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Abstract

Markov logic is a widely used tool in statistical relationallearning, which uses
a weighted first-order logic knowledge base to specify a Markov random field
(MRF) or a conditional random field (CRF). In many applications, a Markov logic
network (MLN) is trained in one domain, but used in a different one. This pa-
per focuses on dynamic Markov logic networks, where the sizeof the discretized
time-domain typically varies between training and testing. It has been previously
pointed out that the marginal probabilities of truth assignments to ground atoms
can change if one extends or reduces the domains of predicates in an MLN. We
show that in addition to this problem, the standard way of unrolling a Markov logic
theory into a MRF may result in time-inhomogeneity of the underlying Markov
chain. Furthermore, even if these representational problems are not significant for
a given domain, we show that the more practical problem of generating samples
in a sequential conditional random field for the next slice relying on the samples
from the previous slice has high computational cost in the general case, due to the
need to estimate a normalization factor for each sample. We propose a new dis-
criminative model,slice normalized dynamic Markov logic networks (SN-DMLN),
that suffers from none of these issues. It supports efficientonline inference, and
can directly model influences between variables within a time slice that do not
have a causal direction, in contrast with fully directed models (e.g., DBNs). Ex-
perimental results show an improvement in accuracy over previous approaches to
online inference in dynamic Markov logic networks.

1 Introduction

Markov logic [1] is a language for statistical relational learning, which employs weighted first-order
logic formulas to compactly represent a Markov random field (MRF) or a conditional random field
(CRF). A Markov logic theory where each predicate can take anargument representing a time point
is called a dynamic Markov logic network (DMLN). We will focus on two-slice dynamic Markov
logic networks,i.e., ones in which each quantified temporal argument is of the form t or t + 1, in
the conditional (CRF) setting. DMLNs are the undirected analogue of dynamic Bayesian networks
(DBN) [13] and akin to dynamic conditional random fields [19].

DMLNs have been shown useful for relational inference in complex dynamic domains; for example,
[17] employed DMLNs for reasoning about the movements and strategies of 14-player games of
Capture the Flag. The usual method for performing offline inference in a DMLN is to simply unroll
it into a CRF and employ a general MLN or CRF inference algorithm. We will show, however, that
the standard unrolling approach has a number of undesirableproperties.

The first two negative properties derive from the fact that MLNs are in general sensitive to the
number of constants in each variable domain [6]; and so, in particular cases, unintuitive results can
occur when the length of training and testing sequences differ. First, as one increases the number
of time points in the domain, the marginals can fluctuate, even if the observations have little or no
influence on the hidden variables. Second, the model can become time-inhomogeneous, even if the
ground weighted formulas between the time slices originatefrom the same weighted first-order logic
formulas.

The third negative property is of greater practical concern. In domains where there are a large num-
ber of variables within each slice dynamic programming based exact inference cannot be used. When
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the number of time steps is high and/or online inference is required, unrolling the entire sequence
(perhaps repeatedly) becomes prohibitively expensive. Kerstinget al. [7] suggests reducing the cost
by exploiting symmetries while Nath & Domingos [14] proposereusing previously sent messages
while performing a loopy belief propagation. Both algorithms are restricted by the capabilities of
loopy belief propagation, which can fail to converge to the correct distribution in MLNs. Geier &
Biundo [2] provides a slice-by-slice approximate inference algorithm for DMLNs that can utilize
any inference algorithm as a black box, but assumes that projecting the distribution over the random
variables at every time step to the product of their marginaldistributions does not introduce a large
degree of error — an assumption that does not always hold. Sequential Monte Carlo methods, or
particle filters, are perhaps the most popular methods for online inference in high-dimensional se-
quential models. However, except for special cases such as,e.g., the Gaussian distributions used in
[11], sampling from a two-slice CRF model can become expensive, due to the need to evaluate a
partition function for each particle (see Sec. 3 for more details).

As a solution to all of these concerns, we propose a novel way of unrolling a Markov logic theory
such that in the resulting probabilistic model a smaller CRFis embedded into a larger CRF mak-
ing the clique potentials between adjacent slices normalized. We call this model slice normalized
dynamic Markov logic network (SN-DMLN). Because of the embedded CRF and the undirected
components in our proposed model, the distribution represented by a SN-DMLN cannot be com-
pactly captured by conventional chain graph [10], DBN or CRFgraph representations, as we will
explain in Sec. 4. The SN-DMLN has none of the negative theoretical or practical properties out-
lined above, and for accuracy and/or speed of inference matches or outperforms unrolled CRFs and
the slice-by-slice approximate inference methods. Finally, because the maximum likelihood param-
eter learning for an SN-DMLN can be a non-convex optimization problem, we provide an effective
heuristic for weight learning, along with initial experimental results.

2 Background

Probabilistic graphical models compactly represent probability distributions using a graph struc-
ture that expresses conditional independences among the variables. Directed graphical models are
mainly used in the generative setting,i.e., they model the joint distribution of the hidden variables
and the observations, and during training the joint probability of the training data is maximized.
Hidden Markov models are the prototypical directed models used for sequential data with hidden
and observable parts. It has been demonstrated that for classification problems, discriminative mod-
els, which model the conditional probability of the hidden variables given the observations, can
outperform generative models [12]. The main justificationsfor their success are that complex de-
pendencies between observed variables do not have to be modeled explicitly, and the conditional
probability of the training data (which is maximized duringparameter learning) is a better objective
function if we eventually want to use our model for classification. Markov random fields (MRFs)
and conditional random fields (CRFs) belong to the class of undirected graphical models. MRFs
are generative models, while CRFs are their discriminativeversion. (For a more detailed discussion
of the relationships between these models see [8]).Markov logic [1] is a first-order probabilistic
language that allows one to define template features that apply to whole classes of objects at once.
A Markov logic networkis a set of weighted first-order logic formulas and a finite setof constants
C = {c1, c2, . . . , c|C|} which together define a Markov networkML,C that contains a binary node
for each possible grounding of each predicate (ground atom)and a binary valued feature for each
grounding of each first-order logic formula. We will also call the ground atoms variables (since they
are random variables). In each truth assignment to the variables, each variable or feature (ground
formula) evaluates to1 (true) or0 (false). In this paper we assume function-free clauses and Her-
brand interpretations. Using the knowledge base we can either create an MRF or a CRF. If we
instantiate the model as a CRF, the conditional probabilityof a truth assignmenty to the hidden
ground atoms (query atoms) in an MLN, given truth assignmentx to the observable ground atoms
(evidence atoms), is defined as:

Pr(Y = y|X = x) =
exp(

∑

i wi

∑

j fi,j(x, y))

Z(x)
, (1)

wherefi,j(x, y) = 1 if the jth grounding of theith formula is true under truth assignment{x, y},
andfi,j(x, y) = 0 otherwise.wi is the weight of theith formula andZ(x) is the normalization
factor. Ground atoms share the same weight if they are groundings of the same weighted first-
order logic formula, and (1) could be expressed in terms ofni(x, y) =

∑

j fi,j(x, y). Instantiation
as an MRF can be done similarly, having an empty set of evidence atoms. Dynamic MLNs [7]
are MLNs with distinguished arguments in every predicate representing the flow of time or some
other sequential quantity. In our settings,Yt andXt will denote the set of hidden and observable
random variables, respectively, at timet, andY1:t andX1:t from time step1 to t. Each set can
contain many variables, and we should note that their distribution will be represented compactly
by weighted first-order logic formulas. The formulas in the knowledge base can be partitioned into

2



two sets. Thetransitionspart contains the formulas for which it is true that for any grounding of
each formula, there is at such that the grounding shares variables only withYt andYt+1. The
emissionpart represents the formulas which connect the hidden and observable variables, i.e.Yt and
Xt. We will useP̃ (Yt, Yt+1) (or P̃ (Yt:t+1)) andP̃ (Yt,Xt) to denote the product of the potentials
corresponding to weighted ground formulas at timet of the transition and the observation formulas,
respectively. Since some ground formulas may contain only variables fromYt ( i.e., defined over
hidden variables within the same slice), in order to count the corresponding potentials exactly once,
we always include their potentials̃P (Yt, Yt−1), and fort = 1 we have a separatẽP (Y1). Hence, the
distribution defined in (1) in sequential domains can be factorized as:

Pr(Y1:t = y1:t|X1:t = x1:t) =
P̃1(Y1 = y1)

∏t

i=2 P̃ (Yi−1:i = yi−1:i)
∏t

i=1 P̃ (Yi = yi,Xi = xi)

Z(x1:t)
(2)

In the rest of the paper, we only allow the temporal domain to vary, and the rest of the domains are
fixed.

3 Unrolling MLNs into random fields in temporal domains

We now describe disadvantages of the standard definition of DMLNs, i.e., when the knowledge base
is unrolled into a CRF:

1. As one increases the number of time points the marginals can fluctuate, even if all the clique
potentialsP̃ (Yi = yi,Xi = xi) in (2) are uninformative.

2. The transition probability Pr(Yi+1|Yi) can be dependent oni, even if everyP̃ (Yi =
yi,Xi = xi) is uninformative and we use the same weighted first-order logic formula
responsible for the ground formulas covering the transitions between everyi andi + 1.

3. Particle filtering iscostlyin general,i.e., if we have the marginal probabilities at timet, we
cannot compute them at timet + 1 using particle filtering unless certain special conditions
are satisfied.

Saying thatP̃ (Yi = yi,Xi = xi) is uninformative is equivalent to saying thatP̃ (Yi = yi,Xi = xi)

is constant. (Note that, ifYi andXi are independent,i.e., for someq andr P̃ (Yi = yi,Xi = xi) =

r(yi)q(xi) thenq could be marginalized out andr(Yi) could be snapped tõP (Yi, Yi−1) in (2).) To
demonstrate Property 1, consider an unrolled MRF with the temporal domainT = {1, . . . , T},
with only predicateP (t) (t ∈ T ) and with the weighted formulas(+∞, P (t) ⇔ P (t + 1))
(hard constraint) and(w,P (t)) (soft constraint). Because of the hard constraint, only these-
quences∀t : P (t) and ∀t : ¬P (t) have non-zero probabilities. The soft weights imply that
Pr(P (t)) = exp(wT )Pr(¬P (t)), i.e., Pr(P (t)) converges to1, 0 or to 0.5 with exponential rate
depending on the sign ofw. But we are not always fortunate to have converging marginals, e.g., if
we change the hard constraint to beP (t) ⇔ ¬P (t + 1) andw 6= 0 the marginals will diverge. If
T is even, then for everyt ∈ T , Pr(P (t)) = Pr(¬P (t)), since in both sequencesP (t) has the same
number of true groundings. IfT is odd then for every oddt ∈ T : Pr(P (t)) = exp(w)Pr(¬P (t)).
Consequently, we have diverging marginals asT → +∞. This phenomenon not only makes the
inference unreliable, but a weight learning algorithm thatmaximizes the log-likelihood of the data
would produce different weights depending on whetherT is even or odd. A similar effect aris-
ing from moving between different sized domains is discussed in more details in [6]. The akin
Property 2 (inhomogeneity) can be demonstrated similarly,consider,e.g., an MLN with a single
first-order logic formulaP (t) ∨ P (t + 1) with weightw. For the sake of simplicity, assumeT = 3.
The unrolled MRF defines a distribution where Pr(¬P (3)|¬P (2)) = 1+exp(w)

1+2exp(w)+exp(2w) which is

not equal to Pr(¬P (2)|¬P (1)) = 1+exp(w)
1+exp(w)+2 exp(2w) for an arbitrary choice ofw.

The examples we just gave involved hard constraints. In fact, we can show that if there are no
hard hard constraints, asT increases the marginals converge and the system becomes homogeneous
(except for a finite number of transitions). Consider the matrix Φ s.t.Φi,j = P̃ (Yt = aj , Yt−1 = ai),
whereai, i = 1, . . . , N is an enumeration of the all the possible truth assignments within each
slice andN is the number of the possible truth assignments in the slice.Let PrT (Y1 = y1) =

1
Z(Y1:T )

∑

y2,...,yT

∏T−1
i=1 P̃ (Yi = yi, Yi+1 = yi+1), whereZ(Y1:T ) =

∑

y1,...,yT

∏T−1
i=1 P̃ (Yi =

yi, Yi+1 = yi+1).

Proposition 1. limt→∞ Prt(Y1 = y) exists ifΦ is a positive matrix, i.e.,∀i, j : Φi,j > 0.
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Proof. Using Φ and the notation~1 for all one vector and~ei for a vector which has1 at theith
component and0 everywhere else, we can express Prt(Y1 = y) as:

Prt(Y1 = y) =

∑

y2
P̃ (Y1 = ai, Y2 = y2)~eiΦ

t−1~1

~1T Φt~1
(3)

SinceΦ is positive we can apply theorem 8.2.8. from [5],i.e., if the spectral radius ofΦ is ρ(Φ)
(which is always positive for positive matrices):limt→∞(ρ−1(Φ)Φ)t = L, whereL = xyT , Φx =
ρ(Φ)x, ΦT y = ρ(Φ)y, x > 0,y > 0 andxT y = 1. Dividing both the numerator and the denominator
by ρt(Φ) in (3) proves the convergence of Prt(Y1 = y).

The issue of diverging marginals and time-inhomogeneity has not been previously recognized as a
practical problem. However, the increasing interest in probabilistic models that contain large num-
bers of deterministic constraints (see,e.g. [4]) might bring this issues to the fore. This proposition
can serve as an explanation why in practice we do not encounter diverging marginals in linear chain
type CRFsand why except for a finite number of transitions themodel becomes time-homogeneous.

A more significant practical challenge is described by Property 3, the problem of sampling from
Pr(Yt|X1:t = x1:t) using the previously drawn samples from Pr(Yt−1|X1:t−1 = x1:t−1). In a
directed graphical model (e.g., in a hidden Markov model), following standard particle filter design,
having sampleds1:t−1 ∼ Pr(Y1:t−1 = s1:t−1|X1:t−1 = x1:t−1), and then usings1:t−1 one would
samplest ∼ Pr(Yt, Y1:t−1 = s1:t−1|X1:t−1). Since

Pr(Y1:t = s1:t|X1:t−1 = x1:t−1) = Pr(Yt = st|Yt−1 = st−1)Pr(Y1:t−1 = s1:t−1|X1:t−1 = x1:t−1)
(4)

we do not have any difficulty performing this sampling step, and all that is left is to re-sample
the collection ofs1:t with importance weights Pr(Yt = st|Xt = xt). The analogue of this pro-
cess does not work in a CRF in general. If one first draws a sample s1:t−1 ∼ P̃ (Y1,X1 =

x1)P̃ (Y1)
∏t−1

i=2 P̃ (Yi, Yi−1)P̃ (Yi,Xi = xi), and then drawsst ∼ P̃ (Yt, Yt−1 = st−1), we end
up sampling from:

s ∼ P̃ (Y1,X1 = x1)P̃ (Y1)

t
∏

i=2

P̃ (Yi, Yi−1)P̃ (Yi,Xi = xi)
1

Zt−1(yt−1)
(5)

whereZt−1(yt−1) =
∑

yt
P̃ (Yt = yt, Yt−1 = yt−1). UnlessZt−1(yt−1) is the same for every

yt−1, it is necessary to approximateZt−1(st−1) for everyst−1. 1 Although several algorithms have
been proposed to estimate partition functions [16, 18], thepartition function estimation can increase
both the running time of the sampling algorithm significantly and the error of the approximation of
the sampling algorithm. While there are restricted special cases where the normalization factor can
be ignored [11], in general ignoring the approximation ofZt−1(yt−1) could cause a large error in
the computed marginals. Consider,e.g., when we have three weighted formulas in the previously
used toy domain, namely,w : ¬P (Yt) ∨ ¬P (Yt+1), −w : P (Yt) ∧ ¬P (Yt+1) andw′ : P (Yt) ↔
¬P (Yt+1), wherew > 0 andw′ < 0. It can be proved that in this setting using particle filtering in a
CRF without accounting forZt−1(yt−1) would result inlimt→∞ Pr(P (Yt)) = 1

2 , while in the CRF

the correct marginal would belimt→∞ Pr(P (Yt)) = 1 − exp(w)
1+exp(w) exp(w′) + O(exp(2w′)), which

gets arbitrarily close to1 as we decreasew′.

4 Slice normalized DMLNs

As we demonstrated in Section 3, the root cause of the weaknesses of an ordinarily unrolled CRF
lies in thatP̃ (Yt = yt, Yt−1 = yt−1) is unnormalized,i.e.,

∑

yt
P̃ (Yt = yt, Yt−1 = yt−1) 6= 1 in

general. One approach to introduce normalization could be to use maximum entropy Markov models
(MEMM) [12]. In that case we would directly represent Pr(Yt|Xt, Yt−1), hence we could implement
a sequential Monte Carlo algorithm simply directly sampling st ∼ Pr(Yt|Xt = xt, Yt−1 = st−1)
from slice to slice. However, in [9], it was pointed out that MEMMs suffer from thelabel-biasprob-
lem to which as a solution CRFs were invented. Chain graphs (seee.g.[10]) have also the advantage
of mixing directed and undirected components, and would be atempting choice to use, but they could
only model the transition between slices by either representing (i) Pr(Yt|Xt = xt, Yt−1 = st−1),

1Exploiting inner structure according to the graphical model within the slice would in worst case still result
in computation of the expensive partition function, or could result in a higher variance estimator the same way
as,e.g., using a uniform proposal distribution does.

4



in which case the model would again suffer from the label-bias problem, or (ii) Pr(Yt,Xt|Yt−1)
or (iii) Pr(Xt|Yt) and Pr(Yt|Yt−1). The defined distributions both in (ii) and (iii) do not give any
advantage performing the sampling step in (4), and similarly to CRFs would require the expensive
computation of a normalization factor. We propose a slice normalized dynamic Markov logic net-
work (SN-DMLN) model, which consists of directed and undirected components on the high level,
and can be thought of as a smaller CRF nested into a larger CRF describing the transition probabil-
ities constructed using weighted first-order logic formulas as templates. SN-DMLNs neither suffer
from the label bias problem, nor bear the disadvantageous properties presented in Section 3. The
distribution defined by an unrolled SN-DMLN is as follows:

Pr(Y1:t = y1:t|X1:t = x1:t) =
1

Z(x1:t)
P1(Y1)

t
∏

i=1

P̃ (Yi = yi,Xi = xi) (6)

t
∏

i=2

P (Yi = yi|Yi−1 = yi−1) ,

where

P1(Y1 = y1) =
P̃ (Y1 = y1)

∑

y′

1
P̃ (Y1 = y′

1)
, P (Yi = yi|Yi−1 = yi−1) =

P̃ (Yi = yi, Yi−1 = yi−1)
∑

y′

i

P̃ (Yi = y′
i, Yi−1 = yi−1)

,

and the partition function is defined by:

Z(x1:t) =
∑

y1,...,yt

{

P1(Y1 = y1)

t
∏

i=1

P̃ (Yi = yi,Xi = xi)

t
∏

i=2

P (Yi = yi|Yi−1 = yi−1)

}

.

P (Yt = yt|Yt−1 = yt−1) is defined by a two-slice Markov logic network (CRF), which describes
the state transitions probabilities in a compact way. If we hide the details of this nested CRF compo-
nent and treat it as one potential, we could represent the distribution in (6) by regular chain graphs or
CRFs; however we would lose then the compactness the nested CRF provides for describing the dis-
tribution. Similarly, we could collapse the variables at every time slice into one and could use a DBN
(or again a chain graph), but it would need exponentially more entries in its conditional probability
tables. IfP̃ (Yi = yi,Xi = xi) does not have any information content , the probability distribution
defined in (6) reduces toP1(Y1 = y1)

∏t

i=2 P (Yi = yi|Yi−1 = yi−1), which is a time-homogeneous
Markov chain2 , hence this model clearly does not have Properties 1 and 2, nomatter what formulas
are present in the knowledge base. Furthermore, we do not have to compute the partition function
between the slices, because equation (5) shows, drawing a sampleyt ∼ P̃ (Yt, Yt−1 = yt−1) while
keeping the valueyt−1 fixed is equivalent to sampling fromP (Yt|Yt−1 = yt−1), the quantity present
in equation (6). This means that using our model one can avoidestimatingZ(yt−1). To learn the
parameters of the model we will maximize the conditional log-likelihood (L) of the data. We use a
modified version of a hill climbing algorithm. The modification is needed, because in our caseL is
not necessarily concave. We will partition the weights (parameters) of our model based on whether
they belong to transition or to emission part of the model. The gradient of theL of a data sequence
d = y1, x1, . . . , yt, xt w.r.t. an emission parameterwe (to which featurene belongs) is:

∂Ld

∂we

=

t
∑

i=1

ne(yi, xi) − EPr(Y |X=x)

[

t
∑

i=1

ne(Yi, xi)

]

, (7)

which is analogous to what one would expect for CRFs. However, for a transition parameterwtr

(belonging to featurentr) we get something different:

∂Ld

∂wtr

=

t
∑

i=1

ntr(yi+1, yi) −

t−1
∑

i=1

EP (Yi+1|yi) [ntr(Yi+1, Yi = yi)] (8)

− EPr(Y |X=x)

[ t−1
∑

i=1

ntr(Yi+1, Yi) −

t−1
∑

i=1

EP (Ỹi+1|Yi)

[

ntr(Ỹi+1, Yi)
]

]

.

(Note that,Ld is concavew.r.t. the emission parameters,i.e., when the transition parameters are
kept fixed, allowing the transition parameters to vary makesLd no longer concave.) In (8) the first

2Note that, in the SN-DMLN model the uniformity of̃P (Yi = yi, Xi = xi) is a stronger assumption than
the independence ofXi andYi.
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friendships reflect Smokes(p1, t) ∧ ¬Smokes(p2, t) ∧ (p1 6= p2) ⊃ ¬Friends(p1, p2, t)
people’s similarity in Smokes(p1, t) ∧ Smokes(p2, t) ∧ (p1 6= p2) ⊃ Friends(p1, p2, t)

smoking habits ¬Smokes(p1, t) ∧ ¬Smokes(p2, t) ∧ (p1 6= p2) ⊃ Friends(p1, p2, t)
symmetry and ¬Friends(p1, p2, t) ⊃ ¬Friends(p2, p1, t)
reflexivity of Friends(p1, p2, t) ⊃ Friends(p2, p1, t)
friendship Friends(p, p, t)

persistence of Smokes(p, t) ⊃ Smokes(p, t + 1)
smoking ¬Smokes(p, t) ⊃ ¬Smokes(p, t + 1)

Hangout(p1, g1, t) ∧ Hangout(p2, g2, x) ∧ Smokes(p1, t)∧
people with different smoking (p1 6= p2) ∧ (g1 6= g2) ⊃ ¬Smokes(p2, t)

habits hang out separately Hangout(p1, g1, t) ∧ Hangout(p2, g2, t) ∧ ¬Smokes(p1, t)∧
(p1 6= p2) ∧ (g1 6= g2) ⊃ Smokes(p2, t)

Table 1: Formulas in the knowledge base

two and the last two terms can be grouped together. The first group would represent the gradient
in the case of uninformative observations,i.e., when the model simplifies to a Markov chain with
a compactly represented transition probability distribution. The second group is the expected value
of the expression in the first group. The first three terms correspond to the gradient of a concave
function; while the fourth term corresponds to the gradientof a convex function, so the function as
a whole is not guaranteed to be maximized by convex optimization techniques alone. Therefore, we
chose a heuristic for our optimization algorithm which gradually increases the effects of the second
group in the gradient. More precisely, we always compute thegradient w.r.t.wo according to (7),
but w.r.t.wtr we use:

∂Ld

∂wtr

=
t

∑

i=1

ntr(yi+1, yi) −
t−1
∑

i=1

EP (Yi+1|yi) [ntr(Yi+1, yi)] (9)

− αEPr(Y |X=x)

[ t
∑

i=1

ntr(Yi+1, Yi) −

t−1
∑

i=1

EP (Ỹi+1|Yi)

[

ntr(Ỹi+1, Yi)
]

]

whereα is kept at the value of0 until convergence, and then gradually increased from0 to 1 to
converge to the nearest local optimum. In Section 5, we experimentally demonstrate that this heuris-
tic provides reasonably good results, hence we did not turn to more sophisticated algorithms. The
rationale behind our heuristic is that if̃P (Yi = yi,Xi = xi) had truly no information content, then
for α = 0 we would find the global optimum, and as we increaseα we are taking into account that
the observations are correlated with the hidden variables with an increasing weight.

5 Experiments

For our experiments we extended the Probabilistic Consistency Engine (PCE) [3], a Markov logic
implementation that has been used effectively in differentproblem domains. For training, we
used 10000 samples for the unrolled CRF and 100 particles and100 samples for approximat-
ing the conditional expectations in (9) for the SN-DMLN to estimate the gradients. For infer-
ence we used 10000 samples for the CRF and 10000 particles forthe mixed model. The sam-
pling algorithm we relied on was MC-SAT [15]. Our example training data set was a modi-
fied version of the dynamic social network example [7, 2]. Thehidden predicates in our knowl-
edge base wereSmokes(person, time), F riends(person1, person2, time) and the observable
was Hangout(person, group, time). The goal of inference was to predict which people could
potentially be friends, based on the similarity in their smoking habits, which similarity could be in-
ferred based on the groups the individuals hang out. We generated training and test data as follows:
there were two groupsg1, g2, one for smokers and one for non-smokers. Initially 2 peoplewere
randomly chosen to be smokers and 2 to be non-smokers. Peoplewith the same smoking habits
can become friends at any time step with probability1 − 0.05α, and a smoker and a non-smoker
can become friends with probability0.05α. Every5th time step (starting witht = 0) people hang
out in groups and for each person the probability of joining one of the groups is1 − 0.05α. With
probability1−0.05α, everyone spends time with the group reflecting their smoking habits, and with
probability0.05α they go to hang out with the other group. The rest of the days people do not hang
out. The smoking habits persist,i.e., a smoker stays a smoker and a non-smoker stays a non-smoker
at the next time step with probability1 − 0.05α. In our two configurations we hadα = 0 (deter-
ministic case) andα = 1 (non-deterministic case). The weights of the clauses we learned using the
SN-DMLN and the CRF unrolled models are in Table 1.

We used chains with length5, 10, 20 and40 as training data, respectively. For each chain we had
40, 20, 10 and5 examples both for the training and for testing, respectively. In our experiments
we compared three types of inference, and measured the prediction quality for the hidden predicate
Friends by assigning true to every ground atom the marginal probability of which was greater than
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length α = 0 α = 1
accuracy f1 accuracy f1

SN MAR MC-SAT SN MAR MC-SAT SN MAR MC-SAT SN MAR MC-SAT
5 1.0 0.40 1.0 1.0 0.14 1.0 0.84 0.36 0.81 0.75 0.10 0.69
10 1.0 0.40 0.97 1.0 0.14 0.95 0.84 0.36 0.77 0.74 0.11 0.61
20 1.0 0.40 0.67 1.0 0.14 0.49 0.92 0.55 0.66 0.85 0.32 0.47
40 1.0 0.85 0.60 1.0 0.72 0.43 0.88 0.73 0.59 0.78 0.55 0.42

Table 2: Accuracy and F-score results when models were trained and tested on chains with the same
length

(a) α = 0 (b) α = 1

Figure 1: F-score of models trained and tested on the same length of data

0.55, and false if its probability was less than0.45; otherwise we considered it as a misclassification.
Prediction ofSmokes was impossible in the generated data set, because the data generation was
symmetricw.r.t to smoking and not smoking, and from the observations we could only tell that
certain pairs of people have similar or different smoking habits, but not who smokes and who does
not. The three methods we compared were (i) particle filtering in the SN-DMLN model(SN), (ii) the
approximate online inference algorithm of [2], which projects the inferred distribution of the random
variables at the previous slice to the product of their marginals, and incorporates this information
into a two slice MLN to infer the probabilities at the next slice (we re-implemented the algorithm
in PCE)(MAR), and (iii) using a general inference algorithm (MC-SAT [15]) for a CRF which is
always completely unrolled in every time step(UNR). In UNR and MAR the same CRF models
were used. The training of the SN-DMLN model took approximately for 120 minutes for all the test
cases, while for the CRF model, it took 120, 145, 175 and 240 minutes respectively. The inference
over the entire test set, took approximately 6 minutes for SNand MAR in every test case, while
UNR required 5, 8, 12 and 40 minutes for the different test cases. The accuracy and F-scores for the
different test cases are summarized in Table 2 and the F-scores are plotted in Fig. 1.

SN outperforms MAR, because as we see that in the knowledge base, MAR can only conclude that
people have the same or different smoking habits on the days when people hang out (every 5th time
step), and the marginal distributions ofSmokes do not carry enough information about which pair
of people have different smoking habits, hence the quality of MAR’s prediction decreases on days
when people do not hang out. The performance of SN and MAR stays the same as we increase
the length of the chain while the performance of UNR degrades. This is most pronounced in the
deterministic case (α = 0). This can be explained by that MC-SAT requires more sampling steps to
maintain the same performance as the chain length increases.

To demonstrate that if we use the same number of particles in SN as number of samples in UNR,
the performance of SN stays approximately the same while theperformance of UNR degrades over
time, we trained both the CRF and SN-DMLN on length5 chains where both SN and UNR were
performing equally well and used test sets of different lengths up to length150. F-scores are plotted
in Fig. 2.

We see from Fig. 2 that SN outperforms both UNR and MAR as the chain length increases. More-
over, UNR’s performance is clearly decreasing as the lengthof the chain increases.

6 Conclusion

In this paper, we explored the theoretical and practical questions of unrolling a sequential Markov
logic knowledge base into different probabilistic models.The theoretical issues arising in a CRF-
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(a) α = 0 (b) α = 1

Figure 2: F-score of models trained and tested on different length of data

based MLN unrolling are a warning that unexpected results may occur if the observations are weakly
correlated with the hidden variables. We gave a qualitativejustification why this phenomenon is
more of a theoretical concern in domains lacking deterministic constraints. We demonstrated that
the CRF based unrolling can be outperformed by a model that mixes directed and undirected com-
ponents (the proposed model does not suffer from any of the theoretical weaknesses, nor from the
label-bias problem).

From a more practical point of view, we showed that our proposed model provides computational
savings, when the data has to be processed in a sequential manner. These savings are due to that
we do not have to unroll a new CRF at every time step, or estimate a partition function which is re-
sponsible for normalizing the product of clique potentialsappearing in two consecutive slices. The
previously used approximate inference methods in dynamic MLNs either relied on belief propaga-
tion or assumed that approximating the distribution at every time step by the product of the marginals
would not cause any error. It is important to note that, although in our paper we focused on marginal
inference, finding the most likely state sequence could be done using the generated particles. Al-
though the conditional log-likelihood of the training datain our model may be non-concave so that
hill climbing based approaches could fail to settle in a global maximum, we proposed a heuristic
for weight learning and demonstrated that it could train ourmodel so that it performs as well as
conditional random fields. Although training the mixed model might have a higher computational
cost than training a conditional random field, but this cost is amortized over time, since in applica-
tions inference is performed many times, while weight learning only once. Designing more scalable
weight learning algorithms is among our future goals.
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