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Abstract

We are developing a testbed for learning by demonstra-
tion combining spoken language and sensor data in a
natural real-world environment. Microsoft Kinect RGB-
Depth cameras allow us to infer high-level visual fea-
tures, such as the relative position of objects in space,
with greater precision and less training than required by
traditional systems. Speech is recognized and parsed us-
ing a “deep” parsing system, so that language features
are available at the word, syntactic, and semantic levels.
We collected an initial data set of 10 episodes of 7 indi-
viduals demonstrating how to “make tea”, and created
a “gold standard” hand annotation of the actions per-
formed in each. Finally, we are constructing “baseline”
HMM-based activity recognition models using the vi-
sual and language features, in order to be ready to eval-
uate the performance of our future work on deeper and
more structured models.

Most research in Al has explored problems of natural lan-
guage understanding, visual perception, and learning and
reasoning with commonsense knowledge in isolation. Re-
cently, however, a number of researchers have argued that
such a “divide and conquer” approach has reached a point
of diminishing returns, and that significant progress in any
of the areas requires a more integrated approach. In work
coming out of the natural language community, this new di-
rection! has been called grounded language learning (Brana-
van, Zettlemoyer, and Barzilay 2010; Kollar et al. 2010;
Chen and Mooney 2011), while in the machine vision
community people speak of high-level or knowledge-based
scene understanding (Kembhavi, Yeh, and Davis 2010). It is
quite challenging, however, to begin this kind of research on
integrated intelligence for two significant reasons: first, the
work would appear to require expertise in (at least) natural
language processing, vision, and knowledge representation
and reasoning; and second, it is difficult to quantitatively
measure progress, because there are few if any data sets and
previous approaches against which one can compare.

Our project addresses both of these concerns, and also
forms a foundation for our own future work on integrated
intelligent agents that can be taught to recognize and as-
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Figure 1: A screenshot from the activity recognition dataset,
showing the RGB and depth streams. Agent, hand and object
locations are marked.

sist with complex real-world tasks. We are developing a
testbed for learning by demonstration from natural language
and sensor data, with the initial domain of kitchen activities
(Swift et al. 2012).

This part of our project is similar to what is being done
in the CMU’s Quality of Life Grand Challenge Data Col-
lection (la Torre et al. 2009), which also records and an-
notates video and audio of Kitchen activities. However, in
addition to the raw data and highest-level annotations, we
are extracting generally useful and meaningful semantic vi-
sual features from the data streams (e.g. “left hand is directly
above cup”), and both syntactic and semantic language fea-
tures, including a parse tree and logical form for each utter-
ance. We believe that the inclusion of features at this level of
abstraction will broadly support work by researchers in ma-
chine learning and knowledge representation and reasoning.
A second important difference from the CMU data set is that
we are capturing 3D point-cloud data. Many problems of ob-
ject segmentation and localization that are beyond the state
of the art can be solved in a straightforward manner with
RGB-D data, while still providing the raw point-cloud data
for machine vision oriented researchers. Finally, our collec-
tion differs from that of the CMU set in that the audio is of
the subject deliberately describing the steps of the activity
being performed. This makes the language data appropriate
for research on learning by demonstration.

Feature Extraction
Visual Features

Our visual recognition system recognizes the following
high-level features: 1) object and agent location, 2) hand



placement and interaction with objects, and 3) spatial re-
lation of objects with respect to each other (e.g. above,
directly-above, co-planar, etc). Point-cloud extraction using
the depth stream combined with color histogram classifica-
tion from the RGB stream is used to determine the location
of the objects and agent. Skin detection using a Gaussian
mixture model is used to detect hands and then is associated
with objects in the scene.

Language Features

The language features are extracted from parses of the tran-
scriptions of the natural language input as follows. The audio
from each tea-making session was transcribed by hand for
the gold standard. The transcriptions were then parsed with
the TRIPS parser (Allen, Swift, and de Beaumont 2008),
which uses a semantic lexicon and ontology to create a log-
ical form (LF) that includes thematic roles, semantic types,
and semantic features, yielding richer representations than
“sequence of words” models. The LFs were then processed
with the TRIPS Interpretation Manager (IM) to extract a
concise event description from each clause derived from the
main verb and its arguments. The event descriptions are for-
mulated in terms of the semantic types in the LF and consist
of short phrases such as CREATE TEA, CLOSE LID, and
POUR WATER INTO CUP. These were used as language
features in the model. The IM also performs reference res-
olution on referring expressions, and we plan to incorporate
this information in future work.

Baseline Models

We are also creating several “baseline” models for the spe-
cific task of learning and recognizing sequences of activities.
These baseline models do not begin to exhaust the range of
learning, representation, and reasoning tasks that our domain
and data can support, such as learning object categories or
learning the full range of structures (e.g., hierarchy, sensing,
conditional execution, repetition) that appear in natural ac-
tivities. However, baseline models are vital if one wishes to
determine if more complex models actually solve a harder
problem, or only solve an easy problem in a difficult way.
Our baseline models are varieties of Hidden Markov Mod-
els (HMM). These include a simple HMM with one state
per activity, and a hierarchical HMM, where a bank of in-
dependent HMMs, one per activity, provide virtual evidence
to a higher-level HMM. Here, we describe some results on
the performance of our first baseline model, where we con-
sider the activities in the sequence to be values of a hidden
state and vision and language features previously described
as direct observations.

We conducted an evaluation using five sequences from
our annotated activity dataset, where two sequences were
from the same participant. Table 1 shows the percentage
of correctly identified activities using our baseline method,
where we divided results from within and between sub-
jects. Despite using a small number of training examples
and a simplified model, we see that within subject recog-
nition when using both vision and language features show
promising results. We expect using more advanced features
and models will improve our recognition rates even further.

| | Vision | Language | Both |
Within subject 45% 19% 54%
Between subject | 18% 34% 8%

Table 1: Percentage of correctly identified sequence with the
baseline model using only vision/language features or both

Future Work

We provide a testbed for recognizing activities using vi-
sion and language in an instructive setting. From an activ-
ity recognition perspective, we hope to extend our base-
line to incorporate more complicated models such as us-
ing Markov Logic in detecting activities over time (Brendel,
Fern, and Todorovic 2011). Furthermore, we plain on inves-
tigating deeper models of activity learning and recognition;
new models that draw on both classic work finding “min-
imal explanations” in plan recognition (Allen et al. 1991)
and more recent work on probabilistic graphical models for
symbol grounding (Tellex et al. 2011).
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