
Vivid Knowledge and Tractable Reasoning:Preliminary ReportDavid W. EtheringtonAT&T Bell Laboratories600 Mountain AvenueMurray Hill, NJ 07974-2070 Alex BorgidaDepartment of Computer ScienceRutgers UniversityNew Brunswick, NJ Ronald J. BrachmanHenry KautzAT&T Bell LaboratoriesMurray Hill, NJ 07974-2070AbstractMundane, everyday, reasoning is fast. Giventhe inherent complexity of sound and com-plete reasoning with representations expressiveenough to capture what people seem to know,commonsense reasoning must require shortcutsand assumptions. Some means of simplifyingthe retrieval of the inferential consequences ofa set of facts is obviously required. Instead oflooking, as others have, at limited inference orsyntactic restrictions on the representation, weexplore the use of \vivid" forms for knowledge,in which determining the truth of a sentence ison the order of a database retrieval.In order to base a reasoning system onvivid knowledge, we consider ways to constructa vivid KB|a complete database of ground,atomic facts|given facts that may be pre-sented in a more expressive language that al-lows incompleteness (e.g., �rst-order logic). Be-sides o�ering an architecture for examiningthese problems, our results show that someforms of incomplete knowledge can still be han-dled e�ciently if we extend a vivid KB in anatural way. Most interesting is the way thatthis approach trades accuracy for speed.1 IntroductionPeople perform quickly and competently in most ev-eryday situations|despite an overwhelming barrage ofinformation that nonetheless does not unambiguouslycharacterize the state of the world. In contrast, com-puter problem-solvers|especially those with clear, for-mal foundations|are extremely slow in most circum-stances, even when presented with little information.Consider a problem-solver that relies on a knowledgerepresentation (KR) system to answer queries aboutwhat follows from a knowledge base. Although there aremany factors that contribute to the overall performanceof the problem-solver, clearly the e�ciency of the KRsystem is important. Recent attempts to deal with the

intractability of such systems have generally fallen undertwo headings: limited languages (e.g., [Patel-Schneider1984, Borgida et al 1989]), and limited inference (e.g.,[Frisch 1988, Patel-Schneider 1989]). In the former, whatcan be expressed in the knowledge base (KB) is restricted(sometimes severely) to guarantee that queries can beanswered in more or less reasonable time. In the lat-ter, restrictions like avoiding chaining or four-valued in-terpretations yield limited conclusions, albeit from rela-tively expressive KB's.We conjecture that a key to e�cient problem-solvinglies in a notion of commonsense reasoning|the kind ofreasoning that people engage in all the time without re-course to \paper and pencil", reasoning by cases, back-tracking, or particularly deep thought.1 Commonsensereasoning is fast: if it were a problem-solver's normalmode of reasoning, then the problem-solver would befast. Paradoxically, studies of commonsense reasoningin AI (e.g., nonmonotonic logics) have frequently led tomechanisms that are even less tractable than logical de-duction.This paper describes an attempt to bridge the gulf be-tween principled theories of inference and practical infer-ence systems. We discuss some components that mightcombine to support fast reasoning, and a uniform ar-chitecture that incorporates them. Obviously, common-sense reasoning is inherently approximate and fallible.Our architecture lets us move towards commonsense per-formance, and yet still say something substantive aboutthe system's relationship to \ideal competence".2 Vivid ReasoningWhat would be a good basis on which to build afast reasoner? (Given the massive amounts of infor-mation agents are faced with, we cannot even inter-pret \fast" as \polynomial-time"|we really need per-formance sublinear in the total size of the KB for simplequeries.) The natural candidate from Computer Scienceis something like a relational database, where query-1We call reasoning that does not �t this description puzzle-mode reasoning, after logic puzzles of the form \The man whoowns the camel lives next to the orange-juice drinker...".



answering/reasoning is merely look-up for the kinds ofsimple questions that we expect to be frequently askedof the KB.Analyses such as Levesque's [1986] and Reiter's [1984]suggest that a crucial factor in the e�ciency of databasesis the assumption that the database has a complete andaccurate view of the world. Generalizing from this, weconjecture that the proper basis for commonsense rea-soning is some \vivid" representation of knowledge|onethat bears a strong and direct resemblance to the worldit represents. A vivid representation has symbols thatstand in a one-to-one correspondence to objects of inter-est in the world, with connections between those symbolscorresponding to relationships of concern. For example[Levesque 1986], a KB containing the sentences \Dandrank 7 ounces of gin" and \Jack drank 6 ounces of gin"would be vivid, with respect to the amount Jack andDan drank individually, while one containing \Jack andDan together polished o� 13 ounces of gin" and \Danhad one more 1-ounce drink than Jack" would not, de-spite the fact that the same information follows fromboth KB's.The notion of vivid representations is appealing forreasons beyond supporting reasoning as database-stylelookup: it corresponds well to the kind of informationexpressed in pictures; thus, it is reasonable to thinkthat much of the information we gain (i.e., percep-tually) occurs naturally in vivid form. Also, variouspsychologically-oriented explanations of cognition sug-gest that people often seem to reason directly from \men-tal models" [Johnson-Laird 1983], rather than by syntac-tic manipulation of sentential constructs.Of course, not all information we obtain about theworld is in vivid form: linguistic communication, for ex-ample, may yield disjunctive or otherwise incomplete orgeneral input (e.g., \Joe doesn't have his Ph.D. yet."or \Everyone in the department has an advanced de-gree."). Fortunately, much of this information can becoerced into a vivid form in a principled way.3 System ArchitectureWhat is needed is an appropriate architecture that wouldallow an AI system to fall back on more general reason-ing (e.g., �rst-order logic) when necessary, but woulddepend primarily on e�cient, vivid reasoning. The ap-proach of standard \hybrid" reasoners, which delegatequestions to submodules that can handle them e�cientlywill not su�ce. We need a much more active approach,in which incoming information is processed to augmentand maintain a vivid view of the world. We have beeninvestigating an architecture that exempli�es this view(see Fig. 1): �rst-order facts are \vivi�ed" into a knowl-edge base of a special form (the VKB).2 This vivi�ca-tion may lose information, since the VKB cannot ex-2We distinguish below between the KB|the knowledgegiven to the system|and the VKB|the system's vivid rep-

plicitly represent disjunction, negation, or any form ofincompleteness. This makes it important to determinethe relationship between the answers that a completetheorem-prover would return when queried, given theKB, and the answers that would be retrieved from thevivid knowledge in the VKB|i.e., between � and �0 inthe �gure. This relationship can be thought of as the de-gree of soundness and completeness of the VKB. Vividreasoning will not be very useful if �0 is too small a sub-set of, or bears no understandable relationship to, �.
Figure 1: Simple view of a vivid knowledge base.Because not all reasoning �ts our commonsense rea-soning paradigm, we propose a hybrid system that re-tains the original information to supplement, as nec-essary, the vivid form. We attempt to answer queriesby simple retrieval directly from the vivid KB. If thatprovides inadequate answers, general or special-purposereasoning with the original KB may be tried, perhapsdepending on the importance of the query. Ultimately,one measure of success will be the proportion of reason-ing that can be delegated to the VKB.

Figure 2: A more general architecture.A generalization of the architecture of Fig. 1, and amore realistic view, is illustrated in Fig. 2. Notice �rstresentation of that knowledge.



the in
uence of a variety of components on the vivi�ca-tion of the original facts. Universal rules a�ect vivi�ca-tion simply and directly (see below). However, where theavailable knowledge is incomplete, we can often do betterthan simply leaving the information in non-vivid form. Itmay be possible, for example, to eliminate the ambiguityof the given disjunction in favour of de�nite facts|factsnot strictly equivalent, but su�cient for the purposesof the system. For example, defaults or preferences3can be used to capture the contribution of previous ex-perience, \Gricean" communication conventions [Grice1975],4 and linguistic context e�ects in forming mentalmodels. In other cases, abstraction provides a powerfultool. In some circumstances, it may even su�ce to makearbitrary choices, as suggested in Levesque's Computersand Thought lecture. Thus, the information in the VKBmay be the consensus of multiple knowledge sources, assuggested by Fig. 2.It also seems useful to separate out parts of the orig-inal KB that are essentially taxonomic. As we showbelow, taxonomies provide another form of disjunctiveinformation that can be used e�ciently in vivi�cationand retrieval.54 Constructing a Vivid Knowledge BaseA vivi�cation process for the simplest case|that ofnon-disjunctive, positive (possibly universally quanti-�ed) sentences|is easy to imagine. All that is necessaryis to take the set of instances of the universally-quanti�edformulae over the set of known individuals and store theresult as a collection of positive, ground, atomic pred-icates (e.g., a relational database). However, we alsointend to take information that would appear suitableonly for the KB, and use it in vivi�cation and/or in con-junction with the VKB in query-answering.The architecture described above trades e�ort andspace as knowledge is added to the system in favour ofrapid query-answering. Although there are fall-back po-sitions that make vivi�cation less demanding, some ofwhich are discussed below and in [Borgida & Ethering-ton 1989], it is useful to ignore the cost of vivi�cationat �rst, to make some of the underlying theoretical is-sues more apparent. Notice, however, that vivi�cation isnot the same as computing all consequences of the KB:only ground atomic consequences are developed. Fur-thermore, any ground consequences that can be obtained3At the moment, we assume the defaults are presentedto the system in the same declarative way as other facts;eventually, defaults should be created by inspecting the VKB(i.e., from experience).4For example, when someone says, \Some of the chemistsare beekeepers," they typically mean to imply that some ofthem are not [Johnson-Laird 1983].5Interestingly, mathematicians and computer scientistshave independently studied \vivid" representations of partialorders, where transitive relationships can be directly \reado�" the representation (viz [Agrawal et al 1989]).

by database techniques (e.g., membership in de�ned re-lations) need not be computed.Disjunctive and negative information do not �t read-ily into the database world-view, and are major contrib-utors to the complexity of logical reasoning. We addressdisjunction and negation piecemeal, distinguishing sev-eral di�erent forms and treating each di�erently. Aboveall, we strive to avoid reasoning by cases. We hypothe-size that commonsense reasoning achieves its e�ciency,in part, by not resorting to case analysis, and we treatproblems that absolutely require reasoning by cases aspuzzle-mode problems.Perhaps the best way to discuss the various versionsof vivi�cation is to consider progressively weaker restric-tions on the forms of negative and disjunctive informa-tion that can be vivi�ed, and consider how each newclass of facts can be converted into vivid form.64.1 A Simple CaseThe simplest extension beyond ground and universally-quanti�ed atoms is to allow disjunctions of the form8x: :A(x)_B(x) (equivalently, simple implications likethose found in inheritance hierarchies). The vivi�cationalgorithm treats these by asserting B(�) whenever A(�)is entered into the VKB. The VKB is then queried asa normal relational database, with negation determinedby the closed-world assumption (CWA) [Reiter 1978].For example, vivifying the KB, fMan(Socrates),Woman(Ophelia), 8x: Man(x) � Mortal(x)g, re-sults in the VKB, fMan(Socrates), Woman(Ophelia),Mortal(Socrates)g. The query Mortal(Socrates) is an-swered by lookup in the VKB, and returns `Yes'. Thequery Mortal(Ophelia) fails in the VKB, so the CWAsanctions the answer `No'.The KB's considered so far correspond to de�nitedatabases, i.e., databases of clauses each containing ex-actly one positive literal. Reiter [1978] shows that theCWA is always consistent with de�nite databases. Wehave proved that the answers returned by closed-worldquerying of the VKB are identical to those returnedby closed-world querying of the original knowledge baseunder the \domain-closure assumption" (DCA) [Reiter1978].7Because negative information is not explicitly repre-sented in the vivid KB, it is not necessary to considerthe contrapositive forms of the disjunctive rules; any rulenot instantiated by the vivi�cation process will be cor-rectly instantiated by the CWA during query-answering.This ensures that the computational complexity of the6To simplify the rest of our discussion of vivi�cation, werestrict ourselves to monadic predicates. In some cases, thishides only messy details. In others, some details remain tobe worked out. Readers are welcome to make whichever as-sumption their credulity allows.7The DCA, which says that the individuals mentioned bythe theory constitute the entire set of individuals, is used indatabase theory to facilitate handling quanti�ed queries.



vivi�cation process does not get out of hand. In par-ticular, it is not necessary to reason by cases, since thenegative case can never be explicitly asserted in the KB.Any technology suitable for reasoning with monotonicsemantic networks (e.g., [Thomason et al 1987]) can beused to vivify the KB. Of course, the system describedso far is not signi�cantly more useful than a monotonicsemantic network. In the following sections, we discussextensions that move in the direction of a useful com-monsense reasoning system.4.2 A Slightly More Complicated CaseThe knowledge presented to a system sometimes con-tains bona �de alternatives and provides no means fordeciding amongst them. It is sometimes possible to tradethe given ambiguity for vagueness and thereby avoiddisjunction. That is, a list of alternatives concerningan individual can sometimes be replaced by a less-�ne-grained, but atomic, description that subsumes the al-ternatives. For example, if we are told only that Joe is52 or 53, we might represent the fact that Joe is in hisearly 50's.To substitute vagueness for ambiguity, we assume thatthe given KB provides certain subsumption information.This may range from the extreme of a complete uppersemilattice containing a subsuming predicate for everysubset of the set of predicates (e.g., Fig. 3), throughmore natural taxonomic hierarchies (e.g., Fig. 4), to thetrivial case where everything is subsumed only by Thing.
Figure 4: Fragment of a subsumption hierarchy.In the simplest case amenable to substitution, thegiven information asserts that a particular individual isa member of one of n classes (i.e., has one of n prop-erties), without specifying which (e.g., Teacher(Joe) _Professor(Joe)). If the information available in the KBprovides a class that subsumes all the mentioned classes,

vivi�cation simply asserts membership in the subsumingclass, and discards the alternatives, thus obtaining anatomic fact that can be stored in the VKB (e.g., usingFig. 4, Instructor(Joe)).The price of this substitution depends on the densityof the available subsumption information. If the sub-sumption hierarchy is complete, no information is lost:anything deducible from the KB will follow from theVKB. In what we expect to be the more common caseof a relatively sparse hierarchy, a certain amount of pre-cision may be lost. Exactly how much will depend onhow \natural" the given disjunction is.8 Disjunctionsthat are useful for commonsense reasoning will often besubsumed by predicates nearby in the hierarchy. Lessnatural disjunctions|requiring reasoning closer to puz-zle mode|would be subsumed only by much more gen-eral concepts|concepts that also subsume many otherconcepts not represented in the original disjunction.For example, think again of the hierarchy in Fig. 4.The information that Joe is a professor or a doctor wouldbe vivi�ed by asserting Professional(Joe), allowing thepossibility that he is a teacher, a lecturer or a lawyer.Being told that he is a professor or a student would yieldAdult(Joe), losing (among other things) the fact that heis not a visitor. Learning that Joe is a lawyer or a sharkmight give rise only to Thing(Joe).\Unnatural" disjunctions do not slow vivi�cationdown appreciably, but uselessly vague answers can beexpected concerning the subjects of these disjunctions.This coincides with our intention that the vivid reason-ing component should not be expected to handle puzzle-mode problems well.We have not said exactly how the VKB should han-dle negation in this extended representation scheme. Inparticular, since the KB is no longer de�nite, it is in-appropriate simply to use the CWA, which may in-troduce inconsistency. For example, if Teacher(Joe)_Professor(Joe) is made vivid by representing onlyInstructor(Joe), then the CWA would justify both:Teacher(Joe) and :Professor(Joe), since neither fol-lows from Instructor(Joe).One solution is not to make the CWA at all; then fail-ure to �nd a fact in the VKB would simply mean thatthe VKB didn't know the fact to hold. This solutionseems a bit radical, however. While avoiding overcom-mitment when given vague knowledge, it prevents mak-ing the CWA even for things not even represented in theKB. This would make the VKB much less vivid. Fortu-nately, there is a less drastic solution.8We realize, of course, that \natural" is not a well-de�nedterm. In this context, however, we can de�ne a disjunction asnatural if its elements are subsumed by a predicate nearbyin the abstraction hierarchy. We can justify this name bybegging the question: we assume that those responsible forbuilding the KB will include nodes for natural disjunctionsof concepts, and not for unnatural ones!



Figure 3: Complete structure for fTeacher, Lecturer, Professorg.For KBs of the form we are considering, the appropri-ate form of the CWA is the Generalized CWA (GCWA)[Minker 1982], which is much like the CWA, except thatit avoids asserting the negation of terms involved in ir-reducible disjunctions. It turns out to be straightfor-ward to augment the representation mechanism used inthe VKB to allow it to distinguish \unknown by virtueof no information" from \unknown by virtue of vague-ness". The CWA can then be applied in the extendedrepresentation to infer the negations of terms for whichno information is available. We have shown [Borgida &Etherington 1989] that this approach yields the same re-sults as the GCWA applied to the original KB, assuminga complete subsumption hierarchy. A sparse hierarchy,of course, may result in weaker statements, due to theloss of precision in the construction of the VKB.The representation and algorithms we have developedare particularly attractive because they have the prop-erty that their accuracy degrades gracefully as their e�-ciency improves, and does not degrade for unambiguousinformation. Thus the retrieval algorithms are soundand complete in cases where the hierarchy is completeor where the given knowledge either is atomic or corre-sponds to concepts directly representable in the hierar-chy. In exchange for the loss of representational �delityin other cases, we achieve signi�cant performance im-provements: assuming the hierarchy has O(p) predicates,where p is the number of primitive predicates, query-answering is sublinear in the number of facts told to theKB, and linear in the size of the query. Complete query-answering, on the other hand, is at least O(n log n) inthe size of the query, and linear in the size of the KB.We can also achieve signi�cant improvements in the com-plexity of telling the KB facts: the NP-complete problemof converting inputs to conjunctive normal form suitablefor vivi�cation can be approximated, without additionalloss of information, in polynomial time.

4.3 A Still More Complicated CaseAnother natural-seeming form of disjunction involves al-ternation of the same predicate over more than one in-dividual, e.g., Teacher(Joe) _ Teacher(Bill). We treatthese using a technique similar to that discussed in theprevious section, abstracting a set of individuals to atype containing them. In this case, a disjunction is viv-i�ed by introducing a Skolem constant (a null value, indatabase terminology) to represent whichever individualsatis�es the predication. We assert that the predicateholds of the null, and that the null is a member of theappropriate type.9 As in the predicate case, the infor-mation lost by vivifying this way is proportional to thedensity of the type hierarchy. The empirical question ofwhether there will generally be types available that coverenough of the disjunctions over small sets of individuals(especially sets of two) that occur in commonsense rea-soning remains open. We can construct intuitively plau-sible arguments that there will be no problem, but wehave not yet compiled data.It is possible that the hierarchy will be too sparse,in which case some combination of the above techniquewith another we are studying may be necessary. Thissecond approach maintains a list of constraints on whichindividuals may replace the null. These constraints canbe used in a variety of ways to provide answers of vary-ing detail. In the limit case, a general-purpose equalityreasoner can be applied to recover all the informationinherent in the original problem statement. At the otherextreme, it is possible to manipulate a uni�cation al-gorithm in such a way that it provides maximally op-timistic or pessimistic views of the e�ects of the con-straints on answers to queries, while performing only afraction of the work necessary to determine the \correct"(maximally informative) answer. This allows the systemto quickly provide upper and lower bounds [Lipski 1979]9The same techniques can be applied directly torange-limited existentially-quanti�ed statements, such as9x=Teacher: Salary(x) > $40; 000.



on the answers to queries while avoiding the e�ort nec-essary to determine the maximally-informative answer.Again, the approximations (which are motivated bythe structure imposed on the world by the hierarchy)made in vivifying the KB result in gratifying perfor-mance gains like those discussed in the previous section,while retaining soundness and completeness where pos-sible. In this case, the gains are even more signi�cant,since the general query problem for the class of formu-lae treated here is NP-complete in the size of the query[Imielinski 1988]. Our algorithms can approximate an-swers in polynomial time.4.4 NegationThe major de�ciency in the system as it stands is thatit provides no mechanism for explicitly telling the VKBnegative information. For many applications, however,this is not a particular problem, since the system hasthe GCWA to provide implicit negation. In fact, thisis no less than is provided by many AI knowledge-representation systems (e.g., Prolog). Occasionally,however, it would be useful to have explicit negation.While we are still working out the details, it appearsto be simple to add capabilities for representing sim-ple ground atomic negative facts, and perhaps uniformlynegative ground disjunctive facts like the uniformly posi-tive disjunctions discussed above (e.g., :Teacher(Joe)_:Professor(Joe)). Such an extension would allow thesystem to distinguish between \de�nitely false", \falseby the CWA", and \unknown", in some cases.4.5 Life in the Space/Time ContinuumIn describing our vivi�cation algorithm, we have beenpro
igate with the space and, to a lesser extent, timerequired to represent knowledge, in an e�ort to achieveoptimal performance for query-answering. Depending onthe availability of storage and the relative frequencies ofupdate and query, it may be desirable to retreat from theextreme position of a totally vivid representation. Sincethe architecture of our hybrid system assumes that theoriginal KB is available for the use of the problem solver,it is not particularly di�cult to beat this retreat.The hierarchies that we use are exception-free, andsupport e�cient computation. Provided certain conven-tions are followed during vivi�cation (and update), itis easy to eliminate some of the worst space consump-tion. In particular, the transitive closure of the inheri-tance hierarchy need not be computed in advance, andthe distinction between \unknown" and \assumed false"can be determined as required to answer queries, ratherthan explicitly stored.5 Knowing, More or Less?The techniques we have described for vivifying a KB re-sult in the system knowing less (at least no more) than

it was told. Reasoning by cases is avoided by only rep-resenting versions of the input that can be made unam-biguous. Levesque [1986] suggests that people sometimesavoid the expense inherent in disjunctive information bysimply picking one disjunct. He argues that a tremen-dous amount of vague and ambiguous information is pre-sented to an agent all the time and it is often su�cient(or even necessary) to disambiguate it either arbitrarilyor according to some default principles, in e�ect comingto \know" more than was told.10Research on default reasoning has concentrated ondeveloping default theories that are epistemically ade-quate, but has ignored computational complexity. Con-versely, we are interested in using defaults to support fastvivid problem solving|including problems that could besolved more slowly without defaults|and are centrallyconcerned with processing the default rules quickly.To see how defaults might be used in vivi�cation, sup-pose a partial description of a room is input to an agent'sKB. Some items are precisely speci�ed (e.g., the coor-dinates of the door), but others are missing (e.g., thewidth of the �replace opening). Geometric-level vivi�ca-tion might �ll in the missing information with typical orrandom values. For instance, �replaces are typically 3000wide, and the windows could be assigned random posi-tions along the exterior walls. Finally, suppose an agentis told that there is a stack of 2400-long �rewood outside,and is instructed to build a �re in the �replace. She cancreate a simple plan to carry some �rewood indoors andplace it in the �replace because she has made the defaultassumption that the �replace opening is larger than thewood. Lacking this belief, she would need to generate aconditional plan: measure the �replace; if it is less than2400, then cut the �rewood into suitably-sized pieces.The utility of defaults does not depend on a coord-inate-level view of the world. For example, suppose anagent is driving a car when a tire goes 
at. Her vividmodel of the car has a good in
ated tire and a jack inthe trunk. This belief, together with the goal of replacingthe 
at tire, generate the obvious plan: open the trunk,remove the spare tire and jack, raise the car, and replacethe 
at tire with the spare. She does not create a planthat considers the possibility that there is no spare in thetrunk and conditionally sends her o� in search of one.Vivid reasoners never need to generate conditionalplans, or reason about the possible ways the world couldbe. The vivid model forms the basis for a direct solutionto the problem at hand. If the solution fails because thedefault assumptions are incorrect, then the vivid modelis revised: the blatantly erroneous assumptions are re-placed by new observations, the KB is re-vivi�ed, andproblem-solving is repeated.1110See [Etherington 1988] for a discussion of the pervasive-ness of default reasoning in intelligent behaviour.11Obviously, there are situations in which the problem-solver might choose a more conservative (and expensive)



This use of defaults for vivi�cation is closely relatedto the \quali�cation problem" in planning [McCarthy1977]. In many domains the list of circumstances thatwould require di�erent solutions to a planning problemis in�nite, so that it is impossible even in principle tosolve the problem by reasoning by cases.We have begun the task of integrating defaults intoa vivid reasoner by analyzing the complexity of simpledefault systems. Selman and Kautz [1988] report ouranalysis of \model preference default rules", which en-force a simple preference relation over the space of mod-els of a theory (which corresponds to the space of vividmodels). While �nding a most-preferred model is, ingeneral, NP-hard, one can be found in polynomial timeif the preference rules are acyclic. Kautz and Selman[1989] extend this analysis to restricted versions of Re-iter's default logic. It is almost always di�cult to de-termine whether a fact holds in any or all \extensions"(roughly, the vivid models) of a theory. Fortunately,however, there is a broad class of theories for which onecan �nd some extension in polynomial time. These re-sults show that while default reasoning can be surpris-ingly complex, there is strong hope for �nding tractabledefault vivi�cation algorithms for limited cases.6 Directions for Future WorkThere are many open problems that we intend to ex-plore. Among these are questions about the e�ects ofclosed-world reasoning concerning the hierarchies. Inparticular, we are interested in providing mechanisms forindicating mutual exclusion and exhaustive partitions ofclasses.We are also considering the e�ects of di�erent assump-tions when vivifying existentially-quanti�ed formulae.Alternatives include assuming the existentially-speci�edindividual is none of those known to satisfy the speci�edproperties (this corresponds to the Gricean assumptionthat, since there is no point in telling someone some-thing they already know, seemingly redundant inputsshould be assumed to contain new information), com-pletely ignoring existential formulae entailed by what isknown, and making domain-closure assumptions vis-�a-vis existential quanti�ers (assuming their referents areamong the known individuals). We suspect that it maybe necessary to allow knowledge sources to control suchaspects of vivi�cation explicitly, presumably augmentedby suitable default choices, much as relational databasetechnology provides for a variety of kinds of null-valuesto express �ne shades of interpretation [Codd 1979].7 ConclusionsWe have outlined an architecture for a KR system thatsupports e�cient treatment of commonsense reasoningapproach.

problems. The essential idea is to use an array of tech-niques to transform information about the world, whichmay be incomplete, into a vivid representation in whichinference approaches simple inspection of the represen-tation. By trading representational �delity for speed,we are able to achieve attractive performance in certainsituations. In any case, the loss of accuracy can be mo-tivated, predicted, and controlled by decisions made asknowledge is presented to the system.AcknowledgementsWe are grateful to Hector Levesque and Bart Selman fortheir contributions to the work described here.ReferencesAgrawal, R., Borgida, A., and Jagadish, H. V. [1989],\E�cient Management of Transitive Relationshipsin Large Data and Knowledge Bases", Proc. ACM-SIGMOD{89, Portland, OR, May 1989.Borgida, A., and Etherington, D. W. [1989], \Hierarch-ical Knowledge Bases and Tractable Disjunction",Proc. First International Conference on KnowledgeRepresentation and Reasoning, Toronto, Canada,May, 1989, 33-43.Borgida, A., Brachman, R. J., McGuinness, D. L.,and Resnick, L. A., \CLASSIC: A StructuralData Model for Objects", Proc. ACM-SIGMOD{89,Portland, OR, May, 1989.Codd, E. F. [1979], \Extending the Database RelationalModel to Capture More Meaning", ACM Trans. onDatabase Systems 4(4), December, 1979, 397-434.Etherington, D. W. [1988], Reasoning with IncompleteInformation, Pitman Research Notes in Arti�cialIntelligence, Pitman (London)/Morgan Kaufmann(Los Altos), 1988.Frisch, A. M. [1988],Knowledge Retrieval as SpecializedInference, Technical Report UIUCDCS-R-88-1404,Department of Computer Science, University of Illi-nois at Urbana-Champaign, February, 1988.Grice, H. P. [1975], \Logic and Conversation", in Syntaxand Semantics, Vol 3: Speech Acts, Cole, P. andMorgan, J. L. (eds.), Academic Press, 1975.Imielinski, T. [1988], \Incomplete Deductive Data-bases", submitted for publication, 1988.Johnson-Laird, P. N. [1983], Mental Models, HarvardUniversity Press, Cambridge, MA, 1983.Kautz, H., and Selman, B. [1989], \Hard Problems forSimple Default Logics", Proc. First InternationalConference on Knowledge Representation and Rea-soning, Toronto, Canada, May, 1989, 189-197.



Levesque, H. J. [1986], \Making Believers out of Com-puters", Arti�cial Intelligence 30, October 1986,81-108. (Originally given as the \Computers andThought" lecture at IJCAI-85.)Lipski, W. Jr. [1979], \On Semantic Issues Connectedwith Incomplete Information Databases", ACMTrans. on Database Systems 4, 1979, 262-296.McCarthy, J. [1977], \Epistemological Problems of Ar-ti�cial Intelligence", Proc. Fifth International JointConf. on Arti�cial Intelligence, Cambridge, MA,1977, 1038-1044.Minker, J. [1982], \On Inde�nite Databases and theClosed-World Assumption", Proc. Sixth Conf. onAutomated Deduction, New York, June, 1982,Springer-Verlag, NY.Patel-Schneider, P. F. [1984], \Small can be Beautiful inKnowledge Representation", Proc. IEEE Workshopon Principles of Knowledge-Based Systems, Denver,December, 1984, 11-16.Patel-Schneider, P. F. [1989], \A Four-Valued Seman-tics for Terminological Logics", Arti�cial Intelli-gence 38, 1989, 319-351.Reiter, R. [1978], \On Closed-World Data Bases", inGallaire, H. and Minker, J. (eds), Logic and DataBases, Plenum Press, 1978, 55-76.Reiter, R. [1984], \A Logical Reconstruction of Rela-tional Database Theory", in Brodie, M. L., My-lopoulos, J., and Schmidt, J. W. (eds), On Con-ceptual Modelling, Springer-Verlag, 1984, 191-233.Selman, B. and Kautz, H. [1988], \The Complexity ofModel-Preference Default Theories", Proc. Cana-dian Soc. for Computational Studies of Intelligence-88, Edmonton, Alberta, June, 1988, 102-109.Thomason, R., Horty, J., and Touretzky, D. [1987],\A Calculus for Inheritance in Monotonic Seman-tic Nets", in Methodologies for Intelligent Systems,Ras, Z. and Zemankova, M., eds., North-Holland,Amsterdam, 1987, 280-287.


