
When Did You Start Doing That Thing That You Do?
Interactive Activity Recognition and Prompting

Yi Chu and Young Chol Song and Henry Kautz
Department of Computer Science

University of Rochester
Rochester, NY 14627

Richard Levinson
Attention Control Systems

650 Castro Street, PMB 120-197
Mountain View, CA 94041

www.brainaid.com

Abstract

We present a model of interactive activity recognition
and prompting for use in an assistive system for per-
sons with cognitive disabilities. The system can deter-
mine the user’s state by interpreting sensor data and/or
by explicitly querying the user, and can prompt the user
to begin or end tasks. The objective of the system is
to help the user maintain a daily schedule of activi-
ties while minimizing interruptions from questions or
prompts. The model is built upon an option-based hier-
archical POMDP. Options can be programmed and cus-
tomized to specify complex routines for prompting or
questioning.

Novel aspects of the model include (i) the introduc-
tion of adaptive options, which employ a lightweight
user model and are able to provide near-optimal per-
formance with little exploration; (ii) a restricted-inquiry
dual-control algorithm that can appeal for help from
the user when sensor data is ambiguous; and (iii) a
combined filtering / most likely-sequence algorithm for
activities determining the beginning and ending time
points of the user’s activities. Experiments show that
each of these features contributes to the robustness of
the model.

1 Introduction
People with cognitive impairments can often improve their
ability to adhere to a regular schedule of activities by using
systems that provide timely prompts and reminders (Levin-
son 1997; Riffel et al. 2005; Bushnik et al. 2007). While
today’s commercially-available prompting tools are essen-
tially enhanced calendars, researchers have recognized the
need for context-aware systems that infer the user’s state and
provide the right kind of help at the right time (Pollack et al.
2002; Rudary, Singh, and Pollack 2004; Lundell et al. 2007;
Modayil et al. 2008; Mihailidis and Boqer 2008). A context-
aware prompting system can avoid unnecessary or incorrect
prompts and reduce confusion and learned dependency.

This paper presents a model of interactive activity recog-
nition and prompting. The goals of the system are to en-
sure that the user adheres to a daily schedule by providing

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

prompts to begin or end activities, to create logs of the user’s
activities, and to minimize interruptions to the user. It dif-
fers from previous work in that it includes both prompts and
information-seeking actions (inquiries to the user) in its ac-
tion space, and is able to arbitrate between these two kinds
of actions. User responses are used to help identify states
and improve the activity recognition model.

The model builds upon a hierarchical POMDP (partially-
observed Markov decision process) that runs on an underly-
ing MDP. The hierarchy exploits the problem structure and
speeds up learning by reducing the action space at each level.
One challenge in the prompting domain is the wide variety
of possible prompting methods and the need for temporally-
extended prompts. For example, it may be desirable to repeat
a prompt every five minutes until the user responds, and/or to
increase the level of detail in the prompting instructions. We
address this challenge by using temporally extended actions
called options (Sutton, Precup, and Singh 1999). The system
is able to specify complex prompting behavior by directly
programming different options, while maintaining a small
action space. Furthermore, we introduce adaptive options
that can rapidly adapt their behavior based on user model-
ing. The adaptive option implements a light-weight learning
process without subjecting the user to long period of policy
exploration as in a standard reinforcement learning.

Our second contribution is to propose an effective heuris-
tic solution for the POMDP. Solving the full POMDP would
require extensive computation over an enormous state-space
(for a model-based approach) and/or extensive training in-
stances (for a reinforcement-learning approach). Our model
employs a selective-inquiry based “dual control” approach
to dealing with uncertainty. The algorithm assesses the un-
certainty in the current estimation of the state, and goes into
different control modes based on the uncertainty level. We
argue that this approach is well suited to our problem and
can be used on-line effectively.

Our third contribution is to combine on-line filtering and
most-likely sequence (MLS) inference in order to accu-
rately and efficiently estimate the beginning and end time
of activities. The state estimator sends the controller the
marginal probability of each activity and the most likely time
the activity would have begun if it were the true activity.
This information allows the controller to determine when to
prompt, while avoiding the state explosion that would oc-

cur if the system attempted to track the cross product of all
activities and all starting and ending times.

We evaluate the model by comparing our approach to
various alternatives. We run the adaptive option and three
other fixed options on three types of simulated users with
different behavior patterns, and show that the adaptive op-
tion not only adapts to particular user behaviors quickly, but
also maintains the best performance across all scenarios. We
compare the unified selective-inquiry dual control approach
with models that always or never inquire when the state is
ambiguous, and that use ordinary filtering rather than filter-
ing/MLS estimation. The results show that the unified dual
control approach consistently achieves the most robust per-
formance.

2 The Model
The system starts the day with an initial schedule of tasks
that the user needs to perform. Following (Pollack et al.
2002; Rudary, Singh, and Pollack 2004), the schedule is
constructed and revised as necessary by an interactive
constraint-based interval (Smith, Frank, and Jónsson 2000)
planning system. Each task has an associated time window
over which it can be performed, a minimum and maximum
duration, and a target starting time. The state estimator in-
puts data from devices such as IR motion sensors, RFID
object touch sensors (Smith et al. 2005), and appliance op-
eration sensors, and outputs a probability distribution over
the user’s possible activities. The controller incorporates in-
formation from both the state estimator and schedule, and
selects system behaviors. If the world is fully observable
(i.e., the state estimate is a point estimate), the control ar-
chitecture can be modeled as a Markov decision process
(MDP); more generally, it is a partially-observed Markov
decision process (POMDP), or equivalently, an MDP over
belief states.

Because the set of belief states is infinite, an exact solution
to a POMDP is in general intractable. Simple greedy heuris-
tics for POMDPs include assuming the most likely state is
the true state, or assuming that the value of a belief state is
the weighted sum of the underlying MDP states (the Q-MDP
heuristic). Such heuristics reduce to arbitrary strategy selec-
tion when uncertainty is high. An important feature of our
application domain, however, is that the system is able to
reduce uncertainty by asking the user what he or she is do-
ing. This suggests the use of a dual control rule (Cassandra
1998) that queries the user in the face of uncertainty. How-
ever, in order to avoid interrupting the user unnecessarily,
we propose a selective-inquiry rule that only attempts to re-
duce uncertainty when doing so would cause the controller
to select different actions.

2.1 Options in Hierarchical MDPs
Our domain is highly structured because actions (prompts
to begin or end activities) are restricted to particular situ-
ations. Hierarchical representations can exploit this prob-
lem structure. Hierarchy in our model is represented through
temporally-extended actions called options (Sutton, Precup,
and Singh 1999). Each option is defined with its own in-
ternal policy, a set of possible initial states, and termination

conditions. Each task is associated with a set of options, and
each option runs over the state space of its associated task.
The task status determines which of its options are enabled,
that is, which are available to be chosen by the controller for
execution. (Note that enabled options might be chosen for
execution, but do not necessarily execute.)

Task status is determined according to the schedule and
the current state. For example, a task T is ready when the
current time step is within the start window of T and T has
not started yet. A start prompt option for the task can only
be initiated when the task becomes ready. The termination
of an option or the initiation of a new option always occurs
with the change in task status. From inactive, a task may
transit to active (either ready or underway), and from ac-
tive to completed or failed.1 An option is executed based on
its internal policy; in this domain, its prompting strategy. A
prompting strategy defines all aspects regarding the gener-
ation of a prompt, such as timing, modality, specificity and
so on. With a detailed prompting strategy, we are able to
specify very complex prompting behavior in a compact and
highly customized way.

Because options are defined only over the task space, the
hierarchical learning problem is decomposed into a collec-
tion of independent learning problems, where each task runs
its own MDP. Q-learning over options (Sutton, Precup, and
Singh 1999) is done over each MDP individually. At each
time step, the controller updates the state, terminates the cur-
rently executing option if its termination conditions are met,
and then selects an option with highest utility for execution
from the set of available options for the active task.

2.2 Adaptive Options
A key aspect of a prompting strategy is its timing. It is of
particular interest not only because it is a critical feature for
the performance of a prompting behavior, but also because
it is not trivial to optimize. An optimal strategy should avoid
prompting the user too soon (that is, before the user has a
chance to self-initiate the task) as well as too late (that is,
risking task failure). Learning to choose among a large set
of different options with different timings could require a
lengthy training process. Furthermore, bad prompts that re-
sult from exploring the policy space can frustrate the user.

To overcome this limitation, we introduce adaptive op-
tions that rapidly adapt prompting behavior based on a
lightweight user model. We consider two kinds of user vari-
ables that can affect the timing of a prompt, initiative and
responsiveness. Initiative indicates how soon the agent will
initiate a task without any prompt, and responsiveness re-
flects how long the user will take to respond to a prompt.
Thus, if initiative and responsiveness are both short, the sys-
tem should spend more time waiting for the desired task be-
ing self-initiated before issuing a prompt, and vice versa. In
this way, we are trading off between two objectives: trying
to avoid unnecessary prompts and ensuring the task occurs
in time.

1Our implemented system also handles task interruptions by us-
ing a suspended task status; we omit the description of interruptions
because of lack of space.

Suppose a task T is scheduled to start within the time in-
terval [ES, LS]. Let F1(t) represent the cumulative proba-
bility of the user initiating a task within t steps since ES.
Let F2(t) represent the cumulative probability of the user
starting the task within t steps since a prompt. If a prompt
is scheduled at time t3 ∈ [ES, LS], the probability that the
agent initiating T is denoted as P1 = F1(t3 − ES). Simi-
larly, the probability of the agent responding to a prompt in
time (before LS) is P2 = F2(LS− t3). The expected reward
obtained if we prompt at t3 is therefore
E(R|t3) = P1R1 +(1−P1)(P2R1 +(1−P2)R2− c) (1)

where R1 and R2 are the expected cumulative rewards ob-
tained when T has started and failed respectively, and c is
the cost of the prompt. Recall that R1 and R2 are avail-
able, because they are exactly the result of Q-learning, i.e.,
R1 = V (status = started) and R2 = V (status = failed).
The time point that maximizes the equation (1) is the esti-
mated optimal prompt time tp. Note that different kinds of
variations can be added into this computation of E(R|t3)
to reflect specific needs or preferences. For example, delay
cost can be included if we wish to emphasize the user’s ad-
herence to schedule.

However, a problem arises in learning F1(t) from user be-
havior. While F1(t) is the time until the user self-initiates, in
many trials the user will be prompted, and thus not have a
chance to self-initiate. We do not want to ignore these tri-
als in estimating F1(t); they tell us that if the prompt had
not been issued at t, the self-initiation time would have ex-
ceeded t. Techniques for estimating cumulative probabil-
ity distributions from this kind of “right-censored” data has
been developed in work on reliability (Crowder et al. 1991).
When data is subject to right censoring, F (t) is not learned
directly, but instead is modeled by the survivor function
S(t) = 1 − F1(t). We employ the Kaplan-Meier estimate,
which works by identifying k distinct time points when the
observed event occurs: t1, t2, ..., tk. Let nj be the number of
trials when the event is observed to occur at time tj , and mj

the number of trials that are alive at tj . Then the Kaplan-
Meier estimate of S(t) is given by

Ŝ(t) =
∏
j

(1− nj

mj
) (2)

where tj < t. The empirical estimate of S(t) does not de-
pend on any specific probability model, but it suggests the
form of a likely model for the data, namely, a Weibull distri-
bution. With an appropriate choice of parameters, a Weibull
can take on the characteristics of many other types of dis-
tributions. The simulation results show that an estimated
Weibull model helps to learn the pattern of the user behavior
even when the actual distribution is Gaussian.

2.3 Uncertainty Reasoning: Dual Control
The user’s CurrentActivity is determined (in the absence
of explicit inquiries) by a Hidden Markov Model (HMM).
The states of the HMM are the possible activities associ-
ated with tasks, and an “other activity” state. The observa-
tions in the HMM are the sensor streams, including object
touches as determined by a wearable RFID reader and lo-
cation as determined by motion sensors. On-line filtering

computes a probability distribution over the set of activities.
Activity recognition using an HMM and this kind of sensor
data can be quite reliable and accurate (Smith et al. 2005;
Patterson et al. 2005). In most but not all cases, the output
of the HMM is close to a point-estimate. The fact that un-
certainty is significant but limited in scope motivates the use
of a control mechanism that is computationally simpler than
solving a full POMDP.

The basic idea of dual control mechanism is straightfor-
ward: when the state uncertainty is small, the state with the
most probability mass is the true state; if the state uncer-
tainty is large, the system can choose an action to reduce
the uncertainty — in our domain, it can query the user. The
normalized entropy (Cassandra 1998) of a probability dis-
tribution b is computed as H(b) = H(b)

H(u) , where H(b) is
the entropy of the probability distribution b and H(u) is the
uniform distribution. Normalized entropy is in the range of
0 ≤ H(b) ≤ 1 because the maximized entropy is achieved
for H(u).We choose a small threshold δ. If H(b) ≤ δ, the
CurrentActivity is updated to be the most likely state. Other-
wise, the state is considered to be ambiguous.

It is not, however, always appropriate to query the user
when the state becomes ambiguous. Such interruptions have
an inherent cost to the user. It might be better, for exam-
ple, to simply wait and see if further observations eliminate
the ambiguity. Intuitively, an inquiry action is not needed
when no other action than wait is available considering
all possible states. This critical observation can be easily
proved by formalizing the value of actions, V (b, inquiry)
and V (b, wait), in terms of the Q functions of the under-
lying MDP. Based on the above discussion, we propose
the selective-inquiry based dual control (SI-DU) algorithm
(Alg.1). The key to the successful implementation of the al-
gorithm is to decide the critical point when an inquiry is
needed. As talked about in the previous section, our model
employs adaptive options to compute the approximately op-
timal time point for generating a prompt. And here we use
a simplified mechanizm by justifying the issue of an inquiry
based on this best point for taking a system action. It is also
possible to take more complex approaches by further weigh-
ing the value of an inquiry with the other available actions
(note this can be readily added to the algorithm by locally
modifying line 28-32 in Alg.1).

However, to make the adaptive options work effectively,
it is necessary to record the exact time point when an event
occurs, e.g., the task starts. Such timing information is im-
portant for both learning the correct user model and com-
puting the optimal prompt time. But in a selective-inquiry
based model, the state ambiguities are not resolved immedi-
ately and it is very likely that a critical point of state tran-
sition is already passed when the current state becomes dis-
ambiguated again. Our model deals with this problem by
combining online filtering with maximum likely-sequence
(MLS) estimation.

2.4 Combining Filtering and MLS
In the SI-DU algorithm, the function Update Task Status
updates the task status based on the current state. This also

Algorithm 1 Selective-inquiry based Dual Control (SI-DU)
Input:

2: b: the current belief of the world
δ: thresh-hold on H(b)

4: T list: the list of tasks
Return:

6: action: the system action based on b

8: At each time step t:
if Get confirmed state s after an inquiry then

10: Set HMM (s)
H(b)← 0

12: end if
if H(b) < δ then

14: s← argmaxs b(s)
status(T list)←Update Task Status(s)

16: action← πMDP (s ∪ status(T list))
else

18: {Decide whether to issue an inquiry or wait}
Sn ← the set of n most likely states based on b

20: A ← Ø {Init the set of permissible actions based on
b}
for s ∈ Sn do

22: status(T list)←Update Task Status(s)
a← πMDP (s ∪ status(T list))

24: if a 6= wait then
A← A ∪ a

26: end if
end for

28: if A 6= Ø then
action← inquiry

30: else
action← wait

32: end if
end if

includes updating information about the actual start or end
time of the activity associated with the task. When the state
is fully observed, knowledge of CurrentActivity is sufficient
for determining timing information. However, as we have
argued, some activities are not disambiguated immediately.

One solution to this issue would be to track the cross prod-
uct of activities and starting time of the activity (or equiva-
lently, the cross product of activities and durations), but this
would be computationally expensive. A practical alternative
is to determine the time point at which an activity begins
by reasoning backward from the time at which the activ-
ity is strongly believed to hold: that is, when the entropy of
the state estimate is below the threshold δ. When a state be-
comes unambiguous in this manner, we calculate the most
likely start time (MLST), most likely end time (MLET), and
most likely duration (MLD) of prior activities given the Cur-
rentActivity. We define

• MLST (A,M) as the latest timestep t where at−1 6= A
and at = A in the most likely sequence ending at M
• MLET (A,M) as the latest timestep t where at = A and

at+1 6= A in the most likely sequence ending at M

• MLD(A,M) as the time difference t between
MLET (A,M) and MLST (A,M)

The most likely sequence ending at activity M is given
as, argmaxa1,...,aT−1

P (a1, ..., aT−1, o1, ..., oT |aT = M).
This can be efficiently computed using the Viterbi algorithm.
We also introduce a method to feed back information gath-
ered from the inquiry to the state estimator. When a partic-
ular state is confirmed by the user, the system “fixes” that
state (Set HMM in Alg.1) to hold with probability 1.

3 Experiments
We conducted two sets of experiments with a simulated user
and environment. In the first set of experiments, we are try-
ing to demonstrate the effectiveness of the adaptive option
by comparing its learning process with different fixed op-
tions. In the second set of experiments, we compare the re-
sult of five models with variations to illustrate how the uni-
fied dual control approach outperforms other models.
Experiment I. In this experiment, we simulated different
kinds of user behaviors with different levels of initiative and
responsiveness. Focusing on the start option, the simulated
user can initiate a task at any time point within [ES, LS]
by sampling from a distribution modeling initiative. After a
prompt, the user behavior changes, and a start point is sam-
pled instead from the distribution of responsiveness. type
I user has high initiative and responsiveness. The Weibull
modeling the initiative falls almost entirely into the earlier
part of the window. Responsiveness is also modeled with
Weibull and set to a high value: the user responds within 5
steps of a prompt 90% of the time. The type II user is as
highly responsive as type I, yet with a much lower initiative,
where initiative is modeled as a normal distribution with the
mean as the midpoint of the start window and a relatively
large variance. Compared with type II, the type III user has
the same initiative model but a lower responsiveness. The
user responds to a prompt within 5 steps only 70% of the
time.

We compared four kinds of strategies: no prompt at all,
prompt at the earliest time (ES), prompt at the latest time
(LS-5) and the adaptive strategy. In the learning process, the
system penalizes each prompt with a small cost (-2), the fail-
ure of a task with a large cost (-10), and rewarded the suc-
cessful completion of a task with a reward (+10). To make
a relatively consistent setting for all of the experiments, we
assume that once a task is started, it is always completed suc-
cessfully. We ran experiments on all three types of users for
10 times. In each experiment, Q-learning is updated for 60
iterations. We observe how the averaged utility of each kind
of option changes when the user exhibits different patterns
of behavior. Note that the utility of different options reflect
the effectiveness of different strategies.

Obviously, the best strategy for type I user is to prompt as
late as possible or not to prompt at all. The average results
from 10 runs show that the adaptive option adapts to the type
I user as well as the other two best fixed options (no prompt
and latest prompt strategies). The results for type II & III
users are displayed in Fig. 1. In both scenarios, adaptive op-
tion stands out as the best strategy. A task has a scheduled

(a) (b) (c) (d)

Figure 1: The utility of options for the type II and type III user.

or preferred execution time, tp, and the system is designed
to improve the user compliance with the schedule. To reflect
this preference, the system is penalized every time a task is
started at a point later than tp. The adaptive option explicitly
takes the delay cost into the computation of the expected re-
ward. The results in (Fig. 1c & 1d) show that the adaptive
option not only adapts to particular user behavior, but also
to the user preferences. It should be noted although we are
only talking about start options here, the same approach ap-
plies to other options (e.g., option for resuming a task) or the
second prompt in the same option.

Experiment II. In this experiment, we are simulating
a partially observable environment in order to test dual
control. Considering a HMM with three states: breakfast
(BF), take-medicine(TM) and no activity (NO). The set
of observations (RFID object touches) we have for BF is
{’cupboard’, ’cup’, ’spoon’, ’cerealbox’}, and for TM is
{’cupboard’, ’cup’, ’spoon’, ’medicine’}. We create a situa-
tion where only objects common to both BF and TM are ob-
served. This can occur in the real world in situations where
the tags for cerealbox or medicine fails, or when the RFID
reader misses readings. In addition, we introduce a special
state called NO, representing a state when the user randomly
touches objects with certain probability (10%) without initi-
ating a particular task. We simulate a simple scenario where
the user starts a task and then ends it. As mentioned ealier,
the task has a start window as well as the scheduled start (tp)
and end time (te). Two kinds of prompts are available: start
prompt (prompt the user to start a task) and a stop prompt
(prompt the user to end a task if it is under way and t > te).
For this experiment, we are comparing five different models:
Model I is our unified model; the other alternative models
are:
• Model II (never inquiry): When H > δ, the system sys-

tem just waits instead of issuing an inquiry.
• Model III (always inquiry): The system always issues an

inquiry immediately when H > δ.
• Model IV (no filtering combined with MLS): The system

did not use backward MLS to estimate the start/end of the
task.

• Model V (no adaptive option): Instead of adaptive option,
the system learns over a set of fixed options with various

prompt times.

Table 1 lists the summarized results after 100 iterations for
each model in terms of the system actions, user behavior
(execution of schedule), and inference. These three classes
of measures correspond to the system’s objectives. In the ex-
periments, the uncertainty rate is measured by the percent of
the time steps when the state is ambiguous (H(b) > 0.4).
When the system makes no explicit actions (inquiry) to re-
solve uncertainty (model II), the uncertainty rate is around
61%. The cells in gray indicate the performance of the corre-
sponding model is poor enough compared with other mod-
els. It is clear from this table that Model I performs consis-
tently robust across all measures. It is interesting that model
V (where different fixed options are used instead of the adap-
tive option) misses many prompts and failed more often with
its randomness in exploration. In terms of learning, experi-
ments also show that even after 100 iterations, Q learning
with fixed options (15 different strategies) is still not con-
verging (an adaptive one takes less than 20 iterations). For
other models with the adaptive option, Model II is not learn-
ing the correct strategy. Model IV takes longer to converge
and learns a strategy earlier than optimal timing.

Model I II III IV V
System Action

of Inquires per run 1.2 0 4 1.3 1.7
of prompts per run 0.8 0.7 0.81 0.9 0.7
Prompt error rate (%) 0 15 1 2 5
Prompt miss rate (%) 2 27 2 0 14

Execution of Schedule
Failure rate (%) 0 3 1 0 3

Ave. start delay (step) 2.9 6.4 2.7 4.4 6.5
Ave. finish delay (step) 3.0 6.3 2.4 3.0 3.9

Inference
Start infer. failure (%) 0 51 0 2 4
End infer. failure (%) 0 51 0 2 4
Ave. diff (start) (step) 0.2 1.5 0.72 5.0 1
Ave. diff (end) (step) 0.2 1 0.18 1.1 1.3

Table 1: Performance of different models in the face of uncertainty
after 100 iterations. Gray cells indicate lowest performance.

4 Related Work
Our work is inspired by the growing interest in the develop-
ment of intelligent prompting systems, and in particular by
the systems PEAT (Levinson 1997), Autominder (Pollack et
al. 2002), and COACH (Boger et al. 2005). PEAT was the
first system to combine prompting with automated planning
and rescheduling. Autominder introduced the vision of a
unified, context-aware prompting agent, and COACH intro-
duced the use of a POMDP model for prompting an individ-
ual through a task. (Rudary, Singh, and Pollack 2004) mod-
eled prompting as a reinforcement learning problem where
the set of available actions is controlled by the user’s daily
schedule, and is thus a primary inspiration for our model.
However, the RL takes long time to converge and the uer
is thus suffering from inconsistent and erroneous system
behavior. (Modayil et al. 2008) proposes a high-level ar-
chitecture for context-aware prompting that is compatible
with our model. (Vurgun, Philipose, and Pavel 2007) showed
that a context-aware medication prompting system that used
a rule-based deterministic control strategy could improve
medication adherence. This system, along with PEAT and
Autominder, does not involve advanced prompting technol-
ogy and high-level uncertain state reasoning. POMDPs have
been used to provide a rich framework for planning un-
der uncertainty in assistive systems (COACH (Boger et al.
2005)). Various approximations for POMDPs have been de-
veloped that can be solved off-line (Poupart 2005; Varakan-
tham, Maheswaran, and Tambe 2005). However, these algo-
rithms scale poorly when the state space becomes very large,
while our heuristic approach may handle problems with a
large group of activities with each activity devided into very
fine-grained sub-states or sub-steps.

The high accuracy of HMMs for activity recognition from
object touch RFID data was demonstrated by (Smith et al.
2005; Patterson et al. 2005) and other researchers. Hui and
Boutilier applies a Bayesian approach to inferring a vari-
ety of variables that reflect a user’s personality and attitudes,
e.g., neediness, frustration, independence, etc, and use this
model to determine the kind of assistance to offer to the
user. Finally, Fern et al. applied the Q-MDP approximation
to solving a novel POMDP model of an intelligent assis-
tant, but did not consider inquiry actions for resolving un-
certainty.

5 Conclusions and Future Work
We presented a POMDP model of interactive activity recog-
nition and prompting that is made efficient and practi-
cal through the use of dual control to handle uncertainty,
adaptive options to reduce training time, and combined fil-
tering/most likely sequence estimation to estimate activity
timing information. We presented simulation results that
showed that each of these features improved the perfor-
mance of the model.

An important issue in the activity recognition and prompt-
ing domain not discussed in this paper is the need to handle
task interruptions and resumptions. A common problem in
task performance by persons with cognitive disabilities is
neglecting to resume a task that has been interrupted. We

are extending the model described in this paper to allow it to
distinguish activities that have completed from activities that
are suspended, and to support options that prompt to resume
an activity.

We have implemented our model in an Android phone
application, and are in the process of designing and car-
rying out an evaluation of the system with approximately
10 patients at the Palo Alto Veterans Administration out-
patient clinic who have brain injury, PTSD, pre-dementia,
or other cognitive impairment. The implementation is based
on a modified version of the commercial prompting system
PEAT (Levinson 1997), and employs sensor data from mo-
tion sensors, contact sensors, and wearable RFID readers.
The initial set of tasks to be supported include waking up
and going to bed, meals, taking medicine, and performing
therapy homework. Prompts and queries to the user are de-
livered by audio and graphics on the phone. Surveys deliv-
ered on the cell phone and observational studies will be used
to evaluate the accuracy and effectiveness of the system. We
will compare these real-world results with the results of our
simulation studies, and use them to create better models for
use in building future prototypes.

6 Acknowledgements
This work is sponsored by DARPA award W31P4Q-09-C-
0476, the Office of the Secretary of Defense (OSD) award
W81XWH-08-C-0740, and NIH award 1R21HD062898-01.

References
Boger, J.; Poupart, P.; Hoey, J.; Boutilier, C.; Fernie, G.; and Mi-
hailidis, A. 2005. A decision-theoretic approach to task assistance
for persons with dementia. In IJCAI-05, Proceedings of the Nine-
teenth International Joint Conference on Artificial Intelligence, Ed-
inburgh, Scotland, UK, 1293–1299.
Bushnik, T.; Dowds, M.; Fisch, J.; and Levinson, R. 2007. Current
evidence-base for the efficacy of electronic aids for memory and
organization. In American Congress on Rehabilitation Medicine
(ACRM).
Cassandra, A. R. 1998. Exact and approximate algorithms for par-
tially observable markov decision processes. Ph.D. Dissertation,
Brown University, Providence, RI, USA.
Crowder, M. J.; Kimber, A. C.; Smith, R. L.; and Sweeting, T.
1991. Statistical analysis of reliability data. Chapman & Hall.
Fern, A.; Natarajan, S.; Judah, K.; and Tadepalli, P. 2007. A
decision-theoretic model of assistance. In Veloso, M. M., ed., IJ-
CAI 2007, Proceedings of the 20th International Joint Conference
on Artificial Intelligence, Hyderabad, India, 1879–1884.
Hui, B., and Boutilier, C. 2006. Who’s asking for help?: a bayesian
approach to intelligent assistance. In IUI 06: Proceedings of the
11th international conference on Intelligent user interfaces, 186–
193. New York, NY, USA: ACM.
Levinson, R. 1997. The planning and execution assistant and
trainer (peat). Journal of Head Trauma Rehabilitation 12(2):85–
91.
Lundell, J.; Hayes, T.; Vurgun, S.; Ozertem, U.; Kimel, J.; Kaye, J.;
Guilak, F.; and Pavel, M. 2007. Continuous activity monitoring and
intelligent contextual prompting to improve medication adherence.
In 29th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society.

Mihailidis, A., and Boqer, J. 2008. The coach prompting system to
assist older adults with dementia through handwashing: An efficacy
study. BMC Geriatrics 8(1):28.
Modayil, J.; Levinson, R.; Harman, C.; Halper, D.; and Kautz, H.
2008. Integrating sensing and cueing for more effective activity
reminders. In AAAI Fall 2008 Symposium on AI in Eldercare: New
Solutions to Old Problems.
Patterson, D. J.; Fox, D.; Kautz, H.; and Philipose, M. 2005. Fine-
grained activity recognition by aggregating abstract object usage.
In ISWC ’05: Proceedings of the Ninth IEEE International Sym-
posium on Wearable Computers, 44–51. Washington, DC, USA:
IEEE Computer Society.
Pollack, M. E.; Mccarthy, C. E.; Tsamardinos, I.; Ramakrishnan,
S.; Brown, L.; Carrion, S.; Colbry, D.; Orosz, C.; and Peintner, B.
2002. Autominder: A planning, monitoring, and reminding assis-
tive agent.
Poupart, P. 2005. Exploiting Structure to Efficiently Solve Large
Scale Partially Observable Markov decision processes. Ph.D. Dis-
sertation, Univeristy of Toronto, Toronto, Cananda.
Riffel, L.; Wehmeyer, M.; Turnbull, A.; Lattimore, J.; Davies, D.;
and Stock, S. 2005. Promoting independent performance of
transition-related tasks using a palmtop pc-based self-directed vi-
sual and auditory prompting system. Journal of Special Education
20(2).
Rudary, M. R.; Singh, S. P.; and Pollack, M. E. 2004. Adaptive cog-
nitive orthotics: combining reinforcement learning and constraint-
based temporal reasoning. In ICML 2004: Machine Learning, Pro-
ceedings of the Twenty-first International Conference, Banff, Al-
berta, Canada, volume 69. ACM.
Smith, J. R.; Fishkin, K. P.; Jiang, B.; Mamishev, A.; Philipose,
M.; Rea, A. D.; Roy, S.; and Sundara-Rajan, K. 2005. Rfid-based
techniques for human-activity detection. Communications of the
ACM 48(9).
Smith, D. E.; Frank, J.; and Jónsson, A. K. 2000. Bridging the gap
between planning and scheduling. Knowl. Eng. Rev. 15:47–83.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between mdps and
semi-mdps: a framework for temporal abstraction in reinforcement
learning. Artif. Intell. 112(1-2):181–211.
Varakantham, P.; Maheswaran, R. T.; and Tambe, M. 2005. Ex-
ploiting belief bounds: practical pomdps for personal assistant
agents. In 4th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2005), July 25-29, 2005,
Utrecht, The Netherlands, 978–985.
Vurgun, S.; Philipose, M.; and Pavel, M. 2007. A statistical reason-
ing system for medication prompting. In UbiComp 2007: Ubiqui-
tous Computing, 9th International Conference, Innsbruck, Austria,
1–18. Springer.

