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ABSTRACT
Location plays an essential role in our lives, bridging our
online and offline worlds. This paper explores the interplay
between people’s location, interactions, and their social ties
within a large real-world dataset. We present and evaluate
Flap, a system that solves two intimately related tasks: link
and location prediction in online social networks. For link
prediction, Flap infers social ties by considering patterns
in friendship formation, the content of people’s messages,
and user location. We show that while each component is
a weak predictor of friendship alone, combining them re-
sults in a strong model, accurately identifying the majority
of friendships. For location prediction, Flap implements a
scalable probabilistic model of human mobility, where we
treat users with known GPS positions as noisy sensors of
the location of their friends. We explore supervised and un-
supervised learning scenarios, and focus on the efficiency of
both learning and inference. We evaluate Flap on a large
sample of highly active users from two distinct geographical
areas and show that it (1) reconstructs the entire friendship
graph with high accuracy even when no edges are given;
and (2) infers people’s fine-grained location, even when they
keep their data private and we can only access the location
of their friends. Our models significantly outperform current
comparable approaches to either task.
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1. INTRODUCTION
Our society is founded on the interplay of human rela-

tionships and interactions. Since every person is tightly em-
bedded in our social structure, the vast majority of human
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Figure 1: A snapshot of a heatmap animation of
Twitter users’ movement within New York City
that captures a typical distribution of geo-tagged
messaging on a weekday afternoon. The hotter
(more red) an area is, the more people have re-
cently tweeted from that location. Full animation
is at http://cs.rochester.edu/u/sadilek/research/

behavior can be fully understood only in the context of the
actions of others. Thus, not surprisingly, more and more ev-
idence shows that when we want to model the behavior of a
person, the best predictors are often not based on the person
herself, but rather on her friends, relatives, and other con-
nected people. For instance, behavioral patterns of people
taking taxis, rating movies, choosing cell phone providers,
or sharing music are often best predicted by the habits of re-
lated people, rather than by the attributes of the individual
such as age, ethnicity, or education [3, 24].

Until recently, it was nearly impossible to gather large
amounts of data about the connections that play such im-
portant roles in our lives. However, this is changing with the
explosive increase in the use, popularity, and significance of
online social media and mobile devices.1 The online aspect
makes it practical to collect vast amounts of data, and the
mobile element bridges the gap between our online and of-
fline activities. Unlike other computers, phones are aware of
the location of their users, and this information is often in-
cluded in users’ posts. In fact, major online social networks
are fostering location sharing. Twitter added an explicit
GPS tag that can be specified for each tweet (AKA Twitter
message update) in early 2010 and is continually improving
the location-awareness of its service. Google+, Facebook,

1http://www.comscore.com/



FourSquare, and Gowalla allow people to share their loca-
tion, and to “check-in” at venues. With Google Latitude and
Bliin, users can continually broadcast their location.

Thus, we now have access to colossal amounts of real-
world data containing not just the text and images people
post, but also their location. Of course, these three data
modalities are not necessarily mutually independent. For
instance, photos are often GPS-tagged and locations can
also be mentioned, or alluded to, in text.

While the information about users’ location and relation-
ships is important to accurately model their behavior and
improve their experience, it is not always available. This
paper explores novel techniques of inferring this latent in-
formation from a stream of message updates. We present
a unified view on the interplay between people’s location,
message updates, and their social ties on a large real-world
dataset. Our approaches are robust and achieve significantly
higher accuracy than the best currently known methods,
even in difficult experimental settings spanning diverse geo-
graphical areas.

1.1 Significance of Results
Consider the task of determining the exact geographic lo-

cation of an arbitrary user of an online social network. If
she routinely geo-tags her posts and makes them public, the
problem is relatively easy. However, suppose the location
information is hidden, and you only have access to public
posts by her friends. By leveraging social ties, our proba-
bilistic location model—the first component of this work—
infers where any given user is with high accuracy and fine
granularity in both space and time even when the user keeps
his or her posts private. Since this work shows that once we
have location information for some proportion of people, we
can infer the location of their friends, one can imagine doing
this recursively until the entire target population is covered.
To our knowledge, no other work attempts to predict loca-
tions in a comparably difficult setting.

The main power of our link prediction approach—the sec-
ond major component of this work—is that it accurately re-
constructs the entire friendship graph even when no “seed”
ties are provided. Previous work either obtained very good
predictions at the expense of large computational costs (e.g.,
[28]), thereby limiting those approaches to very small do-
mains, or sacrificed orders of magnitude in accuracy for
tractability (e.g., [19, 7]). By contrast, we show that our
model’s performance is comparable to the most powerful re-
lational methods applied in previous work [28], while at the
same time being applicable to large real-world domains with
tens of millions (as opposed to hundreds) of possible friend-
ships. Since our model leverages users’ locations, it not only
encompasses virtual friendships, but also begins to tie them
together with their real-life groundings.

Prediction of people’s location and social ties—especially
when considered together—has a number of important ap-
plications. They range from improved local content with
better social context, through increased security (both per-
sonal and electronic) via detection of abnormal behavior tied
with one’s location, to better organization of one’s relation-
ships and connecting virtual friendships with the real-world.
We note that even when friends participate in the same
social networking platform, their relationship may not be
exposed—either because the connections are hidden or be-
cause they have not yet connected online. Flap can also

help contain disease outbreaks [12]. Our model allows iden-
tification of highly mobile individuals as well as their most
likely meeting points, both in the past and in the future.
These people can be subsequently selected for targeted treat-
ment or preemptive vaccination. Given people’s inferred lo-
cations, and limited resource budget, a decision-theoretic
approach can be used to select optimal emergency policy.
Clearly, strong privacy concerns are tied to such applica-
tions, as we discuss in the conclusions.

2. RELATED WORK
Recent research in location-based reasoning explored

harnessing data collected on regular smart phones for mod-
eling human behavior [10]. Specifically, they model indi-
viduals’ general location from nearby cell towers and Blue-
tooth devices at various times of day. Eagle et al. show
that predicting if a person is at home, at work, or some-
place else can be achieved with more than 90% accuracy.
Besides scalability and practicality—social network data is
much more readily available than cell phone logs—our work
differs in that we include dynamic relational features (loca-
tion of friends), focus on a finer time granularity, and con-
sider a substantially larger set of locations (hundreds per
user, rather than three). Additionally, the observations in
our framework (people’s self-published locations) are signifi-
cantly noisier and less regular than cell tower and Bluetooth
readings. Finally, our location estimation applies even in sit-
uations, where the target people decide to keep their data
private.

Backstrom et al. predict the home address of Facebook
users based on provided addresses of one’s friends [2]. An
empirically extracted relationship between geographical dis-
tance and the probability of friendship between pairs of users
is leveraged in order to find a maximum likelihood assign-
ment of addresses to hidden users. The authors show that
their method of localizing users is in general more accurate
than an IP address-based alternative. However, even their
strongest approach captures only a single static home lo-
cation for each user and the spatial resolution is low. For
example, less than 50% of the users are localized within 10
miles of their actual home. By contrast, we consider much
finer temporal resolution (20 minute intervals) and achieve
significantly greater spatial precision, where up to 84% of
people’s exact dynamic location is correctly inferred.

Very recently, Cho et al. focus on modeling user location
in social networks as a dynamic Gaussian mixture, a gen-
erative approach postulating that each check-in is induced
from the vicinity of either a person’s home, work, or is a
result of social influence of one’s friends [6]. By contrast,
our location model is inherently discrete, which allows us
to predict the exact location rather than a sample from a
generally high-variance continuous distribution; operates at
a finer time granularity; and learns the candidate locations
from noisy data. Furthermore, our approach leverages the
complex temporal and social dependencies between people’s
locations in a more general, discrete fashion. We show that
our model outperforms that of Cho et al. in the experiments
presented below.

A number of geolocating applications demonstrate emerg-
ing privacy issues in this area. The most impactful ones are
arguably Creepy2, ICanStalkU.com, and PleaseRobMe.com

2https://github.com/ilektrojohn/creepy



(currently disabled). The purpose of these efforts is to raise
awareness about the lack of location privacy in online social
networks. Given a username from an online social network,
Creepy aggregates location information about the target in-
dividual from her GPS-tagged posts and photos, and dis-
plays it on a map. ICanStalkU.com scans public Twitter
timeline, and extracts GPS metadata from uploaded pho-
tos, which often reveal people’s current location without
them realizing it. PleaseRobMe.com used to extract peo-
ple’s geographic check-ins that imply they are not at home
and therefore vulnerable to burglaries.

However, all these applications work only with publicly
available data. By contrast, this paper shows that we can
infer people’s precise location even when they keep their
data private, as long as some of their friends post their loca-
tion publicly. Therefore, simply turning off the geolocation
features of your phone—which may seem to be a reliable
way to keep your whereabouts secret—does not really pro-
tect your privacy unless your friends turn theirs off as well.

While our work concentrates on Twitter users, recent re-
search shows that the predictability of human mobility re-
mains virtually unchanged across a number of demographi-
cal attributes such as age and gender [27]. This strongly sug-
gests that our approach achieves similar accuracy for other
geographical areas and different samples of users. Finally,
we note that although it has been shown that possibly as
many as 34% of accounts provide either wrong or mislead-
ing symbolic (e.g., city, state) location information in their
profiles, our work is largely shielded from this phenomenon
since we focus only on raw GPS data that can be more read-
ily verified and is not fed into a geocoder [15].

The problem of link prediction has been studied in a
large number of domains and contexts; here we mention the
ones that are most relevant to our work. Liben-Nowell et
al. models the evolution of a graph solely from its topo-
logical properties [19]. The authors evaluate a number of
methods of quantifying the probability of a link in large
graphs, and conclude that while no single technique is sub-
stantially better than the rest, their models outperform a
random predictor by a significant margin. This shows that
there is important information to be mined from the graph
structure alone.

An alternative approach is to leverage the topology as
well as attributes of the individual entities [28]. They model
friendships of students in an online university community us-
ing relational Markov networks. Similarly to our approach,
their probabilistic model encompasses a number of features,
some of which are based on the attributes of individual users
while others model the structure of the friendship graph.
Their inference method is standard belief propagation (BP),
whereas we develop an efficient and specialized version of
BP, which in practice quickly converges. Their domain con-
tains only several hundred candidate social ties. This size
restriction is apparently due to the computational challenges
posed by their relational model. We, in contrast, consider
thousands of individuals who can be connected in arbitrary
fashion, which results in tens of millions potential friend-
ships. Furthermore, Taskar et al. assume that some friend-
ships are given to the model at testing time. In this work,
we show that it is possible to achieve good performance even
with no observed links.

Crandall et al. explore the relationship between co-location
of Flickr users and their social ties [7]. They model the rela-

tionship as an exponential probability distribution and show
it fits well to the observed, empirical distribution. They
show that the number of distinct places where two users are
co-located within various periods of time has the potential to
predict a small fraction of the ties quite well. However, the
recall is dramatically low. In their Flickr data, only 0.1% of
the friendships meet the condition for being predicted with
at least 60% confidence. By contrast, with our approach
we can predict over 90% of the friendships with confidence
beyond 80% (see Figure 4). This is consistent with our ex-
periments, where we show that location alone is generally a
poor predictor of friendship (consider the “commuter train”
example described below on one end of the spectrum, and a
pair of friends that never share their location on the other
end). We therefore leverage textual similarity and network
structure as well, and evaluate the predictive power of our
model in terms of AUC while inferring the friendship graph.
Additionally, our model does not require setting subtle pa-
rameters, such as cell size and time granularity. When we
apply the method of Crandall et al. to our Twitter data,
the results are (as one would expect) poor; see Figure 5 and
its analysis in text.

The relationship between social ties and distance has re-
cently received considerable attention [20, 2, 25]. Even though
online interactions are in principle not hampered by physi-
cal distance, all works agree that in any social network stud-
ied, the probability of friendship generally decreases as the
distance between people increases. However, a significant
portion of social ties often cannot be explained by location
alone. We observe the same pattern in our Twitter data and
show that location can be augmented with text and struc-
tural features to infer social ties with high accuracy.

Backstrom et al. present a method for predicting links
cast as a random walk problem [1]. A key difference be-
tween our approaches is that we can construct the entire
social network with high accuracy even when none of the
edges are observed, whereas Backstrom et al.’s approach de-
pends upon already knowing most of the links in the net-
work along with a set of source and candidate nodes, and
only needs to predict relatively few new links. Furthermore,
unlike our work, Backstrom et al.’s approach requires many
parameters to be selected. In contrast with random walks,
approaches related to our belief propagation method for en-
forcing and chaining soft transitive constraints have been
validated in many areas in the machine learning literature,
and are implicitly used in many works on link prediction as
a way to solve the underlying probabilistic models [26, 28].

We note that no work to date focused on capturing both
directions of the relationship between location and social
ties. This paper concentrates on predicting, in turn, both
location and social structure from the remaining data modal-
ity.

3. BACKGROUND
Our experiments are based on data obtained from Twitter,

a popular micro-blogging service where people post at most
140 characters long message updates. The forced brevity en-
courages frequent mobile updates, as we show below. Rela-
tionships between users on Twitter are not necessarily sym-
metric. One can follow (subscribe to receive messages from)
a user without being followed back. When users do recipro-
cate following, we say they are friends on Twitter. There is
anecdotal evidence that Twitter friendships have a substan-



tial overlap with offline friendships [14]. Twitter launched
in 2006 and has been experiencing an explosive growth since
then. As of March 2011, approximately 200 million accounts
are registered on Twitter.3 For an excellent general overview
of computational analysis of social networks at large see [11].

Decision trees are models of data encoded as rules in-
duced from examples [4]. Intuitively, in the Twitter domain,
a decision tree represents a series of questions that need to
be asked and answered in order to estimate the probabil-
ity of friendship between any two people, based on their
attributes. During decision tree learning, features are evalu-
ated in terms of information gain with respect to the labels
and the best candidates are subsequently selected for each
inner node of the tree. Our implementation uses regression
decision trees, where each leaf contains the probability of
a friendship. As described below, we also employ decision
trees for feature selection, since they intrinsically rank fea-
tures by their information content.

Belief propagation (BP) is a family of message pass-
ing algorithms that perform inference in graphical models.
BP is proven to be exact and to converge for certain classes
of graphs, such as trees, but its behavior on general cyclic
graphs is poorly understood [23]. However, in many practi-
cal applications, BP performs surprisingly well [22].

Dynamic Bayesian networks (DBNs) are generative
probabilistic graphical models of sequential data [21]. Nodes
in the graph represent random variables and edges represent
conditional dependencies. In a typical setting, a subset of
the random variables is observed, while the others are hidden
and their values have to be inferred. A DBN is composed of
slices—in our case each slice represents a time interval. In
order to specify a DBN, we either write down or learn intra-
and inter-slice conditional probability distributions (CPDs).
The intra-slice CPDs typically constitute the observation
model while the inter-slice CPDs model transitions between
hidden states.

There are a number of parameter learning and inference
techniques for DBNs. In a supervised learning scenario,
where the hidden labels are known at training time, max-
imum likelihood estimates can be calculated directly. On
the other hand, when the state of the hidden nodes is not
known, the CPDs have to be learned without supervision.
We achieve this via expectation-maximization described be-
low. Exact inference is usually intractable in general DBNs
and one has to resort to sampling techniques such as Markov
chain Monte Carlo. However, our model is sufficiently effi-
cient to afford exact inference using dynamic programming.

In this work, we apply DBNs because they naturally model
time series data (time flows in one direction), we can highly
optimize both learning and inference. Since the hidden nodes
in our models are discrete, we perform both parameter learn-
ing and exact inference efficiently by customized versions of
the Baum-Welch algorithm and Viterbi decoding, respec-
tively. For a detailed treatment of these methods see [17].
We exaplain how we apply DBNs to our Twitter domain in
Section 5.2.

4. THE DATA
Using the Twitter Search API4, we collected a sample of

public tweets that originated from two distinct geographic

3http://www.bbc.co.uk/news/business-12889048
4http://search.twitter.com/api/

areas: Los Angeles (LA) and New York City (NYC). The
collection period was one month long and started on May 19
2010. Using a Python script, we periodically queried Twit-
ter with requests of all recent tweets within 150 kilometers
of LA’s city center, and 100 kilometers within the NYC city
center. In order to avoid exceeding Twitter’s query rate lim-
its and subsequently missing some tweets, we distributed the
work over a number of machines with different IP addresses
that asynchronously queried the server and merged their re-
sults. Twitter does not provide any guarantees as to what
sample of existing tweets can be retrieved through their API,
but a comparison to official Twitter statistics shows that our
method recorded nearly all of the publicly available tweets
in those two regions. Altogether, we have logged over 26
million tweets authored by more than 1.2 million unique
users (see Table 1). To put these statistics in context, the
entire NYC and LA metropolitan areas have an estimated
population of 19 and 13 million people, respectively.5

In this work, we concentrate on accounts that posted more
than 100 GPS-tagged tweets during the one-month data col-
lection period. We refer to them as geo-active users.

New York City & Los Angeles Dataset

Unique users 1,229,611
Unique geo-active users 11,380
Tweets total 26,118,084
GPS-tagged tweets 7,566,569
GPS-tagged tweets by geo-active users 4,016,286
Unique locations 89,077
Significant locations 25,830
“Follows” relationships 123,182
between geo-active users

“Friends” relationships 52,307
between geo-active users

Table 1: Summary statistics of the data collected
from NYC and LA. Geo-active users are ones who
geo-tag their tweets relatively frequently (more than
100 times per month). Note that following reci-
procity is about 42%, which is consistent with previ-
ous findings [18, 16]. Unique locations are the result
of iterative clustering that merges (on a per-user
basis) all locations within 100 meters of each other.
Significant location is defined as one that was visited
at least five times by at least one person.

5. THE SYSTEM: FLAP
Flap (Friendship + Location Analysis and Prediction),

has three main components responsible for downloading Twit-
ter data, visualization, and learning and inference. The data
collection component was described in the previous section.
Figure 2 shows Flap’s visualization a sample of geo-active
users in NYC. People are represented by pins on the map
and the red links denote friendships (either ground truth or
inferred). Beyond standard Google Maps user interface el-
ements, the visualization is controlled via the black toolbar
in the upper-right corner. Flap can animate arbitrary seg-
ments of the data at various speeds. Selecting a user displays
additional information such as his profile, time and text of

5http://www.census.gov/popest/metro/



Figure 2: Flaps’s visualization of a sample of geo-
active friends in NYC. Red links between users rep-
resent friendships.

his recent tweets, and a more detailed map of his current
surroundings.

Now we turn to the third—machine learning—module of
Flap that has two main tasks. First, it is responsible for
learning a model of people’s friendships and subsequently
revealing hidden friendships. And second, it learns models
of users’ mobility and predicts their location at any given
time. We will now discuss these two tasks and our solutions
in turn.

5.1 Friendship Prediction
The goal of friendship prediction is to reconstruct the en-

tire social graph, where vertices represent users and edges
model friendships. We achieve this via an iterative method
that operates over the current graph structure and features
of pairs of vertices. We first describe the features used by our
model of social ties, and then focus on its structure, learning,
and inference. In agreement with prior work, we found that
no single property of a pair of individuals is a good indicator
of the existence or absence of friendship [20, 6]. Therefore,
we combine multiple disparate features—based on text, lo-
cation, and the topology of the underlying friendship graph.

5.1.1 Features
The text similarity coefficient quantifies the amount of

overlap in the vocabularies of users u and v, and is given by

T (u, v) =
∑

w∈W (u)∩W (v)\S

fu(w)fv(w), (1)

where W (u) is the set of words that appear in user u’s
tweets, S is the set of stop-words (it includes the standard
stop words augmented with words commonly used on Twit-
ter, such as RT, im, and lol), and fu(w) is the frequency of
word w in u’s vocabulary.

Interestingly, in the Twitter domain, the mentions tags
(@) give a clue to user’s friendships. However, in the ex-
periments presented here, we eliminate all user names that
appear in the tweets in order to report results that generalize
to other social networks.

Our co-location feature (C) is based on the observation
that at least some people who are online friends also meet
in the physical world [14]. We make an assumption that
once a user tweets from a location, he or she remains at
that location until they tweet again. Even though people

generally do not tweet from every single place they visit, this
approximate co-location measure still captures how much
time pairs of users tend to spend close to each other. The
co-location score is given by

C(u, v) =
∑

`u,`v∈L

t(`u, `v)

d(`u, `v)
, (2)

where L is the union of all locations from which users u and
v send messages, t(`u, `v) is the amount of time u spends at
location `u while v is at location `v. In short, we add up
the time overlaps two users spend at their respective loca-
tions and we scale each overlap by the distance between the
locations. Thus, two individuals spending a lot of common
time at nearby places receive a large co-location score, while
people who always tweet from two opposite ends of a city
have a small co-location score. We have implemented an ef-
ficient algorithm that calculates C(u, v) for a pair of users in
time O(n) where n is the minimum number of GPS-tagged
messages created by either user u or v. Note that unlike
previous work (e.g., [7, 1]), our co-location feature is con-
tinuous and does not require discretization, thresholding, or
parameter selection.

As a graph structure feature, we use the meet/min co-
efficient (M) and its generalized version (ME) defined in
equations 3 and 4 respectively.

M(u, v) =

∣∣N(u) ∩N(v)
∣∣

min

(∣∣N(u)
∣∣, ∣∣N(v)

∣∣) (3)

ME(u, v) =

∑
n∈N(u)∩N(v)

pnupnv

min

( ∑
n∈N(u)

pnu,
∑

n∈N(v)

pnv

) (4)

N(u) is the set of neighbors of node u and pnu is the prob-
ability of edge (n, u). The standard meet/min coefficient
counts the number of common neighbors of u and v (this
quantity is equal to the number of triads that the edge (u, v)
would complete, an important measure in structural balance
theory [11]), and scales by the size of the neighborhood of
either u or v, whichever is smaller. Intuitively, M(u, v) ex-
presses how extensive is the overlap between friendlists of
users u and v with respect to the size of the shorter friendlist.
The expectation of the meet/min coefficient ME calculates
the same quantities but in terms of their expected values
on a graph where each edge is weighted by its probability.
Neither measure depends on the existence or probability of
edge (u, v) itself.

Since the T and C scores are always observed, we use a
regression decision tree to unify them, in a pre-processing
step, into one feature DT (u, v), which is the decision tree’s
prediction given T (u, v) and C(u, v). Thus, we end up with
one feature function for the observed variables (DT ) and
one for the hidden variables (ME).

We have experimented with other features, including the
Jaccard coefficient, preferential attachment, hypergeometric
coefficient, and others. However, our work is motivated by
having an efficient and scalable model. A decision tree-based
feature selection showed that our three measures (T , C, and
ME) jointly represent the largest information value. Finally,
while calculating the features for all pairs of n users is an
O(n2) operation, it can be significantly sped up via locality-
sensitive hashing [8].



5.1.2 Learning and Inference
Our probabilistic model of the friendship network is a

Markov random field that has a hidden node for each possi-
ble friendship. Since the friendship relationship is symmetric
and irreflexive, our model contains n(n−1)/2 hidden nodes,
where n is the number of users. Each hidden node is con-
nected to an observed node (DT ) and to all other hidden
nodes.

Ultimately, we are interested in the probability of exis-
tence of an edge (friendship) given the current graph struc-
ture and the pairwise features of the vertices (users) the
edge is incident on. Applying Bayes’ theorem while assum-
ing mutual independence of features DT and ME, we can
write

P (E = 1|DT = d,ME = m) =
= P (DT = d|E = 1)P (ME = m|E = 1)P (E = 1)/Z
= P (DT = d|E = 1)P (E = 1|ME = m)/Z

(5)
where

Z =
∑

i∈{0,1}

P (DT = d|E = i)P (E = i|ME = m).

E, DT , and ME are random variables that represent edge
existence, DT score, and ME score, respectively. In equa-
tion 5, we applied the equality

P (ME|E) = P (E|ME)P (E)/P (ME)

and subsequent simplifications so that we do not need to
explicitly model P (E).

At learning time, we first train a regression decision tree
DT and prune it using ten-fold cross-validation to prevent
overfitting. We also perform maximum likelihood learning
of the parameters P (DT |E) and P (E|ME). We chose the de-
cision tree pre-processing step for several reasons. First, the
text and location-based features considered individually or
independently have very poor predictive power. Therefore,
models such as logistic regression tend to have low accu-
racy. Furthermore, the relationships between the observed
attributes of a pair of users and the their friendship is often
quite complex. For example, it is not simply the case that a
friendship is more and more likely to exist as people spend
larger and larger amounts of time near each other. Consider
two strangers that happen to take the same train to work,
and tweet every time it goes through a station. Our dataset
contains a number of instances of this sort. During the train
ride, their co-location could not be higher and yet they are
not friends on Twitter. This largely precludes success of
classifiers that are looking for a simple decision surface.

At inference time, we use DT to make preliminary pre-
dictions on the test data. Next, we execute a customized
loopy belief propagation algorithm that is initialized with
the probabilities estimated by DT (see Algorithm 1). Step 6
is where an edge receives belief updates from the other edges
as well as the DT prior. Even though the graphical model is
dense, our algorithm converges within several hundred iter-
ations, due in part to the sufficiently accurate initialization
and regularization provided by the decision tree. Note that
the algorithm can also function in an online fashion: as new
active users appear in the Twitter public timeline, they are
processed by the decision tree and added to Q. This is an
attractive mode, where the model is always up to date and
takes advantage of all available data.

Algorithm 1 : refineEdgeProbabilities(Q)

Input: Q: list containing all potential edges between pairs
of vertices along with their preliminary probabilities

Output: Q: input list Q with refined probabilities

1: while Q has not converged do
2: sort Q high to low by estimated edge probability
3: for each 〈e, P (e)〉 in Q do
4: dt ⇐ DT (e)
5: m ⇐ ME(e)

6: P (e) ⇐ P (DT=dt|E=1)P (E=1|ME=m)∑
i∈{0,1} P (DT=dt|E=i)P (E=i|ME=m)

7: end for
8: end while
9: return Q

ut

f1t fnt tdt wt. . .

ut+1

f1t+1 fnt+1 tdt+1 wt+1. . .

. . . . . .

Figure 3: Two consecutive time slices of our dy-
namic Bayesian network for modeling motion pat-
terns of Twitter users from n friends. All nodes are
discrete, shaded nodes represent observed random
variables, unfilled denote hidden variables.

5.2 Location Prediction
The goal of Flap’s location prediction component is to

infer the most likely location of person u at any time. The
input consists of a sequence of locations visited by u’s friends
(and for supervised learning, locations of u himself over the
training period), along with corresponding time information.
The model outputs the most likely sequence of locations u
visited over a given time period.

We model user location in a dynamic Bayesian network
shown in Figure 3. In each time slice, we have one hidden
node and a number of observed nodes, all of which are dis-
crete. The hidden node represents the location of the target
user (u). The node td represents the time of day and w de-
termines if a given day is a work day or a free day (weekend
or a national holiday). Each of the remaining observed nodes
(f1 through fn) represents the location of one of the target
user’s friends. Since the average node degree of geo-active
users is 9.2, we concentrate on n ∈ {0, 1, 2, . . . , 9}, although
our approach works for arbitrary nonnegative values of n.
Each node is indexed by time slice.

The domains of the random variables are generated from
the Twitter dataset in the following way. First, for each
user, we extract a set of distinct locations they tweet from.
Then, we iteratively merge (cluster) all locations that are
within 100 meters of each other in order to account for GPS
sensor noise, which is especially severe in areas with tall
buildings, such as Manhattan. The location merging is done
separately for each user and we call the resulting locations
unique. We subsequently remove all merged locations that
the user visited fewer than five times and assign a unique
label to each remaining place. These labels are the domains
of u and fi’s. We call such places significant.

The above place indexing yields a total of 89,077 unique



locations, out of which 25,830 were visited at least five times
by at least one user. There were 2,467,149 tweets total
posted from the significant locations in the 4 week model
evaluation period. Table 1 lists summary statistics.

We model each person’s location in 20 minute increments,
since more than 90% of the users tweet with lower frequency.
Therefore, the domain of the time of day random variable
td is {0, . . . , 71} (total of 24/0.3 time intervals in any given
day).

5.2.1 Learning
We explore both supervised and unsupervised learning of

user mobility. In the earlier case, for each user, we train a
DBN on the first three weeks of data with known hidden
location values. In the latter case, the hidden labels are
unknown to the system.

During supervised learning, we find a set of parameters
(discrete probability distributions) θ that maximize the log-
likelihood of the training data. This is achieved by optimiz-
ing the following objective function.

θ? = argmax
θ

log
(
Pr
(
x1:t, y1:t|θ)

)
, (6)

where x1:t and y1:t represent the sequence of observed and
hidden values, respectively, between times 1 and t, and θ?

is the set of optimal model parameters. In our implemen-
tation, we represent probabilities and likelihoods with their
log-counterparts to avoid arithmetic underflow.

For unsupervised learning, we perform expectation-maximi-
zation (EM) [9]. In the E step, the values of the hidden
nodes are inferred using the current DBN parameter values
(initialized randomly). In the subsequent M step, the in-
ferred values of the hidden nodes are in turn used to update
the parameters. This process is repeated until convergence,
at which point the EM algorithm outputs a maximum like-
lihood point estimate of the DBN parameters. The corre-
sponding optimization problem can be written as

θ? = argmax
θ

log
∑
y1:t

Pr
(
x1:t, y1:t|θ)

)
, (7)

where we sum over all possible values of hidden nodes y1:t.
Since equation 7 is computationally intractable for sizable
domains, we simplify by optimizing its lower bound instead,
similar to [13].

The random initialization of the EM procedure has a pro-
found influence on the final set of learned parameter values.
As a result, EM is prone to getting “stuck” in a local opti-
mum. To mitigate this problem, we perform deterministic
simulated annealing [29]. The basic idea is to reduce the
undesirable influence of the initial random set of parameters
by “smoothing” the objective function so that it hopefully
has fewer local optima. Mathematically, this is written as

θ?(τ1, . . . , τm) = argmax
θ

τi log
∑
y1:t

Pr
(
x1:t, y1:t|θ

) 1
τi . (8)

Here, τ1, . . . , τm is a sequence of parameters, each of which
corresponds to a different amount of smoothing of the origi-
nal objective function (shown in equation 7). The sequence
is often called a temperature schedule in the simulated an-
nealing literature, because equation 8 has analogs to free
energy in physics. Therefore, we start with a relatively high
temperature τ1 and gradually lower it until τm = 1, which
recovers the original objective function.

5.2.2 Inference
At inference time, we are interested in the most likely ex-

planation of the observed data. That is, given a sequence
of locations visited by one’s friends, along with the corre-
sponding time and day type, our model outputs the most
likely sequence of locations one visited over the given time
period.

Flap runs a variant of Viterbi decoding to efficiently calcu-
late the most likely state of the hidden nodes. In our model,
Viterbi decoding is given by

y?1:t = argmax
y1:t

log
(
Pr(y1:t|x1:t)

)
, (9)

where Pr(y1:t|x1:t) is conditional probability of a sequence of
hidden states y1:t given a concrete sequence of observations
x1:t between times 1 and t.

In each time slice, we coalesce all observed nodes with
their hidden parent node, and since we have one hidden
node in each time slice, we apply dynamic programming and
achieve polynomial runtimes in a way similar to [17]. Specif-
ically, the time complexity of our inference is O(T |Y |2),
where T is the number of time slices and Y is the set of
possible hidden state values (potential locations).

Therefore, the overall time complexity of learning and in-
ference for any given target user is O(kT |Y |2), where k is
the number of EM iterations (k = 1 for supervised learning).
This renders our model tractable even for very large domains
that evolve over long periods of time with fine granularity.
Next, we turn to our experiments, and analysis of results.

6. EVALUATION
For clarity, we discuss experimental results for each of the

two Flap’s tasks separately.

6.1 Friendship Prediction
We evaluate Flap on friendship prediction using two-fold

cross-validation in which we train on LA and test on NY
data, and vice versa. We average the results over the two
runs. We varied the amount of randomly selected edges
provided to the model at testing time from 0 to 50%.

Flap reconstructs the friendship graph well over a wide
range of conditions—even when given no edges (Figure 4
and Table 2). It far outperforms the baseline model (deci-
sion tree) and the precision/recall breakeven points are com-
parable to those of [28], even though our domain is orders
of magnitude larger and our model is more tractable.

We also compare our model to that of Crandall et al. [7],
summarized in Section 2. Figure 5 shows the results of their
contemporaneous events counting procedure on our Twit-
ter data for various spatial and temporal resolutions. We
see that in our dataset, the relationship between co-location
and friendship is much more complex and non-monotonic
as compared to their Flickr dataset. As a result, the pre-
dictive performance of Crandall et al.’s model on our data
is poor. When probabilistically predicting social ties based
on the number of contemporaneous events, the accuracy is
0.001%, precision 0.008, and recall 0.007 (in the best case,
where s = 0.001 and t = 4 hours). There are two conclu-
sions based on this result. First, similarly to Liben-Nowell
et al. [20], we observe that geographic distance alone is not
sufficient to accurately model social ties. And second, look-
ing at the performance of [7]’s approach on the Flick data
comprising the entire world, versus its performance on our
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Figure 4: Averaged ROC curves for decision tree
baseline, Crandall et al.’s model with the most fa-
vorable setting of parameters (s = 0.001 and t = 4
hours), and Flap.

#E 0% 10% 25% 50%

AUC Flap 6.5 × 107 0.78 0.82 0.88 0.95

AUC Crandall et al. 6.5 × 107 0.55 - - -

P=R Flap 6.5 × 107 0.28 0.36 0.47 0.64

P=R Crandall et al. 6.5 × 107 0.05 - - -

P=R Taskar et al. ∼ 4 × 102 N/A 0.47 0.58 0.73

Table 2: Summary of model evaluation. The #E
column represents the number of candidate edges
that exist in the social graph. The remaining
columns denote the proportions of friendships given
to the models at testing time. AUC is the area un-
der the ROC curve; P=R denotes precision/recall
breakeven points. All results are based on our Twit-
ter dataset, except for the P=R results for Taskar
et al., which are based on their—much smaller—
university dataset as their model does not scale to
larger networks; see text for details.

LA and NYC data, we see that inferring relationships from
co-location data in dense and relatively small geographical
areas can be a more challenging task. This is important,
as the majority of population lives and interacts in such
metropolitan areas. However, our work shows that when we
leverage additional information channels beyond co-location,
and embed them in a probabilistic model, we can infer social
ties quite well.

In order to explore how our model performs in the context
of strong ties, in both LA and NYC, we selected a subgraph
that contains only active users who are members of a clique
of size at least eight. We again evaluated via cross-validation
as above. Flap reconstructs the friendship network of the
83 people with 0.92 precision and 0.85 recall, whereas the
baseline decision tree achieves precision of 0.83 and recall
of 0.51. Interestingly, the co-location feature plays a major
role here because the cliques of friends spend most of their
time in relatively small areas.
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Twitter, s=0.001 t=1 day
Twitter, s=0.001 t=7 days
Flickr, s=0.001 t=1 day
Flickr, s=0.001 t=7 days

Figure 5: Comparison of the intensity of co-location
of pairs of users versus the probability of their
friendship in our Twitter and Crandall et al.’s Flickr
datasets. We see that the relationship is more com-
plex on Twitter, causing a simple model of social
ties to achieve very low predictive accuracy. (s is
the size of cells in degrees in which we count the
co-located events and t is the time slack; compare
with Figure 2 in [7].)

6.2 Location Prediction
Our evaluation is done in terms of accuracy—the percent-

age of timeslices for which the model infers the correct user
location. We have a separate dynamic Bayesian network
model for each user.

In order to evaluate the models learned in a supervised
fashion, we train each model on three weeks worth of data
(5/19/2010 00:00:00 – 6/8/2010 23:59:59) and test on the fol-
lowing fourth week (6/9/2010 00:00:00 – 6/15/2010 23:59:59).
We always use the respective local time: PDT for LA, and
EDT for NYC. We vary the number of friends (n) that we
harness as sensors for each individual from 0 to 9. We al-
ways use the n most geo-active friends, and introduce a spe-
cial missing value for users who have fewer than n friends.
We evaluate the overall performance via cross-validation. In
each fold of cross-validation, we designate a target user and
run learning and inference for him. This process is repeated
for all users, and we report the average results over all runs
for a given value of n (Figure 6).

For models learned in an unsupervised manner, we also
apply cross-validation as above. The hidden locations are
learned via unsupervised clustering as described above. The
temperature schedule for the EM procedure is given by τi+1 =
τi × 0.8, with initial temperature τ1 = 10 (see equation 8).
This results in calculating the likelihood at 11 different tem-
peratures for each EM run. The EM procedure always con-
verged within one thousand iterations, resulting in runtimes
under a minute per user even in the largest domain.

We compare the results obtained by our DBN models to
random and näıve baselines, and to the currently strongest
mobility model of Cho et al. [6]. The random model is given
the number of hidden locations for each user and guesses tar-
get user’s location uniformly at random for each time slice.
The näıve model always outputs the location at which the
target user spends most of his time in the training data. We
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Figure 6: Predictive accuracy of location models.
The performance of the two baseline models is by
design independent of number of friends considered.

consider a prediction made by Cho et al.’s model accurate
if it lies within 100 meters (roughly a city block) of the true
user location.

Figure 6 summarizes the results. As expected, the super-
vised models perform better than their unsupervised coun-
terparts. However, given the complexity of the domain and
the computational efficiency of our models during training
as well as testing, even the unsupervised models achieve re-
spectable accuracy. The DBN approaches are significantly
better than both random and näıve baselines, and they also
dominate [6]’s social mobility model (PSMM) by a large
margin. We believe this is mainly because people’s mobil-
ity in condensed metropolitan areas often does not nicely
decompose into “home” and “work” states, and the social
influence on user location is not simply an attractive force
(i.e., one does not necessarily tend to appear closer to one’s
friends). For instance, consider two co-workers, one hav-
ing a morning shift and the other a night shift in the same
store. Their mobility is certainly intertwined, but the force
between their location is a repulsive one, as when the first
one is working, the other is sleeping at home. Unlike other
approaches, our DBN model correctly learns such nonlinear
patterns (both temporal and social).

The results are very encouraging. For example, even when
the model is given information only about one’s two friends,
and no information about the target user (Unsupervised,
n = 2 in Figure 6), it infers the correct location 47% of the
time. As we increase the number of available friends to nine
(Unsupervised, n = 9), we achieve 57% accuracy. When
historical data about the mobility of the target user and
his friends is available, we can estimate the correct location
77% of the time when two friends are available (Supervised,
n = 2) and 84.3% with nine friends (Supervised, n = 9).
As n increases, the accuracy generally improves. Specifi-
cally, we see that there is a significant boost from n = 0 to
n = 2, after which the curves plateau. This suggests that a
few active friends explain one’s mobility well. We also see
that simply outputting the most commonly visited location
(Näıve) yields poor results since people tend to lead fairly
dynamic lives.

7. CONCLUSIONS AND FUTURE WORK
Location information linked with the content of users’

messages in online social networks is a rich information source
that is now accessible to machines in massive volumes and
at ever-increasing real-time streaming rates. This data be-
came readily available only very recently. In this work, we
show that there are significant patterns that characterize lo-
cations of individuals and their friends. These patterns can
be leveraged in probabilistic models that infer people’s lo-
cations as well as social ties with high accuracy. Moreover,
the prediction accuracy degrades gracefully as we limit the
amount of observed data available to the models, suggesting
successful future deployment of Flap at a scale of an entire
social network.

Our approach is quite powerful, as it allows us to reason
even about the location of people who keep their messages
and GPS data private, or have disabled the geo-features on
their computers and phones altogether. Furthermore, unlike
all existing approaches, our model of social ties reconstructs
the entire friendship network with high accuracy even when
the model is not “seeded” with a sample of known friend-
ships. At the same time, we show that the predictions im-
prove as we provide more observed edges at testing time.

By training the model on one geographical area and test-
ing on the other using cross-validation (total of 4 million
geo-tagged public tweets we collected from Los Angeles and
New York City metropolitan areas), we show that Flap dis-
covers robust patterns in the formation of friendships that
transcend diverse and distant areas of the USA. We conclude
that no single property of a pair of individuals is a good in-
dicator of the existence or absence of friendship. And no
single friend is a good predictor of one’s location. Rather,
we need to combine multiple disparate features—based on
text, location, and the topology of the underlying friendship
graph—in order to achieve good performance.

In our current work, we are extending the model to lever-
age the textual content of the tweets, as it contains hints
about locations that are not captured by our existing fea-
tures. We are currently exploring language understanding
and toponym resolution techniques vital for tapping this in-
formation. We also focus on casting the two problems ex-
plored in this paper in a unified formalism and solving them
jointly, perhaps in a recursive fashion.

We recognize that there are substantial ethical questions
ahead, specifically concerning tradeoffs between the values
our automated systems create versus user privacy. For ex-
ample, our unsupervised experiments show that location can
be inferred even for people who keep their tweets and loca-
tion private, and thus may believe that they are “untrack-
able.” These issues will need to be addressed in parallel
with the development of our models. Other researchers have
started exploring solutions to privacy concerns through data
obfuscation [5].

However, we believe that the benefits of Flap—in help-
ing to connect and localize users, and in building smarter
systems—outweigh the possible dangers. There are many
exciting practical applications that have the potential to
change people’s lives that rely on location and link esti-
mation. These include context-aware crowdsourcing, timely
and accurate recommendations, better local content, dis-
ease prevention and containment, security, traffic modeling,
emergency response, and others.
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