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Abstract

Stochastic search algorithms have proven to be very fast at solving many sat-
isfiability problems [2,3,8]. The nature of their search requires careful parameter
tuning to maximize performance, but depending on the problem and the details of
the stochastic algorithm, the correct tuning may be difficult to ascertain [9]. In this
paper we introduce Auto- Walksat, a general algorithm which automatically tunes
any variant of the Walksat family of stochastic satisfiability solvers. We demon-
strate Auto- Walksat’s success in tuning Walksat-SKC to the DIMACS benchmark
problems with negligible additional overhead.
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1 Introduction

The ability of stochastic satisfiability solvers to successfully find a problem’s
solution depends on how the trade-off between random decisions and heuristic
decisions is managed during the solution search [5-7]. This trade-off is con-
trolled by a parameter setting, typically called the noise, which ranges from
0% to 100%. The optimal noise setting can vary greatly depending on the
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specifics of the algorithm used and the problem being solved. For a particu-
larly hard problem, whose solution is unknown, it would be very useful to know
the optimal noise setting. If this were known, computational resources could
be effectively allocated to solving the problem instance. This would result in
less wasted computing cycles and a higher chance of producing a solution.

McAllester [5] presented empirical evidence that the optimal noise setting for
stochastic satisfiability solvers is correlated to measurable properties of a given
algorithm /problem pair. This paper describes our attempts to exploit these
observations to improve the robustness of stochastic satisfiability solvers. We
present an algorithm that uses a variant of Walksat [9] to probe the parameter
space of noise settings for the value which will maximize the probability of
finding a solution. Each probe takes a negligible amount of time compared to
a complete run of Walksat on the problem instance.

The remainder of the paper is divided into five sections. Section 2 discusses
the variant of Walksat that we used in this research. Section 3 discusses the
minimization technique that Auto- Walksat applies. Sections 4 and 5 present
and discuss the results of applying Auto- Walksat to the DIMACS? set of
benchmark problems. Finally, we draw our conclusions in Section 6.

2 Background

We are concerned with solving Boolean satisfiability problems in conjunctive
normal form (CNF). This problem can be described by a formula which is a
conjunction of clauses. Each clause is a disjunction of literals, and each literal
is a propositional variable or its negation. Solving such a formula consists
of determining an assignment of truth values for each variable such that the
formula evaluates to true.

Walksat is a family of stochastic algorithms [8] that assigns all variables a
random truth assignment and then attempts to heuristically refine the assign-
ment until the CNF formula evaluates to true. The specific method of varying
the truth assignment defines the variant of Walksat. All variants share the
common behavior of occasionally ignoring their heuristic and making a ran-
dom refinement according to some fixed probability. Walksat algorithms are
in general sound, but not complete.

In our validation of Auto-Walksat we used a variant called Walksat-SKC.
Figure 1 briefly describes this algorithm.

The objective function value of a stochastic algorithm is defined as the value
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(1) Given a problem instance, F', in CNF, and a noise setting, N, choose a
random truth assignment, S.
(2) While F(S) evaluates to false and you have not reached a maximum
number of iterations (“flips”):
(a) Randomly choose an unsatisfied clause ¢ € F(5).
(b) If there is a literal in ¢ whose value can be changed without causing
any new clauses to become unsatisfied, let [ be this literal.
(c) Else
(i) With probability N choose [ in ¢ randomly.
(ii) With probability 1 — N apply the following heuristic: Choose
[ such that when its value is changed, the smallest number of
satisfied clauses in F'(S) become unsatisfied.
(d) Change the truth assignment of [ in S.

Fig. 1. The Walksat-SKC algorithm

that is to be minimized during the search for a truth assignment. In Walk-
sat-SKC, the objective function value is the number of unsatisfied clauses.
The mean objective function value is defined as the average of the objective
function value calculated at the end of several unsuccessful attempts to solve
a formula. Each attempt is made with a different random seed. The standard
deviation of the objective function is defined as the standard deviation of the
objective function value over several unsuccessful attempts to solve a formula.
The invariant ratio is the mean objective function value over the standard
deviation of the objective function. McAllester [5] observed that the optimal
performance of several stochastic algorithms occurs when the noise level is
approximately ten percent above that which minimizes the invariant ratio.
Auto- Walksat exploits this observation to estimate the optimal noise setting
for a given problem and algorithm.

3 Minimization of the Objective Function

The invariant ratio is a practical value to minimize because it can be accurately
determined without solving the satisfiability formula. By merely probing the
problem, or attempting to solve the problem with a very small number of
iterations, it is possible to empirically determine values of the invariant ratio.
As part of a preprocessing phase, these values can be used to guide a search
for the minimum invariant ratio which in turn leads to an estimated optimal
noise level. The provided stochastic algorithm can then rigorously apply this
noise level to the problem.

Auto-Walksat uses Brent’s method [1] to adaptively search the invariant ra-
tio space for the global minimum. This technique combines recursive brack-



Definition 1 (Probe(F, A(N))) : Given a CNF problem F and an algorithm
A, Probe(F,A(N)) calculates the invariant ratio at a noise level of N. The
Probe function attempts to solve the problem several times, collecting objective
function statistics after executing 2000 flips plus one flip for every atom in F.
Probe terminates when the 95% confidence interval of the objective function
mean is less than 0.053.
(1) Let left = 0. Py is undefined.
(2) Let z = 0. Let P, = Probe(F, A(x)).
(3) Let right = 100. P4 is undefined. (By our assumptions we know that
the minimum must lie between left and right.)
(4) While the minimum is not tightly bracketed, find the next noise level to
probe, n, as follows:
(a) Parabolic Interpolation:

If the parabola formed by (left,Picsi), (x,Py), (right,Prign:) is well-
formed let n be its minimum.

(b) Bracketed Search (if the previous step fails):

Choose n such that it is a golden section step from x toward left
if (z —left) > (right — x) and toward right otherwise. Intuitively
this is the most effective recursive split that can be made as the
number of levels of recursion goes to infinity. The motivation for this
is discussed in detail in [1].

(c) Let P, = Probe(F, A(n)).
(d) Reassign left,x,right such that the bracket surrounding the mini-
mum shrinks.

(5) Run A(n)

Fig. 2. The Auto- Walksat algorithm

eted search (Golden Section Search) and parabolic interpolation. In general,
bracketed search is sufficient to find the minimum, but, in practice, including
parabolic interpolation speeds up the search. Parabolic interpolation is not
sufficient by itself because it is not robust to changes in the invariant ratio
which are caused by the stochastic nature of Walksat. Using bracketed search
as a fall-back adds the necessary robustness. Recursive improvements are made
until successive refinements are less than 1% of the current value.

Figure 2 describes the Auto- Walksat algorithm and figure 3 graphically demon-
strates steps (1)—(4) in three problem domains. In all three domains Auto-
Walksat quickly converges, iterating until the solution is sufficiently refined.
Despite the wide variety of the problem domains, the invariant ratio curve is
well-formed and well-suited to bracketed search and parabolic interpolation.
Vertical perturbations in the probed values, which are caused by the stochas-
tic nature of the probes, do not adversely affect the value of the noise level to
which Auto-Walksat converges.

Despite the complexity of completely solving these three problems, Auto-



A: Hard Random 3-SAT Problem
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Fig. 3. Visualization of Auto- Walksat preprocessing on three CNF problems. In all three graphs, the solid
line bordered by the dotted lines indicates the mean + one standard deviation for 100 probes at each noise
level and were generated for visualization purposes. The jagged solid lines are traces of Auto- Walksat’s
minimization process. Each trace begins with a probe at noise = 0% and concludes at the indicated noise
setting. A) A hard random 3-SAT problem with 4250 clauses and 1000 variables [4]. Estimated optimal
noise setting was 39%. B) A Planning problem (huge.cnf) with 459 clauses and 7054 variables. Estimated
optimal noise setting was 33%. C) A graph coloring problem (gr_125.17.cnf) with 2125 clauses and 66272
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Walksat was only required to probe 9—12 times to minimize the noise invariant.
This corresponds to an additional overhead of approximately one minute (2
million flips) and is negligible compared to the possible time required to solve
any given problem.

4 Results
A: Hard Random SAT problem B: Circuit Test Problem

[72] w

5 100 S 100 - ——
5 5

°© ©

@ 80¢ » 80t

(@] o

£ £

S S

o 60 o 60+

o o

o o

2 40} 2 40t

=} =)

o o

2 20¢ S ool

C C

(O] (0]

1 o

(6] 0 L . . . , (0] 0 . . . . s
o o

0 20 40 60 80 100 0 20 40 60 80 100
Noise Level Noise Level

* C: Graph Coloring Problem * D: Planning Problem

c 1r c 1r

il .0

5 =

BostT| - @ 0.8}

o (@]

£ £

S ; S -

5 067 306}

e o

o o O

2041 i 204t TT7

T T

So2t [ b /! B2}

C C

8 D S o1 g

(0] 0 OS L L L , [0 0 ra . . s
o o

0 20 40 60 80 100 0 20 40 60 80 100
Noise Level Noise Level

Fig. 4. Results of running Auto- Walksat with Walksat-SKC on four DIMACS benchmark problems. A)
f600 B) SSA-7552-15-8 C) gl25 D) bw-large-c . The solid line shows the result of running Walksat-SKC
exhaustively with a variety of noise levels and is included for visualization purposes. Each noise level was
sampled 10 times and the mean is plotted with error bars indicating + one standard deviation. Each circle
represents a complete run of Auto- Walksat on the same problem. In all cases, Auto- Walksat estimated
the optimal noise setting by probing and then did a complete Walksat-SKC run with 1000 restarts to find
solutions. In all cases the maximum number of flips per restart was 100,000. The percent of restarts which

produced solutions are indicated.



Figure 4 shows the result of running Walksat-SKC and Auto- Walksat on four
different DIMACS benchmark problems. In all four graphs a poorly chosen
noise level could lead to equally poor performance. However, the proper noise
level is not consistent between problems. In the case of figures 4-C and 4-D,
noise settings greater than 40% would produce no solutions at all. On the
other hand anything less than 40% in figure 4-B is suboptimal. Without any
knowledge of the problem domain and with little extra overhead, Auto- Walksat
was able to empirically choose a noise setting which maximized the chance of
finding a solution. Previously this was only possible with careful hand tuning
of parameters.

5 Discussion

The left graph of figure 5 shows the relationship between the invariant ratio
and performance, parameterized by noise level. In the diagram on the left,
maximizing performance requires estimating the point on the curve which
minimizes the invariant ratio, noting the noise level, then slightly increasing
the noise to maximize performance. McAllester suggested a 10% increase [5].
In all of the DIMACS benchmark problems that were sensitive to the noise
setting, this was successful.

Our results indicated two cases in which this technique failed for Auto- Walksat.
The first is in problems which are intrinsically difficult for Walksat-SKC to
solve. Selman [8] demonstrates that there are some problems that are patho-
logical for Walksat and can only be solved by aggressively tuning several
parameters, if they can be solved at all. While this is not a failure of Auto-
Walksat per se, Auto-Walksat provides no additional value in this case.
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Fig. 5. Two possible relations between noise, performance and the invariant ratio. The left graph shows

a generalization of data that McAllester presented in [5].
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Fig. 6. Results of running Auto- Walksat with Walksat-SKC on a logistics problem (logistics.c.cnf). In the
left graph, the solid line shows the result of running Walksat-SKC exhaustively with a variety of noise levels
and is included for visualization purposes. Each noise level was sampled 10 times and the mean is plotted
with error bars indicating + one standard deviation. Each circle represents a complete run of Auto- Walksat
on the same problem. In all cases, Auto- Walksat estimated the optimal noise setting by probing and then did
a complete Walksat-SKC run with 1000 restarts to find solutions. The percent of restarts which produced
solutions are indicated. The right graph shows a curve parameterized by noise level and is the same data

that was generated from the exhaustive Walksat-SKC runs on the left.

A second curious class of problems are characterized by the graph on the right
of figure 5. In this case once the invariant ratio is minimized, the noise must
be decreased to maximize performance.

Figure 6 shows the result of running Auto- Walksat on a logistics problem.
Other experiments (not shown) demonstrated that the logistics class of prob-
lems all demonstrate the same reverse-loop behavior. In figure 4 Auto- Walksat
sets the noise level 10% higher than the value that minimized the invariant ra-
tio, but in figure 6, this was the wrong choice. In figure 6’s case, Auto- Walksat
correctly minimized the invariant ratio at noise levels varying between 39%
and 69%, but incorrectly increased the noise from that point. Instead a 30%
decrease would have been appropriate to set the noise level at 9% to 39%.

It is not clear what differentiates the logistics class from the problems in
the DIMACS benchmark set or how Auto-Walksat could decide whether to
increase or decrease the noise level once the invariant ratio is minimized.

6 Conclusions

In this paper we investigated whether or not it was possible to exploit the
invariant ratio presented by McAllester [5] to create a self-tuning variant of
Walksat. Our algorithm Auto-Walksat, is able to successfully minimize the
invariant ratio using a bracketed search supplemented with parabolic interpo-
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lation. The additional overhead of minimizing this ratio is very small, adding
approximately one minute to the running time of the algorithm. Using a heuris-
tic of adding ten percent noise to this value, Auto-Walksat then efficiently
solves many problems which critically depend on a proper noise setting.

This investigation also revealed two areas of difficulty in applying this tech-
nique. The first is with problems that are pathological to Walksat and the
second pertains to the proper heuristic technique following invariant ratio
minimization. Specifically, it is not clear whether the noise level, once chosen
should be increased or decreased to maximize performance.

Further investigation is warranted in determining what characteristics of sat-
isfiability formulae should guide the choice of noise level setting following
invariant ratio minimization.
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