*E1) ∧ anemia(*E1))
 ∨
 (Gilberts-disease(*E1) ∧ hepatobilary-involvement(*E1))
)

)
 ∨
 (conjugated-hyperbilirubinemia(*H1) ∧

(bilary-tract(*E1)
 ∨
 bilary-tract(*E1)
) ∧
heptocellular-involvement(*E1)

)
) ∧
End(*E1)

Next the diagnostician considers pallor. This leads to a simple disjunction.

Anemia(E2)

Pallor(P2)

End(E2)

Shock(E2)

figure 5: Conclusions from Pallor.

Finally, the diagnostician applies Occam's razor, by making the assumption that the symptoms

are caused by the same disease. This corresponds to equating the specific disease entities at the

highest level of abstraction (End) in each of the previous conclusions. In other words, we apply

the strongest minimum cardinality default. This allows the diagnostician to conclude that the

patient is suffering from hemolytic anemia, which has led to unconjugated hyperbilirubin-

emia.

Kautz Plan Recognition 09/09/97 page 45

Anemia(E1)

Pallor(P2)

End(E1)

Hemolytic
Anemia(E1)

Hyperbili-
rubinemia(H1)

Unconjugated
Hyperbili-

rubinemia(H1)

Jaundice(J1)

figure 6: Conclusions from Jaundice and Pallor.

A practical medical expert system must deal with a great many problems not illustrated

by this simple example. We have not dealt with the whole problem of generating appropriate

tests for information; we cannot assume that the expert system is passively soaking in

information, like a person reading a book. The full CADUCEUS knowledge base is enormous,

and it is not clear whether the complete algorithms discussed in the next chapter could deal with

it.

It does seem plain, however, that our framework for plan recognition does formalize

some key parts of diagnostic reasoning. In particular, we show how to “invert” a knowledge

base which allows inferences from causes to effects (diseases to symptoms) to one which allows

inferences from effects to causes. Like the minimum set covering model of [Reggia, Nau, &

Wang 1983] we combine information from several symptoms by finding the smallest set(s) of

diseases which explains all the symptoms. One should note that our framework depends on

having a model of disease, but not a model of healthy processes. This is to be contrasted with

work on “diagnosis from first principles”, such as [Reiter 1987], which models the correct or

healthy functioning of a system, and which derives a diagnosis by trying to resolve

inconsistencies between this model and the actual observations.

Kautz Plan Recognition 09/09/97 page 46

5. Algorithms for Plan Recognition

5.1. Directing Inference

An implementation of this theory of plan recognition must limit and organize the

inferences drawn from the observations, hierarchy, and assumptions. As noted before, the formal

theory sanctions an infinite set of conclusions. An implementation, on the other hand, must

compute some finite data structure in a bounded amount of time.

The framework developed in this chapter does not pose the plan recognition problem in

such a way that a solution is simply the name of a specific plan. Instead, a solution is a partial

description of the plans that are in progress. Different encodings of this description make aspects

of the plan more or less explicit. For example, an encoding that leaves most aspects of the plans

in progress implicit is simply the set of sentences in the observations, hierarchy, and

assumptions. A more explicit encoding would be a disjunction of all the possible End plan

types that explain the observations. A very explicit encoding may not only be expensive to

compute, but may also involve a loss of detail. All information is contained in the observations,

hierarchy, and assumptions, but the more explicit representation may include (for example)

unnecessary disjunctions due to the incompleteness of the inference method employed. In fact,

some degree of incompleteness is necessary in any implementation of our formal theory, because

the definition of the minimum cardinality assumption appeals to the consistency of a set of

sentences, an undecidable property.

The less inference the plan recognition system performs, the more inference must be

formed by the programs that call the plan recognizer as a subroutine. The implementation

described in this section tries to strike a balance between efficiency and power. The choices we

have made are to some degree arbitrary. We have not tried to develop a formal theory of limited

inference to justify these choices, although that would be an interesting and useful project.

Instead, we have been guided by the examples of plan recognition discussed in this chapter and

elsewhere in the literature, and have tried to design a system that makes most of inferences

performed in those examples, and that outputs a data structure that makes explicit most of the

conclusions drawn in those examples.

The implementation performs the following pattern of reasoning: from each observation,

apply component/use assumptions and abstraction axioms until an instance of type End is

Kautz Plan Recognition 09/09/97 page 47

reached. Reduce the number of alternatives by checking constraints locally. In order to combine

information from two observations, equate the instances of End inferred from each and propagate

the equality, further reducing disjunctions. If all alternatives are eliminated, then conclude that

the observations belong to distinct End events. Multiple simultaneous End events are recognized

by considering all ways of grouping the observations. As noted earlier, it is not possible to detect

all inconsistencies. Therefore the “best” explanation returned by the system (by the function

minimum-Hypoths, described below) may in fact be inconsistent, because observations were

grouped together which logically could not be combined.

The algorithms presented here only handle event hierarchies in which the abstraction

hierarchy is a forest. That is, they do not deal with “multiple inheritance”. (But note that the

decomposition hierarchy is not necessarily a forest — one event type may be a component of

many others. For example, MakeMarinara falls below both MakeSpaghettiMarinara and

MakeChickenMarinara in the decomposition hierarchy.) Furthermore, in order to limit inference,

the implementation does not perform inferences that correspond to applications of the

decomposition axioms. This restriction limits the predictive power of the system to some degree.

The implementation could not reach one of the conclusions drawn in the example presented in

section 3.5, where the observer concludes that the agent is making spaghetti because the agent is

known to be making either spaghetti marinara or spaghetti pesto. However, the implementation

described here does make explicit all the other conclusions presented in the examples in this

chapter.

5.2. Explanation Graphs

Chaining through all the component/use assumptions raises the prospect of generating

extremely long disjunctive conclusions. The first assumption generates a disjunction; applying

the assumptions to each disjunct in this formula generates another disjunction; and so on. In

general this process multiplies out the event hierarchy from the bottom up, creating a number of

literals exponential in the size of the original hierarchy. This problem has led other plan

recognition systems to limit component/use type inferences to a single application.

Our implementation meets this problem by using a non-clausal representation of the plan

description. The representation takes the form of a labeled acyclic graph, called an “explanation

graph” or “e-graph”. These graphs can encode disjunctive assertions in a compact form through

Kautz Plan Recognition 09/09/97 page 48

structure-sharing. While in the worst case the e-graph generated by an observation can be

exponential in the size of the event hierarchy, in all the examples we have considered structure

sharing allows the e-graph to be smaller than the hierarchy.

The figure below shows the e-graph that is generated for an observation of

MakeMarinara.

End(N7)

PrepareMeal(N6)

MakePasta
Dish(N4)

MakeMeat
Dish(N5)

MakeSpaghetti
Marinara(N2)

MakeChicken
Marinara(N3)

MakeMarinara(N1)

OR

=

= =

= =

s2 s5

figure 7: e-graph for MakeMarinara(N1).

An e-graph contains the following three kinds of nodes. Event nodes consist of an event

token and a single associated event type. An event token N appears at most once in an e-graph,

so we can simply identify the token with the node, and recover the associated type with the form

type(N). In the figure above, N1 through N7 are all event nodes. Proper names are unique

names for objects other than events and times. Fuzzy temporal bounds are 4-tuples of real

numbers. (No proper names or fuzzy temporal bounds appear in the figure above.)

There are two kinds of arcs, both of which can only lead out of event nodes. A

parameter arc is labeled with a role function fr and points to its value v. When the value is an

event node or a proper name, the arc means that fr(N)=v. The figure above contains two

parameter arcs, labeled s2 and s5. When the value is a fuzzy temporal bound, the arc means that

according to some universal clock, the beginning of the time interval fr(N) falls between the first

Kautz Plan Recognition 09/09/97 page 49

two numbers and the end between the last two numbers. Below we will discuss how fuzzy time

bounds can be combined, so that temporal constraint propagation can be performed without

recourse to a separate temporal database program.

The second kind of arcs are alternative arcs, which always point at event nodes. The

meaning of these arcs is that the (event token identified with the) origin node is equal to one of

the nodes pointed to by an alternative arc. Note that event nodes (tokens) are not unique names

for events; in general, several nodes in an e-graph will represent the same real-world event. The

alternative arcs point from a node of a particular type to a node of a more specialized type. The

alternative arcs in the figure above are labeled with an “=“ sign.

Every e-graph G contains exactly one node N of type End. The translation of that graph

into sentential logic is given by TRANS(N), where TRANS is given by the following recursive

definition.

TRANS(n) =
type(n) (n) ∧

∧{v=fr(n) ∧ TRANS(v) | 〈n,fr,v〉 ∈ G and v is an event node} ∧

∧{v=fr(n) | 〈n,fr,v〉 ∈ G and v is a proper name} ∧

∧{r1 ² fr(n)- ² r2 ∧ r3 ² fr(n)+ ² r4 | 〈n,fr, 〈r1, r2, r3, r4〉〉 ∈ G} ∧

∨{n=m ∧ TRANS(m) | 〈n, =, m〉 ∈ G}

In the first line of the translation, the expression “type(n)” stands for the event type predicate

associated with node n. The full expression “type(n)(n)” means that this predicate is applied to

the logical constant n. Arcs in the graph are represented by triples, consisting of a node, a label,

and a node. In the definition above, 〈n,fr,v〉 is an arc from event node n, labeled with role

function fr, to event node v. Similarly, 〈n,fr, 〈r1, r2, r3, r4〉〉 is an arc from event node n, labeled

with temporal parameter fr, to fuzzy temporal bound 〈r1, r2, r3, r4〉. The triple 〈n, =, m〉
indicates that node m is an alternative for node n in the graph. The postfix functions – and +

apply to a time interval and return the metric time of the start and end of interval respectively.

The event tokens in the translation are interpreted as Skolem constants (existentially quantified

variables). The translation of figure 7 is the sentence

Kautz Plan Recognition 09/09/97 page 50

End(N7) ∧ N7=N6 ∧ PrepareMeal(N6) ∧
((N6=N4 ∧ MakePastaDish(N4) ∧

N4=N2 ∧ MakeSpaghettiMarinara(N2) ∧
step2(N2)=N1 ∧ MakeMarinara(N1))

 ∨ (N6=N5 ∧ MakeMeatDish(N5) ∧
N5=N3 ∧ MakeChickenMarinara(N3) ∧
step5(N3)=N1 ∧ MakeMarinara(N1)))

An e-graph describes a single End event. When the plan recognizer determines that more

than one End event is in progress it returns a set of End events, whose interpretation is the

conjunction of the interpretations of each e-graph. When the observations can be grouped in

different ways the recognizer returns a set of sets of End events, whose interpretation is the

disjunction of the interpretation of each set. For example, given three observations where no

plan contains all three, but some plans contain any two, the recognizer returns a set of the form

{{g1&2, g3}, {g1, g2&3}, {g1&3, g2}}.

5.3. Implementing Component/Use Assumptions

A component/use assumption leads from an event to the disjunction of all events that

have a component that is compatible with the premise. Is is desirable that this disjunction not be

redundant; for example, it should not contain both an event type and a more specialized version

of the event type. The algorithm below implements the component/use assumptions by first

considering the cases that explicitly use the premise event type (plus a few others, as we shall

explain in a moment); next considering the cases that explicitly use a type that specializes the

premise type, and that are not redundant with respect to the first group of cases; and finally

considering the cases that explicitly use a type that abstracts the premise type, and are not

redundant with respect to the previous cases.

A use is a triple, 〈Ec, fr, Eu〉, and stands for the possibility that (some instance of) Ec
could fill the r role of some instance of Eu. The set Uses contains all such triples considered by

the algorithm. We shall say that 〈Eac, r, Eau〉 abstracts 〈Ec, r, Eu〉 exactly when Eac abstracts Ec
and Eau abstracts Eu. The inverse of abstraction is as before called specialization. This notion

of abstraction is used to eliminate redundancy in the implementation of the component/use

assumptions. For example, 〈MakeNoodles, s1, MakePastaDish〉 abstracts 〈MakeSpaghetti, s1,

MakeSpaghettiMarinara〉. Therefore once the algorithm has considered the possibility that an

event of type MakeSpaghetti is a component of an event of MakeSpaghettiMarinara, it would be

Kautz Plan Recognition 09/09/97 page 51

redundant to consider the possibility that the more abstract description of the premise,

MakeNoodles, is a component of an event of type MakePastaDish.

Uses contains the inverse of the direct component relation, together with certain other

“implicit” uses. Consider the following modified cooking hierarchy.

Make
Pasta
Dish

Make
Noodles

Make
Fettucini

Make
Spaghetti

Make
Noodles

Primavera

Make
Spaghetti
Marinara

Make
Fettucini
Alfredo

Make
Afredo
Sauce

Make
Marinara

s1

s2
s1

Make
Primavera
Sauce

s2
s2s1

figure 8: Example of implicit Use.

This new hierarchy introduces the type MakeNoodlesPrimavera which has no direct component

filling the s1 role, and which therefore inherits the component MakeNoodles from

MakePastaDish. Suppose the observation is of type MakeSpaghetti. It would be wrong to

conclude

∃ x . MakeSpaghettiMarinara(x)

because the observation could have been a step of MakeNoodlesPrimavera. The conclusion

∃ x . MakeSpaghettiMarinara(x) ∨ MakePastaDish(x)

is sound but too weak; the check for redundancy would notice that the type of the second disjunct

abstracts the first. The correct conclusion is

∃ x . MakeSpaghettiMarinara(x) ∨ MakeNoodlesPrimavera(x)

Therefore the set Uses should contain the implicit use 〈MakeSpaghetti, s1,

MakeNoodlesPrimavera〉 as well as 〈MakeSpaghetti, s1, MakeSpaghettiMarinara〉.

Kautz Plan Recognition 09/09/97 page 52

Define Explicit as the set of explicit uses corresponding to the direct-component relation.

Then Uses is the union of Explicit together with the following set:

{ 〈Ec, r, Ei〉 | (1) There is an Eu such that 〈Ec, r, Eu〉 ∈ Explicit and

(2) There is an 〈Eac, r, Eau〉 ∈ Explicit that abstracts 〈Ec, r, Eu〉 and
(3) Eau abstracts Ei and
(4) There is no Ej that either specializes, abstracts, or is equal to

Ei such that there is an 〈Ed, r, Ej〉 ∈ Explicit that

specializes 〈Eac, r, Eau〉 and
(5) There is no Eai that abstracts Ei for which conditions (3) and (4)

hold (with Eai in place of Ei). }

In this construction, Ei is a type such as MakeNoodlesPrimavera that inherits a role without

further specializing it. The final condition (5) prevents redundant uses that simply specialize this

new use from being added (for example, if there were a type MakeSpicyNoodlesPrimavera).

5.4. Constraint Checking

The algorithms check the various constraints that appear in the decomposition axioms by

failing to prove that the constraint is false. As a side effect of constraint checking, the values of

non-component parameters are propagated to a node from its components. (The algorithms

presented here do not propagate values from a node to its components.) There are three different

kinds of constraints.

An equality constraint equates two roles of a node or its components whose values are

neither events nor times. An equality constraint fails if the values of the two items are distinct

proper names. As a side effect, when a value is known for a parameter of a component, but none

for an equal parameter of the node, the value is assigned to the parameter of the node.

Temporal constraints take the form of binary predicates over the time parameters of a

node or its components. As noted above, rather than passing around precise values for time

parameters, the implementation passes fuzzy temporal bounds. It is straightforward to check if

any particular temporal relation could hold between two times that have been assigned temporal

bounds. For example, if time(N) is bounded by 〈1 3 7 9〉, and time(step1(N)) is bounded by 〈4 5

6 7〉, it is clearly impossible for the relation started-by(time(N), time(step1(N))) to hold.

Kautz Plan Recognition 09/09/97 page 53

Furthermore, it is easy to generate a set of rules that can tighten the fuzzy bounds on an interval

given its relation to another interval and the fuzzy bounds on that interval. One such rule is:

IF T1 is bounded by 〈a b c d〉 and T2 is bounded by 〈e f g h〉
and started-by(T1, T2) THEN

T1 is bounded by 〈max(a,e) min(b,f) max(c,g) d〉

The implementation uses such rules to update the fuzzy bounds assigned to the temporal

parameters of a node during constraint checking. The following table describes the rules for the

13 basic temporal relations, where 〈a b c d〉 is the original bound on T1, 〈e f g h〉 is the bound on

T2, and 〈i j k l〉 is the updated bound on T1.

relation i j k l

equals max(a,e) min(b,f) max(c,g) min(d,f)

before a min(b,f) c min(d,f)

after max(a,g) b max(c,g) d

meets a min(b,f) max(c,e) min(d,f)

met by max(a,g) min(b,h) max(c,g) d

overlaps a min(b,f) max(c,e) min(d,h)

overlapped by max(a,e) min(b,h) max(c,g) d

starts max(a,e) min(b,f) max(c,e) min(d,h)

started by max(a,e) min(b,f) max(c,g) d

during max(a,e) min(b,h) max(c,e) min(d,h)

contains a min(b,f) max(c,g) d

finishes max(a,e) min(b,h) max(c,g) min(d,h)

finished by a min(b,f) max(c,g) min(d,h)

All unknown times are implicitly bounded by 〈–_ +_ –_ +_〉. When the “matching” algorithm

below equates two event tokens the “intersection” of the fuzzy time bounds is taken. An

advantage of this approach over a purely symbolic implementation of Allen’s temporal algebra is

that the system does not need to maintain a table relating every interval to every other interval (as

in [Allen 1983b]). A single data structure – the e-graph – maintains both temporal and non-

temporal information. The use of fuzzy time bounds precludes the expression of certain kinds of

relationships between specific event instances. For example, it is not possible to record an

observation that the times of two event instances are disjoint, without saying that one is before or

Kautz Plan Recognition 09/09/97 page 54

after the other. (It is possible, of course, to include a constraint that two times are disjoint in the

decomposition axioms for an event type.) In many domains, however, it is reasonable to assume

that specific observations can be “timestamped”, and it seems important to provide some

mechanism for metric information, even if symbolic information is not handled in full generality.

Fact constraints include the preconditions and effects of the event along with type

information about the event’s non-component parameters. Facts are checked only if values are

known for all the arguments of the predicates in the constraint. The constraint is satisfied if a

limited theorem prover fails to prove the negation of the constraint from a global database of

known facts. A limitation of the implementation described here is that the global database is not

augmented by the conclusions of the plan recognizer itself. A worthwhile extension of the

system would make it assert in the global database the preconditions and effects of any

unambiguously recognized plans. The would be useful for the kind of predictive reasoning

discussed in Part 1. A difficult problem we have avoided dealing with is recognizing that a fact

constraint is violated because it is inconsistent with all the possible disjunctions encoded in the e-

graph.

5.5. Algorithms

The algorithm explain-observation implements the component/use assumptions, and the

algorithms match-graphs and group-observations implement the minimum cardinality

assumptions. Code for each algorithm is followed by commentary on its operation.

5.5.1. Explain-observation

/* explain-observation
Ec : type of observed event
parameters : list of role/value pairs that describe the observation

returns
G : explanation graph

*/
function explain-observation(Ec, parameters) is

Let G be a new empty graph
G := explain(Ec, parameters, ∅, {Up, Down})
return G

end build-explanation-graph

Kautz Plan Recognition 09/09/97 page 55

/* explain
Ec : type of event to be explained
parameters : list of 〈role value〉 pairs that describe the event
visited : set of event types visited so far in moving through abstraction hierarchy
direction : direction to move in abstraction hierarchy; subset of {Up, Down}

returns
N : node that represents the event of type Ec
newVisited: updated value of visited

*/
function explain(Ec, parameters, visited, direction) is

visited := visited ∪ {Ec}
if G has a node N of type Ec with matching parameters then

return 〈N, visited〉
Add a new node N of type Ec to G
Add the parameters of N to G
if Ec=End then return 〈N, visited〉
Propagate constraints for N
if constraints violated then return 〈N, visited〉
for all 〈Ec, r, Eu〉 ∈ Uses do

if 〈Ec, r, Eu〉 does not abstract or specialize a use
for any member of visited then

explain(Eu, {〈r,N〉}, ∅, {Up, Down})
if Down ∈ direction then

for all Esc ∈ direct-specializations(Ec)
〈M, visited〉 := explain(Esc, parameters, visited, {Down})

if Up ∈ direction then {
Eac := direct-abstraction(Ec)
p := the role/value pairs for N restricted to those roles defined

for Eac or higher in the abstraction hierarchy
〈M, visited〉 := explain(Eac, p, visited, {Up})
Add 〈M, =, N〉 to G }

return 〈N, visited〉
end explain

__

The function explain-observation builds an e-graph on the basis of a single observation.

For example, for the observation that Joe is making marinara sauce starting between times 4 and

5 and ending between times 6 and 7 the function call would be

explain-observation(MakeMarinara, {〈agent Joe〉, 〈time 〈4 5 6 7〉 〉 })

Kautz Plan Recognition 09/09/97 page 56

Explain-observation calls the subroutine explain which operates as follows:

• Check whether the graph under construction already contains a node of the given type that

exactly matches the given parameters. If this is the case, then the graph merges at this point,

rather than getting wider and wider as one moves upward. Consider the e-graph shown in figure

7 (section 5.3 above). Suppose the left-hand side of the graph has been constructed (nodes N1,

N2, N4, N6, and N7). Search is proceeding along the right-hand part of the graph, through N3.

The invocation of explain that created MakeMeatDish(N5) is considering abstractions of

MakeMeatDish (see below), and recursively calls explain with type PrepareMeal. The specific

call would be:

explain(PrepareMeal, {…}, {MakeMeatDish}, {Up})

This description exactly matches previously-created node N6, which is returned. Then N5 is

made an alternative for N6 (in the third to last line of the procedure). Thus the left path through

N2 and N4 merges with the right path through N3 and N5. This kind of merging can prevent

combinatorial growth in the size of the graph.

• Create a new node of type Ec, and link all the parameters to it.

• Check whether the type of the newly-created node is End, and return if so.

• Propagate and check constraints. Suppose this is the invocation of explain that created

MakeSpaghettiMarinara(N2). Parameters is {〈step2 N1〉}, meaning that component step2 of N2

is N1. The equality constraints inherited from MakePastaDish say that the agent of any

MakeSpaghettiMarinara must equal the agent of its MakeMarinara step. If initially 〈N1 agent

Joe〉 appears in the graph, after this step 〈N2 agent Joe〉 also appears.

Fuzzy time bounds are also propagated. N2 is constrained to occur over an interval that contains

the time of N1. Suppose the graph initially contains 〈N1 time 〈4 5 6 7〉〉. After this step, it also

contains 〈N2 time 〈–_ 5 6 +_〉〉.

This step can also eliminate nodes. The agent of every specialization of MakePastaDish is

constrained to be dexterous. If the general world knowledge base contains the assertion

¬Dexterous(Joe), explain does not continue to build a path to End from this node.

Kautz Plan Recognition 09/09/97 page 57

• Consider Uses of Ec, as described above. If Ec is MakeMarinara, then explain is recursively

invoked for MakeSpaghettiMarinara and MakeChickenMarinara.

• Explain Ec by considering its specializations. This step is not performed if Ec was reached by

abstracting some other type. Suppose explain were initially invoked with Ec equal to

MakeSauce. Then the specialization MakeMarinara is considered. In the recursive invocation of

explain, the Uses of MakeMarinara are examined. The use 〈MakeMarinara, step2,

MakeSpaghettiMarinara〉 is eliminated (by the test in the if statement within the first for all

statement in the procedure) because it specializes 〈MakeSauce, step2, MakePastaDish〉. The use

〈MakeMarinara, step5, MakeChickenMarinara〉, however, does lead to a path to End.

• Explain Ec by considering its abstractions. This step is not performed if Ec was reached by

specializing some other type. The node becomes an alternative for its abstractions. Suppose the

current invocation has created MakePastaDish(N4). This step calls

explain(PrepareMeal, {〈agent Joe〉 〈time 〈–_ 5 6 +_〉〉}, {MakePastaDish}, {Up})

which returns N6.

Not all abstractions lead to End; some are pruned, and do not appear in the final graph. Consider

the invocation that created MakeMarinara(N1). It calls explain for MakeSauce. The only Use

for MakeSauce, however, is 〈MakeSauce, step2, MakePastaDish〉, but that use is eliminated by

the redundancy test. Therefore no node of type MakeSauce appears in the final graph.

The worst-case complexity of explain is exponential in the size of the event hierarchy,

because an event can have several different components of the same type. In practice the first

step in explain frequently finds a similar node and cuts off search. For example, suppose that the

event hierarchy contains no non-component roles, and if a type has components, only its

abstractions (but not itself or its specializations) appear as components of another type. Under

this restriction, the worst case complexity of explain is O(|HE|). If the algorithm did not merge

search paths at abstraction points, its worst-case complexity would still be exponential.

5.5.2. Match-graphs

/* match-graphs
G1, G2 : graphs to be matched

returns

Kautz Plan Recognition 09/09/97 page 58

G3 : result of equating End nodes of G1 and G2 or FAIL if no match possible
*/
function match-graphs(G1, G2) is

Create a new empty graph G3
Initialize Cache, a hash-table that saves results of matching event nodes
if match(End-node-of(G1), End-node-of(G2)) = FAIL

then return FAIL
else return G3

end match-graphs

/* match
n1 , n2 : nodes to be matched from G1 and G2 respectively

returns
n3 : node in G3 representing match or FAIL if no match

*/
function match(n1, n2) is

if n1 and n2 are proper names then
if n1=n2 then return n1 else return FAIL

else if n1 and n2 are fuzzy temporal bounds then {
〈a b c d〉 := n1
〈e f g h〉 := n2
〈i j k l〉 := 〈max(a,e) min(b,f) max(c,g) min(d,h)〉
if i > j or k > l or i > l then return FAIL else return 〈i j k l〉 }

else if n1 and n2 are event nodes then {
if Cache(n1,n2) is defined then return Cache(n1,n2)
if type(n1) abstracts= type(n2) then n3Type := type(n2)
else if type(n2) abstracts type(n1) then n3Type := type(n1)
else {Cache(n1,n2) := FAIL

return FAIL }
Add a new node n3 of n3Type to G3
Cache(n1,n2) := n3
for all roles r defined for n3Type or higher do {

Let V1 be the value such that 〈n1,r,V1〉∈G1 (or undefined)
Let V2 be the value such that 〈n2,r,V2〉∈G2 (or undefined)
if either V1 or V2 is defined then {

if V1 is defined but not V2 then V3 := match(V1,V1)
elseif V2 is defined but not V1 then V3 :=match(V2,V2)
else V3 := match(V1,V2)
if V3=FAIL then { Cache(n1,n2) := FAIL

return FAIL }
Add 〈n3, r, V3〉 to G3 } }

Propagate constraints for n3

Kautz Plan Recognition 09/09/97 page 59

if constraints violated then { Cache(n1,n2) := FAIL
return FAIL }

alts1 := { A1 | 〈n1, =, A1〉∈G1 }
alts2 := { A2 | 〈n2, =, A2〉∈G2 }
if alts1 ∪ alts2 _ ∅ then {

if alts1 = ∅ then alts1 := {n1}
if alts2 = ∅ then alts2 := {n2}
noneMatched := TRUE
for all a1 ∈ alts1 do

for all a2 ∈ alts2 do {
A3 := match(A1, A2)
if A3 _ FAIL then {

Add 〈n3, =, A3〉 to G3
noneMatched := FALSE } }

if noneMatched then { Cache(n1,n2):=FAIL
return FAIL } }

return n3 }
else return FAIL

end match.

The function match-graphs creates a new e-graph that is the result of equating the End

nodes of the two e-graphs it takes as inputs and propagating that equality. The following

diagram shows two e-graphs, the first built from an observation of MakeMarinara, and the

second from an observation of MakeNoodles. Match is initially invoked on the End nodes of the

two graphs, match(N7, N11), and returns N12, the End node of the combined graph. The

following section steps through the operation of Match.

Kautz Plan Recognition 09/09/97 page 60

End(n7)

Prepare
Meal(N6)

Make
Pasta

Dish(N4)

Make
Meat

Dish(N5)

Make
Spaghetti

Marinara(N2)

Make
Chicken

Marinara(N3)

Make
Marinara(N1)

End(N11)

Prepare
Meal(N10)

Make
Pasta

Dish(N9)

Make
Noodles(N8)

End(N12)

Prepare
Meal(N13)

Make
Pasta

Dish(N14)

Make
Spaghetti

Marinara(N15)

Make
Noodles(N16)

Make
Marinara(N17)

= ==

=

== = =

= =

s2 s5 s1 s2

s1

figure 9: Matching e-graphs.

• If the objects to be matched are proper names, they must be identical.

• If the objects are fuzzy temporal bounds, then take their intersection. If n1 is 〈–_ 5 6 +_〉 and

n2 is 〈–_ 8 7 +_〉 then match returns 〈–_ 5 7 +_〉.

• Check whether n1 and n2 have already been matched, and if so, reuse that value. Suppose that

the first e-graph in the diagram above were matched against an e-graph of identical shape; for

example, there were two observations of MakeMarinara that may have been identical. During

the match down the left hand side of the graphs, through N4 and N2, MakeMarinara(N1) would

match against the MakeMarinara node in the second graph (say, N1'), resulting in some final

node, say N1''. Then the right-hand side of the graphs would match, through N5 and N3. N1

would match against N1' a second time, and the value N1'' would be used again. This would

retain the shape of the digraph, and prevent it from being multiplied out into a tree.

• Add a new node to the graph, n3, to represent the result of the match, which is of the most

specific type of n1 and n2. Matching MakeSpaghettiMarinara(N2) against MakePastaDish(N9)

results in MakeSpaghettiMarinara(N15). The match fails if the types are not compatible. Thus

MakeMeatDish(N5) fails to match against MakePastaDish(N9)

Kautz Plan Recognition 09/09/97 page 61

• Match the roles of n1 and n2. If a parameter is defined for one node but not the other, match

the role against itself in order to simply copy the structure into the resulting graph. This what

happens when N2 matches N9, yielding N15. The new node gets both the step2 parameter from

N2 (a copy of N1, which is N17) and the step1 parameter from N9 (a copy of N8, which is N16).

If N2 had the role step1 defined, that value would have had to match against N8.

• Check and propagate the constraints on n3. New constraint violations may be detected at this

point because more of the roles of the nodes are filled in.

• Try matching every alternative for n1 against every alternative for n2. The successful

matches are alternatives for n3. If one of the nodes has some alternatives, but the other does not,

then match the alternatives for the former against the latter directly. This occurs in the example

above. MakePastaDish(N4) matches against MakePastaDish(N9). N4 has the alternative N2,

but N9 has none. Therefore MakeSpaghettiMarinara(N2) matches against MakePastaDish(N9)

as well. If there were some alternatives but all matches failed, then n3 fails as well.

Calling match-graphs(G1,G2) frequently returns a graph that is smaller than either G1
or G2. Unfortunately, sometimes the resulting graph can be larger. This occurs when two nodes

are matched that have several alternatives, all of which are mutually compatible. Therefore the

worst case complexity of match-graphs(G1,G2) is O(|G1|*|G2|). The key feature of match-

graphs is the use of a cache to store matches between nodes. Without this feature, match-graphs

would always multiply the input digraphs into a tree, and the algorithm would be no better than

O(2|G1|*|G2|).

5.5.3. Group-observations

global Hypoths
/* A set (disjunction) of hypotheses, each a set (conjunction) of explanation graphs.
Each hypothesis corresponds to one way of grouping the observations. Different
hypotheses may have different cardinalities. */

function minimum-Hypoths is
smallest := min { |H| | H ∈ Hypoths}
return { H | H ∈ Hypoths ∧ card(H)=smallest }

end minimum-Hypoths

procedure group-observations is

Kautz Plan Recognition 09/09/97 page 62

Hypoths := {∅}
while more observations do {

Observe event of type Ec with specified parameters
Gobs := explain-observation(Ec, parameters)
for all H ∈ Hypoths do {

remove H from Hypoths
Add H ∪ {Gobs} to Hypoths
for all G ∈ H do {

Gnew := match-graphs(Gobs, G)
if Gnew _ FAIL then

Add (H – {G}) ∪ Gnew to Hypoths } } }
end group-observations

__

The function group-observations continually inputs observations and groups them into sets to

be accounted for by particular e-graphs. The function minimum-Hypoths is called to retrieve a

disjunctive set of current hypotheses, each of which is a conjunctive set of e-graphs that accounts

for all of the observations, using as few End events as possible. It works as follows:

• Input an observation and generate a new e-graph Gobs.

• Conjoin Gobs with each hypothesis. This handles the case where Gobs is unrelated to the

previous observations. Note that this case is included in Hypoths even when Gobs matches one

of the previous e-graphs. This is necessary because a later observation may be able to match

Gobs alone, but not be able to match Gobs combined with that previous e-graph. In any case,

the function minimum-Hypoths will select those members of Hypoths which are of minimum

cardinality, so hypotheses containing an “extra” unmatched Gobs will be effectively invisible to

user until needed.

• Try to match Gobs with each e-graph in each hypothesis. This handles the case where obs-

graph is related to a previous observation.

• The current conclusion corresponds to the disjunction of all hypotheses of minimum size.

Sometimes a member of Hypoths may contain an undetected inconsistency. In this case

the answer returned by minimum-Hypoths may be incorrect: for example, it may return an

inconsistent e-graph which groups all the observations as part of a single End event, rather than

Kautz Plan Recognition 09/09/97 page 63

as part of two or more distinct End events. However, if this inconsistency is detected when later

observations are being incorporated, the system can usually recover. In the inner loop of the

algorithm group-observations, the new e-graph Gobs will fail to match against every member

of the inconsistent hypothesis H. Although Hypoths is updated to contain H ∪ {Gobs}, if any

matches against other hypotheses containing the same or few number of e-graphs do succeed, H

∪ {Gobs} will not be returned by minimum-Hypoths. Furthermore, it would not be difficult to

modify group-observations to explicitly eliminate H ∪ {Gobs} from Hypoths in this special

case.

Some of the most intimidating complexity results arise from this algorithm. In the worst

case there could be O(2n) consistent ways of grouping n observations, and Hypoths could

contain that number of hypotheses. In practice it appears that stronger assumptions than simply

minimizing the number of End events are needed. One such stronger assumption would be that

the current observation is part of the End event whose previous steps were most recently

observed— or if that is inconsistent, then the next more recent End event, and so on. This

assumption limits Hypoths to size O(n). All previous plan recognition systems implement some

version of this stronger assumption.

6. Conclusions & Caveats

This chapter has developed a framework for plan recognition that includes a proof theory,

a model theory, and a set of algorithms. It would not be an exaggeration to say that the most

difficult task was to define the rather amorphous problem of “plan recognition” at the most

abstract level. Similar algorithms for plan recognition problems have been hashed over for years,

since the early work of Schmidt and Genesereth. The formal theory we have developed suggests

what some of these algorithms are algorithms for.

The theory is extremely general. It does not assume that there is a single plan underway

that can be uniquely identified from the first input, nor that the sequence of observations is

complete, nor that all the steps in a plan are linearly ordered. We know of no other implemented

plan recognition system that handles arbitrary temporal relations between steps. On the other

hand, there are some limitations inherent in our representation of plans. In particular, the current

framework does not explicitly represent propositional attitudes, such as goals or beliefs. The use

of quantification and disjunction in the event hierarchy is restricted, although some of these

limitations can be easily circumvented. For example, existential quantifiers cannot appear in the

Kautz Plan Recognition 09/09/97 page 64

axioms which make up the event hierarchy, but in most cases it should be possible to use

function symbols instead. Disjunctions cannot appear in the body (the right-hand side) of a

decomposition axiom. One way around this limitation is to create a new event event type to

stand for the disjunctive formula, and then assert that each disjunct is a different specialization of

the new type.

Another expressive limitation of the theory revolves around the whole idea of End events.

We have used End events as a way to determine when “nothing more” needs to be explained.

But in general it may prove difficult to define a set of End events (perhaps “stay alive” is the

only one). Context must ultimately play a role in determine the scope of explanation.

It is important to note that the input to the algorithms presented here is still more

expressively limited. For example, the algorithms do not handle theories in which an event type

can have more than one direct abstraction (that is, multiple inheritance), and they do not

explicitly handle “general axioms” which lie outside the event hierarchy. (The actual LISP

implementation included some special purpose inference procedures; for example, to infer that

certain pairs of predicates could not hold true of the same time period.)

The theory is limited in its ability to recognizing erroneous plans. We have assumed that

all plans are internally consistent and that all acts are purposeful. Yet real people frequently

make planning errors and change their minds in midcourse. Some simple kinds of errors can be

handled by introducing an End event called Error. For each observable action there is a

specialization of Error that contains that action as its only component. Therefore every

observation can be recognized as being part of some meaningful plan or simply an error.

Another serious limitation of the theory is the inability to recognize new plans whose

types do not already appear in the recognizer’s knowledge base. One might argue that plan

recognition essentially deals with the recognition of stereotypical behavior, and the

understanding of new plans is better treated as an advanced kind of learning.

In some domains the theory described in this chapter is simply too weak. Rather than

inferring the disjunction of all the plans that could explain the observations, the recognizer may

need to know the most likely such plan. Nothing in this theory contradicts the laws of

probability, and it should be possible to extend the theory with quantitative measures.

Kautz Plan Recognition 09/09/97 page 65

 A more philosophical problem is the whole issue of what serves as primitive input to the

recognition system. Throughout this chapter we have assumed that arbitrary high-level

descriptions of events are simply presented to the recognizer. This assumption is reasonable in

many domains, such as understanding written stories, or observing the words typed by a

computer operator at a terminal. But a real plan recognizer — a person — does not always get

his or her input in this way. How are visual impressions of simple bodily motions — John is

moving his hands in such and such a manner — translated into the impression that John is rolling

out dough to make pasta? There is a great deal of work in low-level perception, and a great deal

in high level recognition. The semantic gap between the output of the low-level processes and

the high-level inference engines remains wide, and few have ventured to cross it.

References
Allen, James (1983) Recognizing Intentions From Natural Language Utterances, in

Computational Models of Discourse, eds. Michael Brady & Robert Berwick, The MIT
Press, Cambridge.

Allen, James (1983b) Maintaining Knowledge About Temporal Intervals, Communications of the
ACM, no. 26, pp. 832-843.

Allen, James (1984) Towards a General Theory of Action and Time, Artificial Intelligence, vol.
23, no. 2, pp. 832-843.

Bruce, B.C. (1981) Plans and Social Action, in Theoretical Issues in Reading Comprehension,
eds. R. Spiro, B. Bruce, & W. Brewer, Lawrence Erlbaum, Hillsdale, New Jersey.

Carberry, Sandra (1983) Tracking Goals in an Information Seeking Environment, Proceedings
of AAAI-83, Washington, D.C.

Charniak, Eugene (1983) Unpublished talk presented at the University of Rochester.

Charniak, Eugene & Drew McDermott (1985) Introduction to Artificial Intelligence, Addison
Wesley, Reading, MA.

Charniak, Eugene & Robert Goldman (1989) A Semantics for Probabilistic Quantifier-Free
First-Order Languages, with Particular Application to Story Understanding, Proceedings
of IJCAI-89, pg. 1074, Morgan-Kaufmann.

Cohen, Phillip (1984) Referring as Requesting, Proceedings of COLING-84, pp. 207, Stanford
University.

Cohen, P., R. Perrault, & J. Allen (1981) Beyond Question-Answering, Report No. 4644, BBN
Inc., Cambridge, MA.

Kautz Plan Recognition 09/09/97 page 66

Davis, Martin (1980) The Mathematics of Non-Monotonic Reasoning, Artificial Intelligence,
vol. 13, pp. 73-80.

Doyle, Sir Authur Conan (1890) The Sign of Four, chapter 6.

Etherington, David (1986) Reasoning with Incomplete Information: Investigations of Non-
Monotonic Reasoning, Technical Report 86-14, Department of Computer Science,
University of British Columbia, Vancouver, Canada.

Genesereth, Michael (1979) The Role of Plans in Automated Consulting, Proceedings of IJCAI-
79, pp. 119.

Goodman, Brad & Diane Litman (1990) Plan Recognition for Intelligent Interfaces, Proceedings
of the Sixth IEEE Conference on Artificial Intelligence Applications, Santa Barbara, CA.

Haas, Andrew R. (1987) The Case for Domain-Specific Frame Axioms, in The Frame Problem
in Artificial Intelligence, Proceedings of the 1987 Workshop, Lawrence, Kansas, F. M.
Brown, ed., Morgan Kaufmann.

Hanks, Steven & Drew McDermott (1986) Default Reasoning, Nonmonotonic Logics, and the
Frame Problem, Proceedings of AAAI-86, Morgan Kaufmann.

Hayes, P.J. (1985) The Logic of Frames, in Readings in Knowledge Representation, eds. R.J.
Brachman & H.J. Levesque, Morgan Kaufman, Los Altos, CA.

Hobbs, J., & M. Stickel (1988) ???????????

Huff, Karen & Victor Lesser (1982) KNOWLEDGE-BASED COMMAND UNDER-
STANDING: An Example for the Software Development Environment, TR 82-6,
Computer and Information Sciences, University of Massachusetts at Amherst.

Ladkin, Peter & R. Maddux (1988) Representation and Reasoning with Convex Time Intervals,
Technical Report KES.U.88.2, Kestrel Institution, Palo Alto, CA.

Litman, Diane & James Allen (1987) A Plan Recognition Model for Subdialogues in
Conversation, Cognitive Science, vol 11, pp. 163–200.

McCarthy, John (1980) Circumscription -- A Form of Non-Monotonic Reasoning, Artificial
Intelligence, vol. 13, pp. 27-39.

McCarthy, J. & P. Hayes (1969) Some Philosophical Questions from the Standpoint of Artificial
Intelligence, Machine Intelligence 4, Edinburg University Press, Edinburg, UK.

Minsky, Marvin (1975) A Framework for Representing Knowledge, in The Psychology of
Computer Vision, McGraw-Hill, New York.

Moore, Robert (1977) Reasoning about Knowledge and Action, Proceedings of IJCAI-77,
Morgan Kaufmann.

Kautz Plan Recognition 09/09/97 page 67

Pednault, E. P. D. (1988) Synthesizing Plans that Contain Actions with Context-dependent
Effects, Computational Intelligence, vol 4, no 4, pp 356–372.

Pelavin, Richard. (1990) Planning with Concurrent Actions and External Events, in Formal
Models of Plan Reasoning, by J. Allen, H. Kautz, R. Pelavin, & J. Tenenberg, Morgan
Kaufman

Pollack, Martha (1986) A Model of Plan Inference that Distinguishes Between the Beliefs of
Actors and Observers, Proceedings of the ACL-86, New York.

Pople, Harry (1982) Heuristic Methods for Imposing Structure on Ill-Structured Problems: The
Structuring of Medical Diagnostics, in Artificial Intelligence in Medicine, ed. Peter
Szolovits, AAAS Select Symposium 51, Westview Press, Boulder, Colorado.

Reggia, J., D.S. Nau, & P.Y. Wang (1983) Diagnostic Expert Systems Based on a Set Covering
Model, International Journal of Man-Machine Studies, vol. 19, pp. 437-460.

Reiter, R. (1987) A Theory of Diagnosis from First Principles, Artificial Intelligence, vol. 32, no.
1, pg. 57.

Schank, R. (1975) Conceptual Information Processing, American Elsevier, New York.

Schmidt, C.F., N.S. Sridharan, & J.L. Goodson (1978) The Plan Recognition Problem: An
Intersection of Psychology and Artificial Intelligence, Artificial Intelligence, vol.11, pp.
45-83.

Schubert, Lenhart K. (1989) Monotonic Solution of the Frame Problem in the Situation Calculus:
an Efficient Method for Worlds with Fully Specified Actions, in Knowledge
Representation and Defeasible Reasoning, H. Kyburg, R. Loui, & G. Carlson, eds.,
Kluwer Press.

Tenenberg, Josh D. (1990) Abstraction in Planning, in Formal Models of Plan Reasoning, by J.
Allen, H. Kautz, R. Pelavin, & J. Tenenberg, Morgan Kaufman

Wilensky, Robert (1983) Planning and Understanding, Addison-Wesley, Reading, MA.

