
Combining Subjective Probabilities and Data in

Training Markov Logic Networks

Tivadar Pápai1, Shalini Ghosh2, and Henry Kautz1

1 Department of Computer Science,University of Rochester, Rochester, NY,
{papai,kautz}@cs.rochester.edu,

2 Computer Science Laboratory, SRI International, Menlo Park, CA,
shalini@csl.sri.com

Abstract. Markov logic is a rich language that allows one to specify
a knowledge base as a set of weighted first-order logic formulas, and to
define a probability distribution over truth assignments to ground atoms
using this knowledge base. Usually, the weight of a formula cannot be
related to the probability of the formula without taking into account the
weights of the other formulas. In general, this is not an issue, since the
weights are learned from training data. However, in many domains (e.g.
healthcare, dependable systems, etc.), only little or no training data may
be available, but one has access to a domain expert whose knowledge is
available in the form of subjective probabilities. Within the framework
of Bayesian statistics, we present a formalism for using a domain ex-
pert’s knowledge for weight learning. Our approach defines priors that
are different from and more general than previously used Gaussian priors
over weights. We show how one can learn weights in an MLN by com-
bining subjective probabilities and training data, without requiring that
the domain expert provides consistent knowledge. Additionally, we also
provide a formalism for capturing conditional subjective probabilities,
which are often easier to obtain and more reliable than non-conditional
probabilities. We demonstrate the effectiveness of our approach by ex-
tensive experiments in a domain that models failure dependencies in a
cyber-physical system. Moreover, we demonstrate the advantages of us-
ing our proposed prior over that of using non-zero mean Gaussian priors
in a commonly cited social network MLN testbed.

1 Introduction

Markov logic [1], a language widely used for relational learning, represents knowl-
edge by a set of weighted first-order logic formulas. However, except for Markov
Logic Networks (MLNs) with special structure, the weights cannot be interpreted
as probabilities or simple functions of probabilities. The probability of a partic-
ular weighted formula can only be computed by taking into account all of the
weights in all of the formulas in the full grounding of the MLN. When weights
are learned from training data without any prior knowledge, the non-informative
nature of individual weights is not problematic. However, in many domains, one
may have little or no training data, but instead have access to a domain expert’s

2 Combining Subjective Probabilities and Data in Training MLNs

subjective probabilities and subjective conditional probabilities. For example, in
the healthcare domain, one might have little data about certain rare diseases,
but a doctor may have a subjective notion of what percentage of a rare dis-
ease occurs among her patients. Another domain we consider in our experiments
models fault-tolerant systems. There may be a paucity of failure data, but an
engineer could supply subjective conditional probabilities such as, “If the failure
probabilities of the individual components of a system are of the order of 10−3,
then the overall system failure probability is of the order of 10−4”. In this paper,
we provide a formal account of how such domain knowledge can be incorporated
into an MLN. Our approach applies to arbitrary MLNs, and in particular, is not
restricted to the known special cases of MLNs whose structure corresponds to
Bayesian Networks or chordal graphs (which are discussed in more detail below).
We describe two approaches for encoding domain knowledge as priors: the first
requires the expert’s knowledge to be a consistent set of non-conditional proba-
bilities, while the second, more general, approach allows inconsistent knowledge
and conditional probabilities, but has a non-convex optimization subproblem.
We also demonstrate that earlier approaches to incorporating knowledge by
defining non-zero mean Gaussian priors over the weights of a MLN (e.g., as
implemented in Alchemy [2]) can only be justified in MLNs with special struc-
ture, and even then they have certain disadvantages compared to our approach.
The rest of the paper is organized as follows: Sec. 2 covers the mathematical
background; Sec. 3 shows the connection between the expected values of fea-
tures of MLNs and the subjective probabilities provided by an expert; Sec. 4
discusses the disadvantages of using Gaussian priors on the weights of an MLN;
Secs. 5 and 6 define the two different type of priors we investigate; Sec. 7 de-
scribes our experiments; and Secs. 8 and 9 discuss related work, summarize our
results, and lay out our planned future work.

2 Background

2.1 Markov Logic Network

Markov logic [1] is a knowledge representation language that uses weighted for-
mulas in first-order logic to compactly encode probability distributions over rela-
tional domains. A Markov logic network is a set of weighted first-order logic for-
mulas and a finite set of constants C = {c1, c2, . . . , c|C|} which together define a
Markov network ML,C which contains a binary node for each possible grounding
of each predicate (ground atom) and a binary valued feature for each grounding
of each first-order logic formula. In each truth assignment to the ground atoms,
the value of a node is 1 if the corresponding ground predicate is true, and 0
otherwise. Similarly, the value of a feature is 1 if the corresponding ground for-
mula is true, and 0 otherwise. In this paper we assume function-free clauses and
Herbrand interpretations. The probability of a truth assignment (world) x to
the ground atoms in an MLN is defined as:

Pr(X = x|w) =
exp(

∑

i wini(x))

Z(w)
, (1)

Combining Subjective Probabilities and Data in Training MLNs 3

where ni(x) is the number of true groundings of the i-th formula, wi is the
weight of the i-th formula and Z is the normalization factor. We sometimes refer
to ground atoms as (random) variables, but these are not to be confused with
the quantified variables (ranging over C) that appear in first-order formulas.

2.2 Exponential Families of Probability Distributions

The probability distributions defined by Markov Logic Networks belong to the
exponential families of distributions [3], since (1) can be rewritten in a more
general form:

Pr(X = x) = exp (〈θ, f(x)〉 − A(θ)) , (2)

where θi are the natural parameters of the distribution, fi are the features, and
A(θ) is responsible for the normalization. As one can tell by comparing (1) and
(2), θ corresponds to w, fi to ni and A(θ) = log Z(w). The probability (likeli-
hood) of training data D = {x1, . . . , xN} is (with the usual i.i.d. assumption):

Pr(D) = exp

(〈

θ,

N
∑

d=1

f(xd)

〉

− N · A(θ)

)

, (3)

As we can see, (3) depends upon the data only through
∑N

d=1 f(xd) (a

sufficient statistic of the data set D). Let f(D) =
∑N

d=1 f(xd) and f(D) =
1
N

∑N
d=1 f(xd). θ is usually set to maximize (3) for the given training data.

In (2) the distribution is parameterized by its natural parameters (θ). How-
ever, it can also be parameterized by its mean parameters, where the means are
defined as the expected values of the features:

µi =
∑

x

fi(x)Pr(X = x) = E [fi] . (4)

There is a many-to-one mapping from θ to µ. We use θF (x) and µF (x) to
denote the component of the vectors corresponding to the feature representing
the true groundings of formula F (x), and in general follow this convention for
vectors of parameters. We will use the notation µ(θ) when we want to emphasize
the dependence of µ on θ. Since either of µ or θ completely determine the dis-
tribution, we have the choice of defining a prior either over µ or θ to represent
the knowledge of the expert. The prior we will define over θ restricts the kind
of subjective probabilities the expert provides, but will result in a convex opti-
mization problem, thereby making the approach computationally attractive. On
the other hand, the prior we will define over µ is less restrictive, allowing both
conditional and inconsistent probabilistic constraints, at the worst-case cost of
requiring the solution of a non-convex optimization problem. However, we will
also discuss special cases when the optimization problem can be solved by simple
gradient descent, or at least guarantees can be given for the quality of the result
found at any point where the gradient becomes zero.

4 Combining Subjective Probabilities and Data in Training MLNs

3 Relationship Between Subjective Probabilities and the

Parameters of the Exponential Family

We consider the case where a domain expert provides subjective probabilities for
some or all of the formulas in an MLN. For example, if F (x) is a formula where x

is a vector of (implicitly) universally-quantified variables, the expert can estimate
how likely it is that a randomly chosen grounding of F (x) is true. The expert
may also provide subjective conditional probabilities over ground formulas. For
example, if F1(x1) and F2(x2) are formulas, then for chosen groundings c1 and c2,
where c2 contains constants only from c1, the expert may estimate the probability
that if F1(c1) is true then F1(c1) ∧ F2(c2) will be true as well. We will denote
the former statistic by SPr(F (x)) and the latter by SPr(F2(c2)|F1(c1)). For
example, SPr (Cancer(c)|Smokes(c)) = 0.4 means that if the chosen individual c

smokes, (s)he has lung cancer as well with probability 0.4 according to the expert.
Similarly, SPr (Smokes(X)) = 0.01 states the percentage of the population that
smokes in the opinion of the expert. If the MLN happens to be symmetric in
the sense that for any bindings of x1 and x2 to constant vectors c1 and c2,
SPr(F2(c2)|F1(c1)) is constant, we allow the notation SPr(F2(x2)|F1(x1)) where
x2 only contains variables from x1. W.l.o.g. we henceforth assume that x1 = x2

in any subjective probabilities.3

Let g(F (x)) denote the total number of groundings of formula F (x) and let
µF (x) =

µF (x)

g(F (x)) . Given the definition of SPr(F2(x)|F1(x)) and SPr(F (x)), an

initial idea would be to take µF (x), µF2(x)∧F1(x), and µF1(x), and try to sat-

isfy µF (x) = SPr(F (x)) and SPr(F2(x)|F1(x)) =
µF2(x)∧F1(x)

µF1(x))
for every given

subjective (conditional) probability, in absence of training data. In many cases,
however, it is impossible to match the subjective probabilities of the expert.
For example, consider the case where according to the expert SPr(P (x)) = 0.5
and SPr(P (x) ∨ Q(x)) = 0.4. It is easy to see that in this situation no vector θ

would provide a normalized µ that would match both subjective probabilities.
We will call a set S of subjective (conditional) probabilities inconsistent in an
MLN M that has all the formulas occuring in S if there does not exist any θ

such that µF (x)(θ) = SPr(F (x)) and
µF2(x)∧F1(x)(θ)

µF1(x)(θ) = SPr(F2(x)|F1(x)) for every

SPr(F (x)),SPr(F2(x)|F1(x)) ∈ S. It can be proven that S is inconsistent in M

if and only if there is not any distribution that would satisfy all the probabilistic
constraints in S.

3 Fisseler [4] explains in more details why conditional probability constraints must be
dealt with at the ground level in Markov Logic-like relational probabilistic logics in
order to match our definition for conditional probability. Thimm et. al [5] provide
several different semantics for defining first-order conditional probabilities in prob-
abilistic logics. The symmetric case described above corresponds to what they call
aggregating semantics. It is beyond the scope of our paper to examine all the ways in
which first-order conditional probabilities could be defined. For the sake of simplicity
in rest of the paper we assume that subjective conditional probabilities are either
defined at the ground level or are symmetric (i.e., use aggregating semantics).

Combining Subjective Probabilities and Data in Training MLNs 5

We will call a set of subjective (conditional) probabilities fully specified if for
every subjective conditional probability SPr(F2(x)|F1(x)), a value for SPr(F1(x))
is provided by the expert as well. In the case of fully specified subjective proba-
bilities, we can replace a constaint involving SPr(F2(x)|F1(x)) by the constraints
µF1(x) = SPr(F1(x)) and µF2(x)∧F1(x) = SPr(F2(x) ∧ F1(x)).

In Sec. 5, we define a prior over θ assuming that the domain expert pro-
vides a consistent and fully specified set of subjective probabilities. This is a
realistic assumption if the expert’s subjective probabilities are not literally sub-
jective, but have foundations in the statistics of real world data (e.g. 20% of US
adults smoke). In Sec. 6, we allow inconsistent subjective conditional and non-
conditional probabilities, with the tradeoff of possibly requiring greater compu-
tational effort.

4 Gaussian Priors and Chordal Graphs

Before describing our proposed solution for incorporating an expert’s knowl-
edge into an MLN, we discuss the idea of using non-zero mean Gaussian (or
Laplace) priors to represent preference for subjective probability values [6]. We
will demonstrate that using log-odds or log-probabilities as means of Gaussian
(or Laplace) priors can be used under special circumstances. However, the stan-
dard deviation of each Gaussian needs to be scaled based on the associated
probability of the formula, and rewriting an arbitrary MLN to put it into the
required form may cause an exponential increase in size. Our examples require
only the propositional subset of Markov Logic.
The Alchemy Tutorial [2] describes how one can convert a Bayesian Network
into a propositional Markov Logic knowledge base. In the conversion, each entry
in the conditional or non-conditional probability table for a node generates a
clause whose weight is the negative log of the probability. In the problem at
hand, however, we begin with an MLN, not a Bayesian Network.
Chordal graphs are the subset of undirected graphical models which correspond
to both directed and undirected graphical models. We show that the problem of
representing consistent expert knowledge in an MLN whose underlying Markov
Random Field is chordal can be solved efficiently. Suppose we have a propo-
sitional knowledge base to which the corresponding ground MRF is a chordal
graph G. It follows that the probability model P (represented by the ground
Markov Network) is decomposable [7, 8], i.e., the joint probability of its ran-
dom variables can be represented as the product of the joint probabilities of the
variables in the individual cliques divided by the product of the joint proba-
bilities of random variables in certain intersections of certain pairs of cliques.
More precisely, let C1, . . . , Cn be the sets of variables belonging to each maximal
clique ordered by a maximum cardinality ordering, and let Cj(i) be the unique
predecessor of Ci in a join tree corresponding to G. Then the joint probability

can be expressed as, Pr(∪Ci = x) =
Q

i Pr(Ci=ci)
Q

i Pr(Ci∩Cj(i)=ci∩cj(i))
. For a clique C with

variables X1, . . . ,Xn we will call a set SC of conjunctions a cover of C if Sc con-
tains all the possible 2n different conjunctions over X1, . . . ,Xn. To be able to

6 Combining Subjective Probabilities and Data in Training MLNs

use the log probabilities, we require that the formulas present in the knowledge
base contain exactly the conjunctions that cover every Ci clique and Ci ∩ Cj(i)

intersection of cliques.
Assume now that there is a domain expert who specifies consistent probabilities
for all the formulas in the knowledge base. Let T be a truth assignment to all
the variables in the MLN. Let tC=T be a conjunction corresponding to the truth
assignment in clique C (or intersection of cliques) that agrees with T , and let
ptC=T

denote its probability (this probability can be unknown, i.e., needed to
be learned or specified by the expert). In this setting, the probability of a truth
assignment T to all the variables can be written as:

Pr(T) =

∏

i ptCi=T
∏

i ptCi∩Cj(i)=T

= exp(
∑

i

ln ptCi=T
−

∑

i

ln ptCi∩Cj(i)=T
) (5)

= exp

(

∑

i

∑

T ′∈TCi

ln ptCi=T ′
ftC=T ′

(T)

−
∑

i

∑

T ′∈TCi∩Cj(i)

ln ptCi∩Cj(i)=T ′
ftCi∩Cj(i)=T ′

(T)

)

,

where TC is the set of all truth assignments over the variables in clique C and
ftC=T ′

corresponds to the feature which represents the conjunction belonging to
tC=T ′ , i.e., 1 if the conjunction is true, otherwise it is false. It is easy to see that
the last line in (5) corresponds to a Markov Logic representation and that for
every truth assignment T the MLN gives back the correct probability, with no
normalization needed. Thus, chordal MLNs have the advantage that one can use
log-probabilities as priors on the weights. However, MLNs are not, in general,
chordal, and modifying an MLN to make it chordal — i.e. adding formulas that
triangulate the underlying graph — can increase its size exponentially [9].
A second disadvantage of the approach just described is that Gaussian (or
Laplace) priors on the natural parameters do not translate to Gaussian (or
Laplace) priors in the mean parameter space — that is, in the space of prob-
abilities as opposed to weights. Intuitively, one would want to use the variance
of the prior to control how close the parameter is to the subjective probability
after training. However, distance in the θ space does not linearly transform to
a distance in the µ space. E.g, consider having one formula F (x). A change of
its weight from 0 to 1 would change its probability from 0.5 to ≈ 0.73, while
a change from 1000 to 1001 would practically not change its probability. At a
minimum, we would need to scale the standard deviations of the Gaussian pri-
ors according to the mean parameter of the distribution. This distinction is not
present in (3).
Moreover, in many cases the expert can only know the (subjective) probabili-
ties of a subset of formulas. Even if this subset of the formulas spans a chordal
MLN satisfying the conditions to use log-probabilities, we still cannot use log-
probabilities as weights if with the rest of the formulas altogether we do not
have a chordal MLN. To illustrate this problem, consider the case when we

Combining Subjective Probabilities and Data in Training MLNs 7

have N + 1 ground atoms p, q1, . . . , qN in the domain and the expert knows
exactly the probability of p being true, or equivalently provides the value of

o = SPr(p)

1−SPr(p)
. Further assume we also have formulas p ∨ qi in our knowledge

base for every i = 1, .., N , and learn the weights of these formulas from a train-
ing data set for which we know µp = SPr(p) holds. If we use a strong non-zero
mean Gaussian prior over the weight of p centered around log o, i.e., we fix
the weight of p during the weight learning, then if wi is the weight needed
for p ∨ qi to match the empirical feature count from the data, we will get
Pr(p)

1−Pr(p)
=

SPr(p)
P

q1,...,qN

QN
i=1 exp(wi)

(1−SPr(p))
P

q1,...,qN

Q

N
i=1 I[qi] exp(wi)

= o
∏N

i=1
2 exp(wi)
exp(wi)+1 , where I[qi] is

the feature corresponding to p∨ qi with the substitution p = false, i.e., I[qi] = 1
if qi is true, otherwise 0. (We do not have a feature in the numerator, since p∨qi

is always true when p = true.) It is easy to see that as we increase N our wrong
choice of prior can cause an arbitrarily large deviation in the learned marginal
of p from the correct one (consider the case when µp is close to 0, so using the
expert’s probability we set e.g., wp = −100 while µp∨qi

is close to 1, and e.g.
after the weight learning we have wi = 200 for every i). We will demonstrate
this downside of the prior further in Sec. 7 with experiments.

5 Defining a Prior on the Natural Parameters

In this section we consider the case when the expert gives us a fully specified
set of consistent subjective probabilities, and show that we can avoid the dis-
advantages of Gaussian priors defined on the natural parameters. Exponential
families of probability distributions have the advantageous property of easily
defined conjugate priors [10, 11] —

Pr(θ|β, α) ∝ exp (〈θ, αβ〉 − αA(θ)) (6)

— and these priors have an intuitive meaning. β can be related to f(D) and α

to N if we compare (6) to (3). β takes the role of the average empirical feature
count, while α is going to be the pseudo-count. However, if β is not in the set of
consistent mean parameters, then (6) is not going to form a distribution (i.e., it
is an improper prior).

Let θF (x), βF (x), and αF (x) denote the components of the vectors which cor-
respond to the feature fF (x). We can capture consistent subjective probabilities
by setting βF (x) = SPr(F (x))g(F (x)). This intuitively makes sense, because the
knowledge of the expert will be represented as pseudo-data, where α describes
the confidence of the expert in his subjective probabilities, and β represent the
sufficient statistic belonging to the pseudo-data. The posterior becomes:

Pr(θ|D, β, α) ∝ exp
(〈

θ,
(

αβ + Nf(D)
)〉

− (α + N) A(θ)
)

. (7)

The gradient of the logarithm of the posterior w.r.t. θ becomes:

∂ log Pr(θ|D, β, α)

∂θ
= αβ + Nf(D) − (α + N)Eθ[f] . (8)

8 Combining Subjective Probabilities and Data in Training MLNs

This shows that the probability of the data and subjective probabilities of the
expert are measured on the same scale; thus, we do not have to make adjustments
for the subjective probabilities depending on their values, in contrast to the case
for Gaussian priors.

The posterior is a log-concave function, which can be verified by taking the
derivative of (8) w.r.t. θ. Thus, we are guaranteed to find a global maximum of
(8) by using a gradient ascent.

This formulation assumes that the subjective probabilities of the expert and
the data are coming from domains with the same size, which is not a realistic
assumption in statistical relational learning. For example, a doctor can base his
estimates on thousands of previously seen patients, while the training data can
contain only the data for a small control group. We can allow the domain size
to vary by using a distinct A for the data and for the expert in (6), (7), and (8)
which would result in the computation of E[f] w.r.t. two different domain size
of MLN but with the same knowledge base. This approach can be generalized to
allow the different training examples to come from different sized domains, and
to incorporate the knowledge of different experts. Although these modifications
are straightforward, the effect of weak transfer [12] may change the meaning of
subjective probabilities in different domains. For the sake of simplicity in the
rest of the paper we will only consider the base case, i.e., where the training
data and the expert’s knowledge come from the same domains.
In summary: the approach just described allows us to incorporate consistent prior
knowledge by defining a prior over the natural parameters, avoids the problems
of Gaussian priors (i.e. requiring a chordal structure and difficulty in defining
the variance), and requires (only) solving a convex optimization problem. How-
ever, inconsistent subjective probabilities are difficult to handle in this approach.
Furthermore, the expert is required to specify a subjective probability for every
formula.A possible approach that could solve both issues would be to try to
define a distribution (a hyper-prior) over the parameters (hyper-parameters) of
the prior distribution. However, then for any reasonable choice of hyper-prior
we would have the problem of dealing with a normalization factor in (6) that
depends on the value of the hyper-parameters. Instead of going this route, in the
next section we will define a prior over the mean parameters.

6 Defining Prior on the Mean Parameters

As we pointed out in the last section, defining a prior on θ only works when the
subjective probabilities are consistent and the conditional probabilities are fully
specified. To overcome these limitations, we soften the constraints by introduc-
ing a prior on the set of consistent µ values. Let Π(µ) be the prior on µ. Let

Pr(D|θ) =
∏N

i=1 Pr(xi|θ) be the probability of the i.i.d. training data given θ

or µ. The posterior Pr(D|µ) is proportional to Pr(D, µ), hence it is sufficient to
maximize Pr(D, µ). The log-probability of the data with the prior can be written
as:

L(D, µ(θ)) = ln Pr(D|µ) + lnΠ(µ) . (9)

Combining Subjective Probabilities and Data in Training MLNs 9

We are looking for the weight vector (θ) that maximizes L(D, µ(θ)). The gradient
of L w.r.t. θ is:

∂L

∂θ
=

∂ ln Pr(D|θ)

∂θ
+

∂ lnΠ(µ)

∂µ

∂µ

∂θ
=

∑

i

(f(di) − µ) + Σθ

∂ lnΠ(µ)

∂µ
, (10)

where we use the fact that ∂µ(θ)
∂θ

= Σθ, the covariance matrix of f w.r.t. the dis-
tribution defined by θ. The concaveness of (9) depends on the choice of lnΠ(µ);
in general, lnΠ(µ) may be non-concave. Nonetheless, with a careful choice of
Π(µ) there are cases when finding a global optimum of L can be reduced to a
convex-optimization problem, or at least a solution with quality guarantees can
be found by a gradient ascent algorithm.

6.1 Choosing the Prior

Our goal is that when no training data is available, we would like µF (x) to
be as close to SPr(F (x)) as possible. Similarly, for conditional probabilities we

want to match
µF2(x)∧F1(x)

µF1(x))
to SPr(F2(x)|F1(x)). A prior that can capture this

goal is, e.g., a truncated Gaussian distribution over µF (x),
µF2(x)∧F1(x)

µF1(x))
centered

around SPr(F (x)) and SPr(F2(x)|F1(x)), respectively. We have to truncate the
Gaussian since µ is constrained to be between 0 and 1; moreover, the distri-
bution has to be defined over consistent µ values. Since µF1(x)) can get close
to 0, for numerical stability it is more beneficial to try to match µF2(x)∧F1(x) to
µF1(x)SPr(F2(x)|F1(x)). The distribution over µ is just a linear transformation of

the truncated Gaussian distribution over µ (since the Jacobian ∂µ
∂µ

is constant),
resulting in:

Pr(µ) ∝ exp



−
∑

F (x)

αF (x)

(

µF (x) − SPr (F (x))
)2

− (11)

∑

F2(x)|F1(x)

αF2(x)|F1(x)

(

µF2(x)∧F1(x) −µF1(x)SPr (F2(x)|F1(x))
)2

)

In (11), the different α values correspond to the confidence of the expert in his
different subjective probabilitiese.g. α = 0 tells that the expert has no informa-
tion about the subjective (conditional) probability of that feature.

6.2 Cases Solvable by Gradient Ascent

As we mentioned before, there are special cases when we end up with a convex
optimization problem or can give guarantees about the quality of the solution
of a gradient ascent algorithm. An example for the former is when there is no
training data available, the subjective probabilities are consistent, and there are
no subjective conditional probabilities given, since then Π(µ) takes its maximum
when the exponent in (11) is 0. Consequently, we can just find the point where

10 Combining Subjective Probabilities and Data in Training MLNs

∀F (x) : µF (x) − SPr (F (x)) = 0 using regular gradient ascent (without the
presence of Σθ in (10)). (This is exactly equivalent to using the prior over θ

defined in (6) where the same αF (x) is used for every formula.)
Another important case is when we do not have a convex-optimization prob-

lem, but can still guarantee that all the points where the gradient is 0 are located
close to a global optimum, uses a Gaussian prior for Π(µ). More precisely:

Proposition 1 The gradient ascent algorithm always converges to a stationary
point θ, where µ(θ) is guaranteed to fall within an ǫ(N) radius of f̂(D) if ∀i :

0 < f̂i(D) < 1, where f̂F (x)(D) =
fF (x)(D)

g(F (x)) , N is the amount of training data and

ǫ(N) is a strictly monotonically decreasing function of N and limN→∞ ǫ(N) = 0.

Proof. (Sketch) We start with showing that for all the θ’s where this gradient is

0, it is true that µ(θ) has to be within ǫ(N) radius of f̂(D). Σθ is a covariance
matrix of bounded valued random variables, hence the entries in Σθ are bounded
as well. Also, both SPr(F (x))− µF (x) and µF2(x)∧F1(x) − µF1(x)SPr(F2(x)|F1(x)

are bounded; consequently, the vector g(θ) = Σθ
∂ ln Π(µ)

∂µ
is bounded, and there

is a bound that does not depend on N or θ. Let the components of vector
b be the tightest bounds on the absolute values of the components of g, i.e.,
bi = supθ{|gi(θ)|}. Let g′(θ) = f(D) − Nµ(θ) = N(f(D) − µ(θ)). In (10) the
gradient can only be 0 if g′ + g = 0. A necessary condition for this |g′i(θ)| ≤ bi

for every 1 ≤ i ≤ n, equivalently |f i(D) − µi(θ)| ≤
bi

N
, i.e., |f̂i(D) − µi(θ)| ≤

bi

gi(x)N = ǫ(N). Furthermore, the normalized gradient is directed towards the

sphere centered around f̂(D) with radius ǫ(N). This completes the proof.

Since f(D) is the value to which µ would converge in absence of subjective
probabilities, this result ensures that with sufficient training data µ converges
to the same value it would converge to without having the prior, which is a
desideratum for any prior. This results always holds as long as the gradient of
lnΠ(µ) is bounded. The analogue of Proposition 1 holds, when we increase the
domain size, instead of the number of training data sets. (I.e., if the expert bases
his statistics on seeing a population of 1000 people, the weight of his knowledge
becomes negligible when we have a training data set with, e.g., 1000000 people.)

Thus, despite that L can have more than one local optimum, a gradient ascent
algorithm will serve as a basis for our optimization algorithm. We will empirically
demonstrate that even when the conditions of the (approximation) guarantee do
not hold, we can still be better off incorporating subjective probabilities rather
than solely relying on the available data.

7 Experiments

Our implementation is an extension to the Probabilistic Consistency Engine
(PCE) [13], an open source MLN inference tool that has been used effectively
in different problem domains[13, 14]. We used stochastic gradient ascent with a
monotonically decreasing learning rate to find a point where the gradient is 0,

Combining Subjective Probabilities and Data in Training MLNs 11

and added a regularizer so that in the guaranteed convex cases we would always
end up with a unique solution. We also experimented with taking random steps
occasionally to avoid becoming stuck in a local optimum and to increase our
chance of reaching the global optimum. To compare the quality of the weight
vectors that our weight learning algorithm visited, we would need to evaluate
the log-posteriors at the visited points. However, since computing the real log-
posteriors in (9) is costly, we use the combination of the pseudo log-likelihood of
the data along with the log-probability of the prior for the comparison, to select
the best weights. In our experiments, we always ended up using weight vectors
where the gradient ascent algorithm with decreasing learning rate stopped, thus,
simple gradient ascent provided satisfactory results in our examples. Note that,
this can be due to the fact that some random noise is always present in the sam-
pling algorithm, depending on how many samples we are using to approximate
µ in (10) which helped get out from the local optima.

The goal of our experiments is to demonstrate the benefits of our model
and show the advantages of using our proposed prior compared to the one cur-
rently available in Alchemy, namely Gaussian non-zero mean priors. In our first
batch of experiments, we used an MLN that models the failure dependencies
in a cyber-physical system, the Cabin Air Compressor (CAC)[15]. The CAC is
an electromechanical subsystem in an Aircraft Environmental Control Systems
(ECS), which is used to deliver fresh air to the cabin and provide pressurization.
The MLN models a voting-3-CAC architecture, where three CAC subsystems
are connected in a voting configuration, such that the overall system fails only
if at least two out of the three CAC subsystems fail. A high load is put on a
CAC if one or more of the other two CACs fail, and putting high load on a CAC
increases its probability of failure. The MLN models the failure probability of
the overall system, given the failure probabilities of each subsystem, and taking
into account the effects of high load interactions. The voting-3-CAC MLN we
used in our experiment had 4 hard and 4 soft clauses. We abbreviate predicates
failCac, failSystem, failCacHighLoad with C,S and H respectively. The hard
and soft clauses we had in our KB are in Table 1. We resorted to the use of syn-

Hard Clauses

∀c, d, e, s : C(c) ∧ C(d) ∧ C(e) ∧ (c 6= d) ∧ (d 6= e) ∧ (c 6= e) ⊃ S(s)
∀c, d, e, s : C(c) ∧ C(d) ∧ ¬C(e) ∧ (c 6= d) ∧ (d 6= e) ∧ (c 6= e) ⊃ S(s)

∀c, d, e, s : C(c) ∧ ¬C(d) ∧ ¬C(e) ∧ H(d) ∧ H(e) ∧ (c 6= d) ∧ (d 6= e) ∧ (c 6= e) ⊃ S(s)
∀c, d, e, s : C(c) ∧ ¬C(d) ∧ ¬C(e) ∧ H(d) ∧ ¬H(e) ∧ (c 6= d) ∧ (d 6= e) ∧ (c 6= e) ⊃ S(s)

Soft Clauses

-1.03594 ∀c, d : failCac(c) ∧ ¬failCac(d) ∧ c 6=d
-0.9857 ∀c, d : failCacHighload(d) ∧ failCac(c) ∧ ¬failCac(d) ∧ c 6= d

-0.491191 ∀c : failCac(c)
-1.01143 ∀s : failSystem(s)

Table 1: Hard clauses and soft clauses with their weights

thetic data, because in the real world system the probability of system failure
is so low that acquiring real world data set that could capture the underlying
distribution would require a lot of time. We hand-tuned the weights for the soft

12 Combining Subjective Probabilities and Data in Training MLNs

clauses to get a realistic model. We generated 10 synthetic training data sets each
with 10, 20, 50, 100, 200, 500, 1000 and 10000 samples by collecting samples from
the MLN using MC-SAT [16], and then selected only a subset of the samples
in order to increase the independence between them. The normalized expected
feature counts µ varied between 0.01 to 0.3 for the soft clauses. We added a
random value from {−δµ,+δµ} to every normalized feature count to represent
the uncertainty of the expert in his beliefs. We varied δ = 0.0, 0.1, 0.2, 0.3 in
our 4 different noise models (noiseless, noisy 1-3). In our experiments we set
3 subjective probabilities and 1 subjective conditional probability according to
these sampled values (cases noisy1,noisy2 and noisy3 in Figure 1). Also, we used
subjective probabilities computed from µ for the noiseless case. We computed
the KL-divergences DKL(P‖Q) between every learned distribution Q and the
real distribution P , and averaged them for the 10 different sample sets. In the
noiseless case, we used the log-posterior with the gradient specified in (8) (fully
specified set of subjective probabilities). In the noisy cases, we used gradient as-
cent according to the gradient in (10) using the prior in (11). We set the weight
of our prior to match approximately 100 samples from the training data. As we

10
1

10
2

10
3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Amount of training data

K
L−

di
ve

rg
en

ce

data only

noiseless

noisy1

noisy2

noisy3

Fig. 1: The averaged KL-divergences measured from the true distribution for the 4 noise
models

see from the figure, the KL-divergence is relatively high without using our prior
for 10 samples, and around 500 samples starts converging to the same values
in all cases. This can be explained by the fact that for certain formulas, µ has
low values – so consequently for a few samples the formulas corresponding to
the low expected average feature counts are unlikely to be satisfied in any of the
generated samples.The KL-divergence is finite in these cases due to the use of a
regularizer, which prevents the weights from becoming infinite. Arguably other
measures (e.g. L1-norm) could be used instead of KL-divergence. However, in
case of a fault tolerant system, one has to consider the associated penalty when
a system is claimed to be fail-safe, but in reality has a non-zero probability for
failure – L1 distance measure would not capture this.
In summary, when small amount of training data is used, it is beneficial to train
the MLN using the subjective probabilities of a domain expert, even if he is not

Combining Subjective Probabilities and Data in Training MLNs 13

completely confident in his subjective probabilities.
In our second set of experiments, we used a modified version of the “smoking”
social network example MLN from the Alchemy Tutorial to analyze the problems
of using log-probabilities as weights. We created two different knowledge bases
A and B for our experiments. Both knowledge bases used the formulas from
Table 2; knowledge base A used 1-5 while B from 1-7. For each knowledge base

Formula No. Formula

1 ∀x : Smokes(x)

2 ∀x : Smokes(x) ∧ Cancer(x)

3 ∀x : Smokes(x) ∧ ¬Cancer(x)

4 ∀x : ¬Smokes(x) ∧ Cancer(x)

5 ∀x : ¬Smokes(x) ∧ ¬Cancer(x)

6 ∀x, y : Friends(x, y) ∧ Smokes(x) ⊃ Smokes(y)

7 ∀x, y : Relatives(x, y) ∧ Cancer(x) ⊃ Cancer(y)

Table 2: Knowledge bases for the different experiments

we ran two sets of experiments, one with using our prior in the mean parameter
space, and one with using Gaussians in the natural parameter space centered
around the logarithm of the value of the appropriate (conditional) probabilities.
The goal of the experiments were to use a strong prior (with small variance and
high α, respectively for the non-zero mean Gaussian over the weights and our
truncated Gaussian prior,) forcing the formulas 1−5 which only appear in KB A
to have log-probability weight/subjective probability to be equal to the values
provided by the expert. About the probabilities of formulas 6−7 the expert had
no information, hence their weights could vary freely in both cases during the
weight learning. We had 8 people in the domain. We considered 3 sets of weights
and generated 100 samples from the distribution represented by the MLN that
had all the formulas in the table. We again created our training data sets by
using samples from MC-SAT. We computed the feature counts from the samples
and, after normalizing them, we set the (log) probabilities and conditional prob-
abilities of the appropriate formulas in Table 2. In the experiments which used
KB A, both priors performed similarly. However, using log-probability weights
for formulas 1-5 in KB B proved to be a bad estimate – this is because after
weight learning, the formulas 6-7 had non-zero weights, thereby changing the
probabilities of formulas 1-5 whose weights were fixed using the desired values.
Because the domain was too large to compute the KL-divergence, we measured
the L1-distance between the normalized value of the expected feature counts
(probabilities) we get for formulas 1-5, while using the same priors in KB A
and B. The normalized feature counts of formulas 1-7 in the 3 experiments and
the measured L1-distances are in Tables 3 and 4. These experiments confirmed
that using log-probability weights as means of Gaussian priors can decrease the
quality of the learned distribution, even if the expert has access to the true prob-
ability values for a subset of the formulas, and motivates the use of our proposed
prior.

14 Combining Subjective Probabilities and Data in Training MLNs

Exp.no. Probabilities of Formulas

1 2 3 4 5 6 7

1 0.6058375 0.4609375 0.144825 0.00741250000002 0.38695 0.803438 0.973437

2 0.7480875 0.711075 0.0367375 0.0083125 0.2441 0.862812 0.963750

3 0.68445 0.6442875 0.0404375 0.0749499999999 0.2404625 0.839688 0.943125

Table 3: The probabilities of the formulas in the different experiments.

Experiment L1 distance

our proposed prior log-probability weights

1 < 0.05 0.524025

2 < 0.05 0.2613875

3 < 0.05 0.2862375

Table 4: The L1 distances between the normalized expected feature counts and the
empirical feature counts, using the two different priors.

8 Related Work

How the knowledge of an expert can be represented as parameter constraints
for Bayesian Networks is discussed in [17, 18]. Although their formalisms can
incorporate complex knowledge, it is still restricted to Bayesian networks. Prior
probability distributions within the framework of Bayesian statistics in Markov
Random Fields have been used successfully in many domains, such as computer
vision [19, 20]. For exponential families other methods have been proposed to
incorporate information based on expectations of features e.g. in [21] or mea-
surements in [22], but their models are not tailored to MLNs and e.g., do not
allow directly constraining the ratio of expectations of features which is needed
to capture conditional probabilities of formulas. The closest relevant research on
representing knowledge given as (conditional) probabilities of formulas in MLNs
is the work described in [4]. There, the language of Markov logic is extended by
probabilistic constraints, which can either be probabilities of universally quan-
tified formulas or conditional probabilities of propositional formulas. However,
their framework only handles consistent constraints and does not allow combin-
ing the prior knowledge with training data. Eliciting probabilities from expert
opinion has been used in research in other areas. For example, [23] shows how
to extend de Finettis betting-odds method for considering subjective beliefs re-
garding ambiguous events.

9 Conclusion

In this paper, we presented a mathematical framework for incorporating subjec-
tive probabilities into a Markov Logic Network within the framework of Bayesian
statistics. We discussed the benefits and limitations of defining the prior over the
natural parameters (weights) versus the mean parameters (probabilities) of the
MLN, and demonstrated that earlier approaches based on Gaussian priors over
the natural parameters were inadequate. Our framework allows knowledge about

Combining Subjective Probabilities and Data in Training MLNs 15

conditional subjective probabilities to be incorporated as well as non-conditional
probabilities, and can extended to priors where subjective probabilities come
from multiple experts. When we are provided with a fully specified and consis-
tent set of subjective probabilities, defining the prior on the natural parameters
results in a convex-optimization problem, which is an advantage in terms of com-
putational effort. It is often the case, however, that domain expert subjective
probabilities are not consistent. We showed how to make use of possibly incon-
sistent subjective probabilities by defining a prior over the mean parameters.
This approach allows for more flexibility, but at possibly greater computational
cost for learning, because the optimization problem may be non-convex. How-
ever, we provided conditions under which the optimization problem may still be
well-approximated by simple gradient ascent. In future work, we plan on inves-
tigating specific real-world applications where it is important to combine expert
knowledge with data, such as medical expert systems, and where the expert can
give constraints different from what we discussed in this paper.Although, we
only defined our priors in the context of Markov logic, most of our results can
be generalized for exponential families in a straightforward way.

10 Acknowledgments

This material is based upon work supported by the DARPA Machine Read-
ing Program under Air Force Research Laboratory (AFRL) prime contract no.
FA8750-09-C-0181, and by ARO grant W911NF-08-1-0242, ONR grant N00014-
11-10417, Intel STCPC and NSF grant IIS-1012017. Any opinions, findings, and
conclusion or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the view of DARPA, the Air Force Research
Laboratory (AFRL), ARO, ONR, Intel, NSF or the US government. We would
like to thank Hung Bui, Tuyen Ngoc Huynh for their helpful discussions during
the problem formulation, Natarajan Shankar, Sam Owre for their help with PCE
and valuable feedback, and Patrick Lincoln, David Israel for their support and
insights.

References

1. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelli-
gence. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers (2009)

2. Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Wang, J.,
Nath, A., Domingos, P.: The Alchemy system for statistical relational AI. Technical
report, Department of Computer Science and Engineering, University of Washing-
ton (2010)

3. Geiger, D., Meek, C.: Graphical models and exponential families. In: Proceedings
of Fourteenth Conference on Uncertainty in Artificial Intelligence, Madison, WI.
Morgan Kaufmann (August 1998) 156–165

4. Fisseler, J.: Toward markov logic with conditional probabilities. In: FLAIRS
Conference. (2008) 643–648

5. Thimm, M., Kern-Isberner, G., Fisseler, J.: Relational probabilistic conditional
reasoning at maximum entropy. In: ECSQARU. (2011) 447–458

16 Combining Subjective Probabilities and Data in Training MLNs

6. Poon, H., Domingos, P.: Joint unsupervised coreference resolution with markov
logic. In: EMNLP, ACL (2008) 650–659

7. Pearl, J.: Probabilistic reasoning in intelligent systems - networks of plausible infer-
ence. Morgan Kaufmann series in representation and reasoning. Morgan Kaufmann
(1989)

8. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

9. Chung, F.R.K., Mumford, D.: Chordal completions of planar graphs. J. Comb.
Theory, Ser. B 62(1) (1994) 96–106

10. Raiffa, H., Schlaifer, R.: Applied statistical decision theory [by] Howard Raiffa and
Robert Schlaifer. Division of Research, Graduate School of Business Adminitration,
Harvard University, Boston, (1961)

11. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). 1 edn. Springer (2007)

12. Jain, D., Barthels, A., Beetz, M.: Adaptive Markov Logic Networks: Learning
Statistical Relational Models with Dynamic Parameters. In: 19th European Con-
ference on Artificial Intelligence (ECAI). (2010) 937–942

13. Ghosh, S., Shankar, N., Owre, S.: Machine reading using markov logic networks
for collective probabilistic inference. In: In Proceedings of ECML-CoLISD, 2011.
(2011)

14. Ghosh, S., Shankar, N., Owre, S., David, S., Swan, G., Lincoln, P.: Markov logic
networks in health informatics. In: In Proceedings of ICML-MLGC, 2011. (2011)

15. Denker, G., Briesemeister, L., Elenius, D., Ghosh, S., Mason, I., Tiwari, A., Bhatt,
D., Hailu, H., Madl, G., Nikbin, S., Varadarajan, S., Bauer, G., Steiner, W., Kout-
soukos, X., Levendovsky, T.: Probabilistic, compositional, multi-dimension model-
based verification (promise)

16. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and de-
terministic dependencies. In: AAAI. (2006)

17. Niculescu, R.S., Mitchell, T.M., Rao, R.B.: Bayesian network learning with pa-
rameter constraints. Journal of Machine Learning Research 7 (2006) 1357–1383

18. Campos, C.P., Tong, Y., Ji, Q.: Constrained maximum likelihood learning of
bayesian networks for facial action recognition. In: Proceedings of the 10th Eu-
ropean Conference on Computer Vision: Part III. ECCV ’08, Berlin, Heidelberg,
Springer-Verlag (2008) 168–181

19. Geman, S., Geman, D.: Readings in computer vision: issues, problems, principles,
and paradigms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1987)
564–584

20. Li, S.Z.: A markov random field model for object matching under contextual
constraints. In: In Proceedings of IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. (1994) 866–869

21. Druck, G., Mann, G., McCallum, A.: Learning from labeled features using gener-
alized expectation criteria. In: Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in information retrieval. SIGIR
’08, New York, NY, USA, ACM (2008) 595–602

22. Liang, P., Jordan, M.I., Klein, D.: Learning from measurements in exponential
families. In: Proceedings of the 26th Annual International Conference on Machine
Learning. ICML ’09, New York, NY, USA, ACM (2009) 641–648

23. Diecidue, E., Wakker, P., Zeelenberg, M.: Eliciting decision weights by adapting de
finetti’s betting-odds method to prospect theory. Open Access publications from
Tilburg University urn:nbn:nl:ui:12-225938, Tilburg University (2007)

