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ABSTRACT

We introduce Interleaved Hidden Markov Models for rec-
ognizing multitasked activities. The model captures both
inter-activity and intra-activity dynamics. Although the state
space is intractably large, we describe an approximation that
is both effective and efficient. This method significantly re-
duces the error rate when compared with previously pro-
posed methods. The algorithm is suitable for mobile plat-
forms where computational resources may be limited.
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INTRODUCTION

With the availability of cheaper and more ubiquitous sen-
sors, mobile devices are able to continuously observe the
way a person interacts with the physical environment. Us-
ing these observations, a device has the potential to accu-
rately recognize a person’s activities. This in turn supports
many emerging applications, for example, assisting individ-
uals with cognitive impairments [11]. This paper presents a
method to significantly improve recognition of interleaved
activities of daily living (ADLs).

Our goal is to recognize activities from observation sequences
of object identifiers following the “invisible human” paradigm
introduced by Philipose et al. [10]. The observations come
from a wrist-worn Radio Frequency Identification (RFID)
reader and tags [4]. As the user goes through activities of
daily living, the reader records which objects were used. A
list of activities to be recognized may come from a health-
care provider. The task is to learn a model that recognizes
which activities are being performed given a sequence of
these observations.
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People often multitask as they perform ADLs, switching fre-
quently between steps of different activities. In order to
more accurately model and recognize such behavior, we in-
troduce the interleaved hidden Markov model which aug-
ments the hidden state by recording the last observation for
each activity. Although the full state space is intractably
large, we show that using approximate inference with this
model is both effective and efficient for activity recognition.

The subsequent sections describe the related work, provide
the formalism and present the experimental results.

RELATED WORK

We consider the problem of activity recognition for data in
which multiple activities are interleaved, which is a more
general formulation than approaches that only classify pre-
segmented sequences of activity. Although in other mod-
els a single observation can be explained by multiple activi-
ties [14], this is not common when the observation sequence
is coming from objects that are near a user’s hand.

There have been many advances in activity modeling. Early
work [5] provided logical underpinnings to plan recognition
but was not grounded in physical observations. Techniques
for activity recognition from sensor data include fixed-length
feature-vector classifiers [6], dynamic Bayes Nets [3], and
stochastic grammars [7]. Previous research [10] on recog-
nizing activities of daily living with RFID has shown that
isolated activities can be recognized with a hidden Markov
model with a limited number of states.

Difficulties can arise when a user is multitasking between
multiple activities in natural environments. Patterson and
colleagues [9] collected data from a variety of morning activ-
ities using RFID tags and readers. They compared multiple
activity recognizers and found that an HMM with one state
per activity performed well, but increasing model complex-
ity did not improve the recognition performance. Closely re-
lated work to what we are proposing is presented by Duong
and colleagues [1]. They recognize several activities of daily
living using a hierarchical hidden semi-Markov model. Their
algorithm can perform accurate recognition for some ADLs
using observations from cameras that track a user’s location.

PROBLEM FORMULATION

Given a sequence of observations, the activity recognition
task is to associate one activity with each observation. One
model proposed previously [9] for this task is to use an HMM
with one state per activity. More complex models face two
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Figure 1. Graphical model representation of the initial timesteps for
both the (a) HMM and the (b) IHMM. The shaded nodes are observa-
tions and the unshaded nodes form the hypothesis space.

computational difficulties. First, training is difficult for mod-
els with a large number of parameters. Second, models with
large state spaces can become intractable for exact inference
algorithms.

We have discovered an effective approximation algorithm
for activity recognition. The implementation requires only
a small modification of the HMM described above, and re-
mains computationally efficient.

Interleaved HMM Formalism
Denote the activities by A and the objects by O.

A={1,...,n} O ={o1,...,0m}

The evidence stream E = {ej,...,er} consists of one ob-
ject reading per time step e; € O. For a given hypothesis
space of states H, a hidden Markov model [12] is given by
(m, D, E) consisting of the starting state distribution 7 =
P(hy), the transition probabilities D;; = P(hiy1 = jlhy =

1), and the emission probabilities F; (o) = P(ei1 = ox|hy =

7). Following [12], the probability of the most likely state se-
quence given the evidence is computed using the following
recursive formula.
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For the hypothesis spaces considered in this paper, there is a
natural projection H — A. This projection is used to infer
the activities from the hidden state sequence.

The first HMM (Model I) has one state per activity.
H=A
This model has |A|? parameters for transition probabilities

and | A||O| parameters for emission probabilities.

We now define the interleaved HMM model, where each
state consists of a current activity and a record of the last
object observed while performing each activity. The state
space is

HQZAXL,

where I = O!4l is a Cartesian product of |A| copies of
O, which is shown as a graphical model in Figure 1. The
hypothesis at time ¢ is given by h; =<ay, [;>. We denote an
element! € L by (I[1],...,1[n]) where {[i] indicates the last
object observed in activity ¢. The emission probabilities are
deterministic,

P(e| <a,l>) = id(e,l[a)),

where we use the identity function id(z, y), which is one if
x = y and zero if x # y. The transition probability from
<a,l> to <a’, "> is given by

P(a’,'la,1) = P(a'|a) P(I'ld||l[a'),a’) [T éd(V[d), 113])
i#a’
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This equation provides the constraint that only one item in
the record [ changes between time steps. The first factor
above is the transition probability between activities (| A|?
parameters). The second factor is the probability of the next
object to be observed in the new activity, given the last ob-
ject observed in the new activity (|O|?|A| parameters). The
third factor prohibits changes in the record of the last object
observed except for the new activity.

The number of free parameters decreases slightly as proba-
bilities must sum to one, and increases slightly as a “None”
observation is added to O for initialization. Hence, the num-
ber of parameters is constrained to approximately | A||O|? +
| A|?, but the size of the state space (|A||O|I4!) prohibits ex-
act computation.

Since the state space 5 can not be explored completely at
each time step, we use a beam search [8] to define a like-
lihood update equation over a beam B C Hj in the search
space. Equation 1 is modified in the following set of re-
cursive equations to perform a maximization over the beam
instead of the entire hypothesis space. In the following equa-
tions, B; is the beam at time ¢, which is defined at time zero
to simplify the update equations.

By = {<a,(None,...,None)> |a € A}
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In spite of the more complex equations, the interleaved HMM
algorithm is implemented efficiently as a variation of model
I. The IHMM maintains a beam B; with a single hypoth-
esis in L for each possible current activity in A, namely
Va € A,3!(a,l) € B. Hence iteration over L in the above
equations is performed over A. The record [***! is the most
likely record for activity a at time ¢ + 1.



We call our variant of beam search an interleaved hidden
Markov model or IHMM (model II). The interleaved HMM
is a variant of switching HMMs [2] as shown in Figure 1.In
this interpretation, the component a is the state variable of
an HMM that is used to switch between the output of |A|
activity HMMs, one HMM for each component of [. The
transitions are constrained so that the only activity HMM
permitted to change its state is the one selected by the switch.

Defining the best state sequence
For a given HMM, there are multiple ways to define the
best state sequence for the evidence. The most popular is
the most likely activity sequence given all the evidence (the
Viterbi path).

Viterbi = arg max P(hy,...,hr,e1,...,eT),

Ri,.ehr

The Viterbi path is efficiently computed using the Viterbi
algorithm. We can also estimate the current state for the
most likely path from the evidence seen up to time ¢.

Filter(t) = arg max d;(<a, [>)
<a,l>

The filtering option is desirable when the inferred states are
required in real time.

EXPERIMENTS

We simulated data for a simple scenario to demonstrate how
the IHMM improves activity recognition. There are three
activities (drinking a glass of water, making a stir-fry and
making jello) and six tagged objects: a drinking glass, a
jello packet, a stir-fry packet, a spoon, a serving bowl, and
a dessert dish. In each session, the user first makes a stir-
fry (sequentially using the stir-fry packet, the spoon, and the
serving bowl) and then makes jello (using the jello packet,
the spoon, and the dessert dish). Both activities have 5 min-
utes of stirring with the spoon, and the stirring is interrupted
every minute when the user takes a drink of water for 5 sec-
onds. After each drinking interruption, the user resumes stir-
ring. At this point, the standard HMM performs at chance
for discriminating between making jello and making a stir-
fry because both activities are equally likely to have a period
of stirring. The interleaved HMM performs better, because
the IHMM state represents which activity was previously us-
ing the spoon. In this simulated scenario, the accuracy of the
HMM is 66% while the IHMM acheives 100% accuracy.

The IHMM also provides improved recognition accuracy in
real data. The data set collected by Patterson et al. [9] con-
sists of 11 interleaved morning activities involving 43 object
classes. The mean duration of each run was 27 minutes and
the mean time between switching activities was 74 seconds.
The activities are shown in Table 1, along with some repre-
sentative objects for each activity. They evaluated Model I
along with more complex models, but there was no signif-
icant difference in accuracy between Model I and the more
complex models. We measured different performance num-
bers than those reported in their paper since our time steps
correspond to RFID events instead of physical time.

The activity recognizers were trained and tested on this data.
As labels are available for all the training data, probabili-
ties are computed by event counting. All probability tables

Clear Table cups, spoons

Eat Breakfast ~ plates, spoons, mug

Front Door door

Make Espresso  espresso steam knob, mug, fridge

O 001NN B~ W

Make Juice juice pitcher, juice, faucet

Make Oatmeal oatmeal, saucepan, stove control
Make Eggs fridge, saucepan

Make Tea stove control, kettle, faucet

Set Table cupboard, mug

10 Use Bathroom
11  Use Phone

toilet lid, toilet flush handle
phone

Table 1. Breakfast activities and some of the related objects

Model | Algorithm Error Rate

I HMM (Viterbi) 4.5%(0c =1.21)
II THMM (Viterbi) 1.2% (e = 0.71)
I [HMM (Filtering) | 2.9%(c = 0.51)
v Instance 13.4%(c0 = 1.95)

Table 2. A comparison of activity recognition algorithms on the break-
fast data set, where the accuracies are reported for the most likely se-
quence. The data set is quite large, consisting of over 23,000 object
readings from 11 activities collected over 10 days. The accuracy and
standard deviation are computed from leave-one out cross validation.
The interleaved HMM outperforms the rest.

are initialized with a small uniform probability which corre-
sponds to providing a Dirichlet prior for a multinomial dis-
tribution.

The results for activity recognition are shown in Table 2. The
interleaved HMM outperforms the other recognizers. The
accuracy of filtering with the IHMM is also slightly better
than Model 1. For comparison to the sequence based meth-
ods, we include an instance based classifier, which classi-
fies each object to its most probable activity, independent of
the sequence information. This model performs consider-
ably worse than Model L.

To explain the improvement provided by the IHMM, we
measure the quality of the search space approximation by
how often the record variable contains the correct last object
used on activity transitions. When the activity is unchanged
across time steps, the record for the activity is correct by
construction. Given the true sequence of activities and ob-
servations, {(a;, o)}, for the time ¢ and activity ¢ we define
[(i,t) to be the last object observed in activity ¢; formally
1(i,t) = oy where ¢ = max{s : 1 < s < tAas = i}.
Let 7" denote the time points of activity transitions, namely
T"=A{tell,...,Tlla; # ar41}-

Let I(a, t,b) denote the last object used for activity « in the
record associated to activity b in the beam at time . We
define the accuracy to be the percent of time that the true
history matches the record in the beam.

1 . _
|T,| Z Zd(l(at+17t7at>7 (at+17t>)
teT’

acc =

For this dataset, the record correctly contained the last object
observed in the activity for 87% (o = 8) of the inter-activity



transitions. We conclude that the approximation in IHMM to
the full state space search is very effective. While other ap-
proximation methods (loopy belief propagation, variational
methods) might provide some improvement, the beam search
is providing most of the benefit of this extended search space
for little added complexity.

DISCUSSION

The THMM provides a simple yet effective way to improve
activity recognition on real data by recording the last object
observed for each activity. Despite uncertainty in real sensor
data (when irrelevant objects are observed), the probabilistic
nature of the model allows graceful recovery. For situations
with several potentially confusable activities, the IHMM is
an efficient mechanism for focusing computational resources
on plausible activity sequences.

While this research presents promising results for accurately
recognizing interleaved activities, there are limitations. Data
gathered as part of the House_n project [6] has shown some
of the limitations of RFID in extended use environments, for
example, the tags must be within the range of the reader.
However, the interleaved HMM can be applied to other sen-
sor modalities such as motes or vision to provide coverage
when RFID is ineffective or undesirable [13].

Another objection to the methodology could be the perceived
difficulty of gathering labeled data for training. This may not
be a significant difficulty, as even with only one day of train-
ing data, the model performs nearly as well as with nine days
of training data (3.7% error).

The work in [1] also modeled the activities of daily living,
but they use a significantly different style of observations
(video tracking of a person’s location in a room). Their
approach also used a switching model, but their approach
restarts activities instead of remembering the last state within
an activity model. However, they used hidden semi-Markov
models instead of HMMs in order to better model the du-
ration of activities. Combining the techniques might yield
even better activity recognition.

CONCLUSIONS

We have described how the interleaved HMM can be used
for activity recognition. The model is able to predict transi-
tion probabilities better by recording the last object observed
in each activity. This approach requires an approximation for
the inference, but it is able to achieve very low error rates.
While there are still technical challenges to be overcome in
reliable feature detection, this work demonstrates that activ-
ity recognition using RFID can be very accurate.

This work is supported by NSF award 1SS-0734843, NYS-
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