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The first convincing demonstration that lo-
cal search could be used to solve challenging sat-
isfiability problems was provided by the GSAT
algorithm [9]. GSAT performs gradient descent
search in the space of complete truth assign-
ments, where adjacent assignments differ on a
single variable and the objective function is the
number of clauses not satisfied by the assign-
ment. Like all local search routines GSAT can
become trapped in a local minima. One tech-
nique for reducing this problem is to randomly
alternate between greedy minimizing moves and
“noisy” moves that are randomly selected from
the variables that appear in unsatisfied clauses
[7].

The Walksat algorithm [8] is based on the
insight that such noisy moves could be made
the basis for local search. Rather than trying
to globally determine the best move, Walksat
first randomly chooses an unsatisfied clause, and
then selects a variable to flip within the clause.
Because Walksat may overlook the best global
move it is said to perform hill-climbing rather
than gradient descent. The fact that a clause is
unsatisfied means that at least one of the vari-
ables in the clause must be flipped in order to
reach a global solution. If variables are chosen
randomly from the clause and the clause length
is bounded by a constant k it is easy to see that
each flip as a 1/k or better chance of being cor-
rect. When k£ = 2 a pure random walk strategy
will solve a satisfiable formula over n variables
with high probability in O(n?) time [5].

For larger values of k the only worst-case
guarantees for pure random walk are exponen-
tial. In practice, therefore, the variable to be
flipped is chosen from the (randomly selected)
unsatisfied clause by some greedy heuristic. A

number of such heuristics have been studied.

The original Walksat heuristic, denoted “SKC”
after the initials of the authors [8], employs the
notion of the breakcount of a variable, which is
the number of clauses that are currently satisfied
that would become unsatisfied if the variable
were to be flipped. Similarly, the makecount of
a variable is the number of clauses current un-
satisfied that would become satisfied. The SKC
variable selection heuristic is as follows: (1) If
there are variables with breakcount=0, choose
one such variable at random. (2) Otherwise,
with some fixed probability p select a variable
randomly from the clause. (3) Otherwise, pick
a variable with minimum breakcount; if there
are several such, pick one at random.

The first step, checking for any breakcounts
of 0, is crucial for good performance of the SKC
heuristic. If this step is eliminated and variables
are chosen to minimize (breakcount - makecount),
then the algorithm is similar to GSAT, modulo
the fact that variable selection is not done glob-
ally, but only after clause selection.

The breakcounts and makecounts of all vari-
ables can be maintained incrementally, an im-
plementation decision that is crucial for practi-
cal efficiency of Walksat. At the start of the al-
gorithm the values are initialized. When a vari-
able x is flipped from true to false, the break-
counts can be updated by () visiting each clause
that contains x positively; and if the clause now
contains single true literal [, incrementing the
breakcount of the variable of I; and (i) visiting
each clause containing = negatively; and if the
clause now contains exactly one other true lit-
eral [, decrementing the the breakcount of the
variable of [. Similar operations are performed
for the case of flipping from false to true or cal-
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culating the makecount (if the heuristic makes
use of the makecount).

The best value for p depends upon the par-
ticular problem instance. Random 3-SAT prob-
lems typically are solved most quickly with p =
0.5. Structured instances often require a lower
p value in order to be solved. There is evidence
that the optimal p value is close to the value
at which the quantity p/o is minimized, where
u is the average number of unsatisfied clauses
during the run, and o is the standard deviation
of this quantity [4]. A version of Walksat called
“AutoWalksat” tries to find the best p value for
a given instance by computing this ratio for var-
ious settings of p during a series of initial short
partial runs [6].

One of the most powerful Walksat heuristics,
called “Rnovelty”, modifies the random walk
strategy by trying to avoid repeatedly flipping
the same small set of variables [4]. Every time
a variable is flipped the timestamp of the flip is
recorded. Once an unsatisfied clause is chosen
Rnovelty proceeds as follows:

e Sort the variables in the clause by (break-
count - makecount).

e If two or more variables have the best score,
pick one that is not the variable from the
clause that was most recently flipped.

e Otherwise consider the best and second-
best variable under the sort. If the best
variable is not the most recently flipped
variable in the clause, then select it.

e Otherwise when the difference in the score
between the best and second best is greater
than 1, pick the best; otherwise pick the
second best.

This description of Rnovelty is a simplified case
when a parameter p = 0.5; for full details see
[4]. Rnovelty (unlike SKC) can, on rare oc-
casion, become stuck in deterministic cycles of
flips. Such cycling can be prevented by inject-
ing a pure random-walk flip every 100 steps; the
resulting heuristic is called Rnovelty+ [2].
Instead of running until a solution is found or
a hard time-out limit is reached, Walksat can be
run repeatedly from different random starting
states. Whether such restarts are beneficial de-
pends upon the run-time distribution of random
runs of Walksat for the particular problem in-
stance. If the tail of the distribution drops off at
an exponential or higher rate, then restarts are

unnecessary. Otherwise, a good restart strategy
could provide expected exponential savings.

Choosing a practical restart strategy is not
an easy matter. A strategy that interleaves short
and increasingly longer runs is provably within
a constant times a log factor of optimal for any
stochastic process [3]. Starting with runs of
length 1, however, is rarely practical; so to use-
fully apply this strategy one still must choose
an initial cutoff c¢. Recent work on restart strat-
egy for backtracking search algorithms suggests
it may be possible to learn syntactic features of
formulas that predict good cutoff values [1], but
a definitive approach for local search is an open
problem.

We entered the three variants of Walksat
described above in the 2004 SAT competition:
SKC, AutoWalksat, and Rnovelty+. Walksat
SKC was run with p = 0.4 and Rnovelty+ with
p = 0.5. All versions we set to perform a single
long run on each problem instance: that is, no
restart strategy was employed. While this sim-
plified preparing our programs for the competi-
tion, it means that negative results for any of the
versions are not conclusive. After the competi-
tion we will rerun the solvers on the competition
problems with a variety of restart strategies to
see if doing so significantly improves their per-
formance.
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