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Abstract

Markov logic is a widely used tool in statistical relatiodairning, which uses
a weighted first-order logic knowledge base to specify a Manandom field
(MRF) or a conditional random field (CRF). In many applicagpa Markov logic
network (MLN) is trained in one domain, but used in a difféarene. This pa-
per focuses on dynamic Markov logic networks, where the sizke discretized
time-domain typically varies between training and testiidpas been previously
pointed out that the marginal probabilities of truth assignts to ground atoms
can change if one extends or reduces the domains of preslicaten MLN. We
show that in addition to this problem, the standard way obllimg a Markov logic
theory into a MRF may result in time-inhomogeneity of the eying Markov
chain. Furthermore, even if these representational pnubkere not significant for
a given domain, we show that the more practical problem oéggimg samples
in a sequential conditional random field for the next slidging on the samples
from the previous slice has high computational cost in theega case, due to the
need to estimate a normalization factor for each sample. Mfgoge a new dis-
criminative modelslice normalized dynamic Markov logic networks (SN-DMLN)
that suffers from none of these issues. It supports effi@atibhe inference, and
can directly model influences between variables within atstfice that do not
have a causal direction, in contrast with fully directed ®lsde.g, DBNS). Ex-
perimental results show an improvement in accuracy ovefiquis approaches to
online inference in dynamic Markov logic networks.

1 Introduction

Markov logic [1] is a language for statistical relationateing, which employs weighted first-order
logic formulas to compactly represent a Markov random fitd&RE) or a conditional random field
(CRF). A Markov logic theory where each predicate can takargoment representing a time point
is called a dynamic Markov logic network (DMLN). We will foswon two-slice dynamic Markov
logic networks,i.e., ones in which each quantified temporal argument is of tha foor ¢ + 1, in
the conditional (CRF) setting. DMLNSs are the undirectedagae of dynamic Bayesian networks
(DBN) [13] and akin to dynamic conditional random fields [19]

DMLNSs have been shown useful for relational inference in plax dynamic domains; for example,
[17] employed DMLNSs for reasoning about the movements aratesiies of 14-player games of
Capture the Flag. The usual method for performing offlineri@fice in a DMLN is to simply unroll
it into a CRF and employ a general MLN or CRF inference algonit We will show, however, that
the standard unrolling approach has a number of undesipabjerties.

The first two negative properties derive from the fact thatNiMLare in general sensitive to the
number of constants in each variable domain [6]; and so, litiqodar cases, unintuitive results can
occur when the length of training and testing sequencesrdiFirst, as one increases the number
of time points in the domain, the marginals can fluctuatenéf/the observations have little or no
influence on the hidden variables. Second, the model camietime-inhomogeneous, even if the
]groun:j weighted formulas between the time slices origifrata the same weighted first-order logic
ormulas.

The third negative property is of greater practical concérrdomains where there are a large num-
ber of variables within each slice dynamic programming d&s@ct inference cannot be used. When



the number of time steps is high and/or online inferencedsired, unrolling the entire sequence
(perhaps repeatedly) becomes prohibitively expensivesti{get al. [7] suggests reducing the cost
by exploiting symmetries while Nath & Domingos [14] propasesing previously sent messages
while performing a loopy belief propagation. Both algonith are restricted by the capabilities of
loopy belief propagation, which can fail to converge to terect distribution in MLNs. Geier &
Biundo [2] provides a slice-by-slice approximate infereradgorithm for DMLNSs that can utilize
any inference algorithm as a black box, but assumes thatginog the distribution over the random
variables at every time step to the product of their margisttibutions does not introduce a large
degree of error — an assumption that does not always holdues¢igl Monte Carlo methods, or
particle filters, are perhaps the most popular methods ftineinference in high-dimensional se-
guential models. However, except for special cases suah@sthe Gaussian distributions used in
[11], sampling from a two-slice CRF model can become expensiue to the need to evaluate a
partition function for each particle (see Sec. 3 for morai&t

As a solution to all of these concerns, we propose a novel waypmwlling a Markov logic theory
such that in the resulting probabilistic model a smaller GREmbedded into a larger CRF mak-
ing the clique potentials between adjacent slices norm@lizVe call this model slice normalized
dynamic Markov logic network (SN-DMLN). Because of the emitbed CRF and the undirected
components in our proposed model, the distribution repteseby a SN-DMLN cannot be com-
pactly captured by conventional chain graph [10], DBN or GR&ph representations, as we will
explain in Sec. 4. The SN-DMLN has none of the negative themteor practical properties out-
lined above, and for accuracy and/or speed of inferencehestor outperforms unrolled CRFs and
the slice-by-slice approximate inference methods. Rinba#cause the maximum likelihood param-
eter learning for an SN-DMLN can be a non-convex optimizapooblem, we provide an effective
heuristic for weight learning, along with initial experimtal results.

2 Background

Probabilistic graphical models compactly represent poditya distributions using a graph struc-
ture that expresses conditional independences among tiadles. Directed graphical models are
mainly used in the generative settingg., they model the joint distribution of the hidden variables
and the observations, and during training the joint prdiigtof the training data is maximized.
Hidden Markov models are the prototypical directed modsksdufor sequential data with hidden
and observable parts. It has been demonstrated that feifcdason problems, discriminative mod-
els, which model the conditional probability of the hiddeariables given the observations, can
outperform generative models [12]. The main justificatiorstheir success are that complex de-
pendencies between observed variables do not have to bdedalicitly, and the conditional
probability of the training data (which is maximized duripgrameter learning) is a better objective
function if we eventually want to use our model for classifiwa. Markov random fields (MRFs)
and conditional random fields (CRFs) belong to the class diranted graphical models. MRFs
are generative models, while CRFs are their discriminatérsion. (For a more detailed discussion
of the relationships between these models see [8lrkov logic[1] is a first-order probabilistic
language that allows one to define template features thdy &mpwhole classes of objects at once.
A Markov logic networks a set of weighted first-order logic formulas and a finitecdetonstants
C = {c1,ca,...,¢|} which together define a Markov netwoll, . that contains a binary node
for each possible grounding of each predicate (ground atomd)a binary valued feature for each
grounding of each first-order logic formula. We will alsoldak ground atoms variables (since they
are random variables). In each truth assignment to theblagaeach variable or feature (ground
formula) evaluates ta (true) or0 (false). In this paper we assume function-free clauses ard H
brand interpretations. Using the knowledge base we caerediteate an MRF or a CRF. If we
instantiate the model as a CRF, the conditional probabilita truth assignmenj to the hidden
ground atomsduery atomgin an MLN, given truth assignmentto the observable ground atoms
(evidence aton)sis defined as:

exp(}_; wi Zj fi(@,y))
Z(x) ’ @

wheref; ;(z,y) = 1if the jth grounding of theth formula is true under truth assignment, y},
and f; ;(x,y) = 0 otherwise. w; is the weight of theth formula andZ(x) is the normalization
factor. Ground atoms share the same weight if they are gingadf the same weighted first-
order logic formula, and (1) could be expressed in terms;0f, y) = Zj fi,j(z,y). Instantiation

as an MRF can be done similarly, having an empty set of evieleteams. Dynamic MLNs [7]
are MLNs with distinguished arguments in every predicafgesenting the flow of time or some
other sequential quantity. In our setting$,and X, will denote the set of hidden and observable
random variables, respectively, at timeandY;.; and X;.; from time stepl to ¢t. Each set can
contain many variables, and we should note that their diginn will be represented compactly
by weighted first-order logic formulas. The formulas in theWledge base can be partitioned into

PrY =yl X =2)=




two sets. Thdransitionspart contains the formulas for which it is true that for angurding of
each formula, there is asuch that the grounding shares variables only Witrand Y; ;. The
emissiorpart represents the formulas which connect the hidden aseredble variables, 1.6 and
X;. We will use P(Y;,Y;41) (or P(Yy.441)) and P(Y;, X;) to denote the product of the potentials
corresponding to weighted ground formulas at tinodé the transition and the observation formulas,
respectively. Since some ground formulas may contain oatiakles fromY; (i.e., defined over
hidden variables within the same slice), in order to couetdbrresponding potentials exactly once,
we always include their potential3(Y;, Y;_;), and fort = 1 we have a separafe(Y;). Hence, the
distribution defined in (1) in sequential domains can beoidzed as:

P (Y, = o PV = yicr) [Ty P(Yi = i, X =

Pr(Yiy = y1:4| X1 = 124) = 11 = y) [Ticy P(Yiet: Z(Zil 1)~ )izt P( Y )
:t

2)

In the rest of the paper, we only allow the temporal domainatiyvand the rest of the domains are
fixed.

3 Unrolling MLNSs into random fields in temporal domains

We now describe disadvantages of the standard definitiotMdiNIs, i.e., when the knowledge base
is unrolled into a CRF:

1. Asoneincreases the number of time points the marginal8wztuate, even if all the clique
potentialsP (Y; = y;, X; = x;) in (2) are uninformative.

2. The transition probability R¥;;1|Y;) can be dependent oi even if everyP(Y;- =
yi, X; = x;) is uninformative and we use the same weighted first-orddc lfmgmula
responsible for the ground formulas covering the transitioetween everyandi + 1.

3. Particle filtering isostlyin generalj.e., if we have the marginal probabilities at timeve
cannot compute them at timier 1 using particle filtering unless certain special conditions
are satisfied.

Saying thatP(Y; = y;, X; = x;) is uninformative is equivalent to saying thatY; = y;, X; = x;)

is constant. (Note that, if; and X; are independente., for someg andr P(Y; = y;, X; = ;) =
r(y:)q(x;) theng could be marginalized out andY;) could be snapped tB(Y;,Y;_1) in (2).) To
demonstrate Property 1, consider an unrolled MRF with thepteal domainZ = {1,...,7},
with only predicateP(¢) (¢t € 7) and with the weighted formulag+oco, P(t) < P(t + 1))
(hard constraint) andw, P(t)) (soft constraint). Because of the hard constraint, only s&e
quencesvt : P(t) andV¢ : —P(t) have non-zero probabilities. The soft weights imply that
Pr(P(t)) = exp(wT)Pr(—=P(t)), i.e, Pr(P(t)? converges td, 0 or to 0.5 with exponential rate
depending on the sign af. But we are not always fortunate to have converging margjead, if
we change the hard constraint to Bét) < —P(¢t + 1) andw # 0 the marginals will diverge. If
T is even, then for every € 7, Pr(P(t)) = Pr(—P(t)), since in both sequencé¥t) has the same
number of true groundings. 1 is odd then for every odtl € 7: Pr(P(t)) = exp(w)Pr(=P(t)).
Consequently, we have diverging marginalsias— +oo. This phenomenon not only makes the
inference unreliable, but a weight learning algorithm timaiximizes the log-likelihood of the data
would produce different weights depending on whetheis even or odd. A similar effect aris-
ing from moving between different sized domains is discdssemore details in [6]. The akin
Property 2 (inhomogeneity) can be demonstrated similadpsider,e.g, an MLN with a single
first-order logic formulaP(t) v P(t + 1) with weightw. For the sake of simplicity, assurfie= 3.

The unrolled MRF defines a distribution wherg PP (3)|-P(2)) = 1+2e;&ff)’ﬁfgp(2w) which is
not equal to R—P(2)|-P(1)) = 1+EJE;&€)T2(;”)ZP(2W) for an arbitrary choice ofv.

The examples we just gave involved hard constraints. In faetcan show that if there are no
hard hard constraints, dsincreases the marginals converge and the system becomesgéneous

(except for a finite number of transitions). Consider therivd@t s.t. ®; ; = P(Y; = a;,Yi—1 = a;),
wherea;, 7 = 1,..., N is an enumeration of the all the possible truth assignmeirttinveach
slice andN is the number of the possible truth assignments in the slieg.Pr(Y; = y1) =

T—-1 5 T—1 5
Z(Yll;T) Pmye it PYi = 43, Yig1 = yipr), whereZ(Yir) = 32, iy P(Y; =
Yis Yit1 = Yit1)-
Proposition 1. lim;_., Pr, (Y7 = y) exists if® is a positive matrix, i.e¥i, j : ®; ; > 0.



Proof. Using ® and the notation for all one vector and; for a vector which had at theith
component and everywhere else, we can expresg(Pr = y) as:

Zyz P(Yl = ai7Y2 = yg)eﬂiq)tilf
ITotT

Since® is positive we can apply theorem 8.2.8. from [bg, if the spectral radius o is p(®)

(which is always positive for positive matriced)in; ... (p~1(®)®)* = L, whereL = zy’, dx =

p(®)x, ®Ty = p(®)y, » > 0,y > 0andz’y = 1. Dividing both the numerator and the denominator
by pt(®) in (3) proves the convergence of,Pr; = y). O

Pr(Yi=y) = ®)

The issue of diverging marginals and time-inhomogeneity i@t been previously recognized as a
practical problem. However, the increasing interest irbphmlistic models that contain large num-
bers of deterministic constraints (seeg. [4]) might bring this issues to the fore. This proposition
can serve as an explanation why in practice we do not encodintrging marginals in linear chain
type CRFsand why except for a finite number of transitionsitbeel becomes time-homogeneous.

A more significant practical challenge is described by Pryp@, the problem of sampling from
Pr(Y;| X, = mm? using the previously drawn samples from(Br | X;., 1 = 214-1). Ina
directed graphical modeé(g, in a hidden Markov model), following standard particlegfildesign,
having sampled;.;—1 ~ Pr(Y1.;,—1 = s1.4-1|X1.4-1 = ®1.4-1), and then using;.;—; one would
samples; ~ Pr(Y;, Y141 = s1:4—1|X1:4-1). Since

PriYi:: = s1:4| X141 = @1:0-1) = PH(Y: = 5¢|Yio1 = 50-1)P{(Yiie—1 = s1:0-1[ X1:0-1 = $1:t7(14))

we do not have any difficulty performing this sampling stepd all that is left is to re-sample
the collection ofs;.; with importance weights PY; = s;/X; = ;). The analogue of this pro-

cess does not work in a CRF in general. If one first draws a sampl ; ~ 15(Y1,X1 =
) P(W) [T.Zs P(Yi,Yi1)P(Y;, X; = ;), and then draws, ~ P(Y;,Y;; = s;_1), we end

up sampling from

1

Zt—l(yt—1) ®)

¢
s~ P(Y1, X1 = 21)P(V) [[ P(YVi, Vi) P(Vi, X = )
i=2

whereZ;_1(y;—1) = Zyt PY: = y,Yi—1 = yi—1). UnlessZ;_1(y;—1) is the same for every
y:_1, itis necessary to approxima®_(s;_1) for everys; ;. ! Although several algorithms have
been proposed to estimate partition functions [16, 18]pHrétion function estimation can increase
both the running time of the sampling algorithm significarethd the error of the approximation of
the sampling algorithm. While there are restricted spe@aés where the normalization factor can
be ignored [11], in general ignoring the approximationZef ; (y;—1) could cause a large error in
the computed marginals. Considerg, when we have three weighted formulas in the previously
used toy domain, namely, : —=P(Y;) V = P(Yi11), —w : P(Y;) A =P(Y;41) andw’ : P(Y;) <
-P(Y;+1), wherew > 0 andw’ < 0. It can be proved that in this setting using particle filtgrin a
CRF without accounting foZ; 1 (y;—1) would result inlim;_,, Pr(P(Y;)) = % while in the CRF

the correct marginal would Hém;_, ., Pr(P(Y;)) =1 — 1337% exp(w’) + O(exp(2w’)), which
gets arbitrarily close té as we decrease’.

4 Slice normalized DMLNs

As we demonstrated in Section 3, the root cause of the weséses an ordinarily unrolled CRF
lies in thatP(Y; = y;,Y;—1 = y:—1) is unnormalizedi.e., Zyt PY:=y,Yi—1 =yi—1) # 1in
general. One approach to introduce normalization could be¢ maximum entropy Markov models
(MEMM) [12]. In that case we would directly represent Py X, Y;_1), hence we could implement
a sequential Monte Carlo algorithm simply directly samglin ~ Pr(Y;|X; = z;,Y;_1 = s,_1)
from slice to slice. However, in [9], it was pointed out thaEMMs suffer from thdabel-biasprob-
lem to which as a solution CRFs were invented. Chain graggee(g.[10]) have also the advantage
of mixing directed and undirected components, and wouldtbeating choice to use, but they could
only model the transition between slices by either repr@sgifi) Pr(Y:|X;: = ¢, Yio1 = st-1),

'Exploiting inner structure according to the graphical model within the sliaglahvim worst case still result
in computation of the expensive partition function, or could result in a higheance estimator the same way
as,e.g, using a uniform proposal distribution does.



in which case the model would again suffer from the labeseoblem, or (i) P¢Y;, X;|Yi-1)

or (iii) Pr(X|Y;) and P(Y;|Y;—1). The defined distributions both in (ii) and (iii) do not giveya
advantage performing the sampling step in (4), and simikariCRFs would require the expensive
computation of a normalization factor. We propose a slicenatized dynamic Markov logic net-
work (SN-DMLN) model, which consists of directed and undtesl components on the high level,
and can be thought of as a smaller CRF nested into a larger €&ifibling the transition probabil-
ities constructed using weighted first-order logic fornsua templates. SN-DMLNs neither suffer
from the label bias problem, nor bear the disadvantageayseptiies presented in Section 3. The
distribution defined by an unrolled SN-DMLN is as follows:

t

:Z H Y = v, z'—wz') (6)

Pr(let = yl:t|X1:t = xl:t)

t

H P(Yi=vyilYic1 =yi-1) »

=2

where

P(Y; = P(Y; =y, Yio1 = yi_

P(Yl y1) P(Y—Z :yz|y; e 1) ( Yi, /z 1 Yi 1) 7
P P(Yl =)’ 2oy P( =y, Yio1=vi-1)
and the partition function is defined by:

Z(w1:) = Z { H =Yi, Xi = xi)HP(Yz‘ =yilYio1 = yil)} :

Y1yt i=1 =2

P(Yy=y1) =

P(Y; = y|Yie1 = yi—1) is defined by a two-slice Markov logic network (CRF), whiclsdebes
the state transitions probabilities in a compact way. If g lthe details of this nested CRF compo-
nent and treat it as one potential, we could represent thddison in (6) by regular chain graphs or
CRFs; however we would lose then the compactness the neREgK@vides for describing the dis-
tribution. Similarly, we could collapse the variables atgutime slice into one and could use a DBN
(or again a chain graph), but it would need exponentiallyevertries in its conditional probability

tables. IfP(Y; = y;, X; = ;) does not have any information content , the probabilityrittigtion
defined in (6) reduces B, (Y1 = y1) I_L o P(Y; = y;|Yi—1 = yi—1), whichis atime-homogeneous
Markov chair? , hence this model clearly does not have Properties 1 andi@atter what formulas
are present in the knowledge base. Furthermore, we do nettbasompute the partition function
between the slices, because equation (5) shows, drawingplesg, ~ P(Y;,Y;—1 = y;—1) while
keeping the valug;_ fixed is equivalent to sampling frof(Y;|Y;—1 = y:—1), the quantity present
in equation (6). This means that using our model one can aatichatingZ(y;_1). To learn the
parameters of the model we will maximize the conditionatlikglihood (£) of the data. We use a
modified version of a hill climbing algorithm. The modificati is needed, because in our c&sis
not necessarily concave. We will partition the weights §paeters) of our model based on whether
they belong to transition or to emission part of the modek gradient of theC of a data sequence

d=1yy,x1,...,Y, 2 W.rt. an emission parameter, (to which featuren, belongs) is:
0Ly t
ow. Z ne(Yis i) — Epr(y|x=z) [Z ne(Yi,z;)| )
¢ =l i=1

which is analogous to what one would expect for CRFs. Howdwera transition parameteu;,.
(belonging to feature,,.) we get something different:
t t—1

oL
8wtd = Zntr(yi-i-lvyi) - Z]EP(leyi) ner(Yie1, Yi = i) ®)
s , 1 1

]EPT(Y|X x) |:Zntr z+17 ZEP(YL+1|Y) {ntr(m+1,Y):|:| .

=1

(Note that,Z, is concavew.r.t. the emission parameterise., when the transition parameters are
kept fixed, allowing the transition parameters to vary makgso longer concave.) In (8) the first

2Note that, in the SN-DMLN model the uniformity d?(Yi = v, X; = x;) is a stronger assumption than
the independence of; andY;.



friendships reflect Smokes(p1,t) A =Smokes(pz2,t) A (p1 # p2) D ~Friends(p1,p2,t)
people’s similarity in Smokes(p1,t) A Smokes(pz,t) A (p1 # p2) D Friends(p1, p2,t)
smoking habits —Smokes(p1,t) A ~Smokes(pz,t) A (p1 # p2) D Friends(p1, p2,t)
symmetry and —Friends(p1,p2,t) DO ~Friends(p2,p1,t)
reflexivity of Friends(pi,p2,t) D Friends(pz,p1,t)
friendship Friends(p, p, t)
persistence of Smokes(p,t) DO Smokes(p,t + 1)
smoking —Smokes(p,t) D =Smokes(p,t + 1)
Hangout(pi, g1,t) AN Hangout(p2, g2, x) A Smokes(p1,t)A
people with different smoking (p1 # p2) A (91 # g2) D ~Smokes(p2,t)
habits hang out separately Hangout(p1, g1,t) A Hangout(pz, g2, t) A ~Smokes(p1,t)A
(p1 # p2) A (g1 # g2) O Smokes(pa,t)

Table 1: Formulas in the knowledge base

two and the last two terms can be grouped together. The fiostpgwould represent the gradient
in the case of uninformative observationg,, when the model simplifies to a Markov chain with
a compactly represented transition probability distidmut The second group is the expected value
of the expression in the first group. The first three termsesmond to the gradient of a concave
function; while the fourth term corresponds to the gradirda convex function, so the function as
a whole is not guaranteed to be maximized by convex optioiza¢chniques alone. Therefore, we
chose a heuristic for our optimization algorithm which grallly increases the effects of the second
group in the gradient. More precisely, we always computegtiaglient w.r.t.w, according to (7),
but w.r.t. w;, we use:

6,6 t t—1
8wtd = Z Ner (Yiv1, Vi) — Z Epviia ) [Ptr (Yig1,9i)] )
r i=1

i=1

t—1

t
— aEp(y|x=2) {Zntr(YiH,Yé) - ZEp(gHm) [ntr(YiH, Yz)] }
i=1 i=1

wherea is kept at the value of until convergence, and then gradually increased ffota 1 to
converge to the nearest local optimum. In Section 5, we éxeitally demonstrate that this heuris-
tic provides reasonably good results, hence we did not tumdre sophisticated algorithms. The

rationale behind our heuristic is thatfrf(Yi = y;, X; = x;) had truly no information content, then
for a = 0 we would find the global optimum, and as we increasee are taking into account that
the observations are correlated with the hidden variabitssam increasing weight.

5 Experiments

For our experiments we extended the Probabilistic Consigt&ngine (PCE) [3], a Markov logic
implementation that has been used effectively in diffey@gmtblem domains. For training, we
used 10000 samples for the unrolled CRF and 100 particlesl@fdsamples for approximat-
ing the conditional expectations in (9) for the SN-DMLN tdiesmte the gradients. For infer-
ence we used 10000 samples for the CRF and 10000 particlebefanixed model. The sam-
pling algorithm we relied on was MC-SAT [15]. Our exampleirtiag data set was a modi-
fied version of the dynamic social network example [7, 2]. higden predicates in our knowl-
edge base wer&mokes(person,time), Friends(persony, persons,time) and the observable
was Hangout(person, group, time). The goal of inference was to predict which people could
potentially be friends, based on the similarity in their &ing habits, which similarity could be in-
ferred based on the groups the individuals hang out. We gttktraining and test data as follows:
there were two groupg;, g2, one for smokers and one for non-smokers. Initially 2 peoyee
randomly chosen to be smokers and 2 to be non-smokers. Pa&tpléhe same smoking habits
can become friends at any time step with probability 0.05«, and a smoker and a non-smoker
can become friends with probability05«. Every5th time step (starting withh = 0) people hang
out in groups and for each person the probability of joining of the groups i§ — 0.05«. With
probability1 — 0.05«, everyone spends time with the group reflecting their snpkabits, and with
probability 0.05« they go to hang out with the other group. The rest of the dagplpealo not hang
out. The smoking habits persisg., a smoker stays a smoker and a non-smoker stays a non-smoker
at the next time step with probability — 0.05«. In our two configurations we had = 0 (deter-
ministic case) and = 1 (non-deterministic case). The weights of the clauses wadsbusing the
SN-DMLN and the CRF unrolled models are in Table 1.

We used chains with length 10, 20 and40 as training data, respectively. For each chain we had
40, 20, 10 and5 examples both for the training and for testing, respectivéh our experiments
we compared three types of inference, and measured thepoedjuality for the hidden predicate
Friends by assigning true to every ground atom the marginal proltgloif which was greater than



length a=0 a=1
accuracy fl accuracy f1
SN | MAR | MC-SAT | SN | MAR | MC-SAT | SN | MAR | MC-SAT | SN | MAR | MC-SAT
5 1.0 | 0.40 1.0 10| 0.14 1.0 0.84 | 0.36 0.81 0.75| 0.10 0.69
10 1.0 | 0.40 0.97 1.0| 0.14 0.95 0.84 | 0.36 0.77 0.74| 0.11 0.61
20 1.0 | 0.40 0.67 10| 0.14 0.49 0.92 | 0.55 0.66 0.85| 0.32 0.47
40 1.0| 0.85 0.60 10| 0.72 0.43 0.88 | 0.73 0.59 0.78 | 0.55 0.42

Table 2: Accuracy and F-score results when models werestitaind tested on chains with the same
length

alpha=0 alpha=1
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Figure 1: F-score of models trained and tested on the sargéhlendata

0.55, and false if its probability was less thant5; otherwise we considered it as a misclassification.
Prediction ofSmokes was impossible in the generated data set, because the deeaten was
symmetricw.r.t to smoking and not smoking, and from the observations wedcoaly tell that
certain pairs of people have similar or different smokingitsg but not who smokes and who does
not. The three methods we compared were (i) particle filggrrthe SN-DMLN mode(SN) (ii) the
approximate online inference algorithm of [2], which piaigethe inferred distribution of the random
variables at the previous slice to the product of their nragi, and incorporates this information
into a two slice MLN to infer the probabilities at the nextcgli(we re-implemented the algorithm
in PCE) (MAR), and (iii) using a general inference algorithm (MC-SAT [L&r a CRF which is
always completely unrolled in every time st@gNR). In UNR and MAR the same CRF models
were used. The training of the SN-DMLN model took approxiehafor 120 minutes for all the test
cases, while for the CRF model, it took 120, 145, 175 and 24utas respectively. The inference
over the entire test set, took approximately 6 minutes fora®N MAR in every test case, while
UNR required 5, 8, 12 and 40 minutes for the different tesesa$he accuracy and F-scores for the
different test cases are summarized in Table 2 and the eseoe plotted in Fig. 1.

SN outperforms MAR, because as we see that in the knowledsge MAR can only conclude that
people have the same or different smoking habits on the dags weople hang out (every 5th time
step), and the marginal distributions $fnokes do not carry enough information about which pair
of people have different smoking habits, hence the quafitylAR’s prediction decreases on days
when people do not hang out. The performance of SN and MARs dtsg/ same as we increase
the length of the chain while the performance of UNR degradéss is most pronounced in the
deterministic casen( = 0). This can be explained by that MC-SAT requires more sargiteps to
maintain the same performance as the chain length increases

To demonstrate that if we use the same number of particledlinsSnumber of samples in UNR,
the performance of SN stays approximately the same whilpehfermance of UNR degrades over
time, we trained both the CRF and SN-DMLN on lengtchains where both SN and UNR were
perforrging equally well and used test sets of differentteagip to lengthi 50. F-scores are plotted

in Fig. 2.

We see from Fig. 2 that SN outperforms both UNR and MAR as tlaéndength increases. More-
over, UNR'’s performance is clearly decreasing as the leafthe chain increases.

6 Conclusion

In this paper, we explored the theoretical and practicaktioes of unrolling a sequential Markov
logic knowledge base into different probabilistic modelfie theoretical issues arising in a CRF-
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Figure 2: F-score of models trained and tested on diffeength of data

based MLN unrolling are a warning that unexpected resulisooaur if the observations are weakly
correlated with the hidden variables. We gave a qualitgtigéfication why this phenomenon is

more of a theoretical concern in domains lacking determinonstraints. We demonstrated that
the CRF based unrolling can be outperformed by a model thegsmirected and undirected com-
ponents (the proposed model does not suffer from any of #meré¢tical weaknesses, nor from the
label-bias problem).

From a more practical point of view, we showed that our predamodel provides computational
savings, when the data has to be processed in a sequentinémarhese savings are due to that
we do not have to unroll a new CRF at every time step, or estimafartition function which is re-
sponsible for normalizing the product of clique potentegbpearing in two consecutive slices. The
previously used approximate inference methods in dynantibl$/either relied on belief propaga-
tion or assumed that approximating the distribution atyetiere step by the product of the marginals
would not cause any error. It is important to note that, algioin our paper we focused on marginal
inference, finding the most likely state sequence could me dsing the generated particles. Al-
though the conditional log-likelihood of the training daeour model may be non-concave so that
hill climbing based approaches could fail to settle in a glabmaximum, we proposed a heuristic
for weight learning and demonstrated that it could train madel so that it performs as well as
conditional random fields. Although training the mixed mioghéght have a higher computational
cost than training a conditional random field, but this cestrmortized over time, since in applica-
tions inference is performed many times, while weight leagronly once. Designing more scalable
weight learning algorithms is among our future goals.
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