
62 S C I E N T I F I C  A M E R I C A N A U G U S T  2 0 0 2

O
LI

VI
E

R
 L

AU
D

E
 

By Ivan E. Sutherland and Jo Ebergen

62 S C I E N T I F I C  A M E R I C A N

ASYNCHRONOUS

CHIPS IMPROVE

COMPUTER 

PERFORMANCE

BY LETTING

EACH CIRCUIT

RUN AS FAST 

AS IT CAN

COMPUTERS 
WITHOUT 

CLOCKS

How fast is your personal computer? 
When people ask this question, they are typically referring to the frequency of a
minuscule clock inside the computer, a crystal oscillator that sets the basic rhythm
used throughout the machine. In a computer with a speed of one gigahertz, for ex-
ample, the crystal “ticks” a billion times a second. Every action of the computer
takes place in tiny steps, each a billionth of a second long. A simple transfer of data
may take only one step; complex calculations may take many steps. All operations,
however, must begin and end according to the clock’s timing signals.

COPYRIGHT 2002 SCIENTIFIC AMERICAN, INC.



ADVOCATE FOR ASYNCHRONY: Ivan E. Sutherland,
one of the authors of this article, has been

called “the father of computer graphics.” Now
the leader of a research group at Sun

Microsystems Laboratories, he holds a silicon
wafer containing UltraSPARC IIIi processor chips,

which use some asynchronous circuits.

COPYRIGHT 2002 SCIENTIFIC AMERICAN, INC.



Because most modern computers use a single rhythm, we
call them synchronous. Inside the computer’s microprocessor
chip, a clock distribution system delivers the timing signals from
the crystal oscillator to the various circuits, just as sound in air
delivers the beat of a drum to soldiers to set their marching
pace. Because all parts of the chip share the same rhythm, the
output of any circuit from one step can serve as the input to any
other circuit for the next step. The synchronization provided
by the clock helps chip designers plan sequences of actions for
the computer.

The use of a central clock also creates problems. As speeds
have increased, distributing the timing signals has become more
and more difficult. Present-day transistors can process data so
quickly that they can accomplish several steps in the time that
it takes a wire to carry a signal from one side of the chip to the
other. Keeping the rhythm identical in all parts of a large chip
requires careful design and a great deal of electrical power.
Wouldn’t it be nice to have an alternative?

Our research group at Sun Microsystems Laboratories seeks
such alternatives. Along with several other groups worldwide,
we are investigating ways to design computing systems in which
each part can proceed at its own pace instead of depending on
the rhythm of a central clock. We call such systems asynchro-
nous. Each part of an asynchronous system may extend or short-
en the timing of its steps when necessary, much as a hiker takes
long or short steps when walking across rough terrain. Some of
the pioneers of the computer age, such as mathematician Alan
M. Turing, tried using asynchronous designs to build machines
in the early 1950s. Engineers soon abandoned this approach in
favor of synchronous computers because common timing made
the design process so much easier.

Now asynchronous computing is experiencing a renaissance.
Researchers at the University of Manchester in England, the Uni-
versity of Tokyo and the California Institute of Technology have
demonstrated asynchronous microprocessors. Some asynchro-
nous chips are already in commercial mass production. In the
late 1990s Sharp, the Japanese electronics company, used asyn-

chronous design to build a data-driven media processor—a chip
for editing graphics, video and audio—and Philips Electronics
produced an asynchronous microcontroller for two of its pagers.
Asynchronous parts of otherwise synchronous systems are also
beginning to appear; the UltraSPARC IIIi processor recently in-
troduced by Sun includes some asynchronous circuits developed
by our group. We believe that asynchronous systems will be-
come ever more popular as researchers learn how to exploit their
benefits and develop methods for simplifying their design. Asyn-
chronous chip makers have achieved a good measure of techni-
cal success, but commercial success is still to come. We remain
a long way from fulfilling the full promise of asynchrony.

Beat the Clock
WHAT ARE THE POTENTIAL BENEFITS of asynchronous
systems? First, asynchrony may speed up computers. In a syn-
chronous chip, the clock’s rhythm must be slow enough to ac-
commodate the slowest action in the chip’s circuits. If it takes
a billionth of a second for one circuit to complete its operation,
the chip cannot run faster than one gigahertz. Even though
many other circuits on that chip may be able to complete their
operations in less time, these circuits must wait until the clock
ticks again before proceeding to the next logical step. In con-
trast, each part of an asynchronous system takes as much or
as little time for each action as it needs. Complex operations
can take more time than average, and simple ones can take less.
Actions can start as soon as the prerequisite actions are done,
without waiting for the next tick of the clock. Thus, the sys-
tem’s speed depends on the average action time rather than the
slowest action time.

Coordinating asynchronous actions, however, also takes
time and chip area. If the efforts required for local coordination
are small, an asynchronous system may, on average, be faster
than a clocked system. Asynchrony offers the most help to ir-
regular chip designs in which slow actions occur infrequently.

Asynchronous design may also reduce a chip’s power con-
sumption. In the current generation of large, fast synchronous
chips, the circuits that deliver the timing signals take up a good
chunk of the chip’s area. In addition, as much as 30 percent of
the electrical power used by the chip must be devoted to the
clock and its distribution system. Moreover, because the clock
is always running, it generates heat whether or not the chip is
doing anything useful.

In asynchronous systems, idle parts of the chip consume neg-
ligible power. This feature is particularly valuable for battery-
powered equipment, but it can also cut the cost of larger systems
by reducing the need for cooling fans and air-conditioning to pre-
vent them from overheating. The amount of power saved de-
pends on the machine’s pattern of activity. Systems with parts
that act only occasionally benefit more than systems that act con-
tinuously. Most computers have components, such as the float-
ing-point arithmetic unit, that often remain idle for long periods. 

Furthermore, asynchronous systems produce less radio in-
terference than synchronous machines do. Because a clocked
system uses a fixed rhythm, it broadcasts a strong radio signal

64 S C I E N T I F I C  A M E R I C A N A U G U S T  2 0 0 2

■  Most modern computers are synchronous: all their
operations are coordinated by the timing signals of tiny
crystal oscillators within the machines. Now researchers
are designing asynchronous systems that can process
data without the need for a governing clock.

■  Asynchronous systems rely on local coordination 
circuits to ensure an orderly flow of data. The two 
most important coordination circuits are called the
Rendezvous and the Arbiter.

■  The potential benefits of asynchronous systems 
include faster speeds, lower power consumption and less
radio interference. As integrated circuits become 
more complex, chip designers will need to learn
asynchronous techniques.

Overview/Clockless Systems
C

O
P

YR
IG

H
T 

IS
 H

E
LD

 B
Y 

SU
N

 M
IC

R
O

SY
ST

E
M

S,
IN

C
. 

SU
N

, 
SU

N
 M

IC
R

O
SY

ST
E

M
S,

 I
N

C
.,

 A
N

D
 U

LT
R

AS
P

AR
C

 A
R

E
 R

E
G

IS
TE

R
E

D
 T

R
AD

E
M

AR
K

S 
O

F 
SU

N
 I

N
 T

H
E

 U
.S

. 
AN

D
 O

TH
E

R
 C

O
U

N
TR

IE
S

COPYRIGHT 2002 SCIENTIFIC AMERICAN, INC.



at its operating frequency and at the harmonics of that fre-
quency. Such signals can interfere with cellular phones, televi-
sions and aircraft navigation systems that operate at the same
frequencies. Asynchronous systems lack a fixed rhythm, so they
spread their radiated energy broadly across the radio spectrum,
emitting less at any one frequency.

Yet another benefit of asynchronous design is that it can be
used to build bridges between clocked computers running at dif-
ferent speeds. Many computing clusters, for instance, link fast
PCs with slower machines. These clusters can tackle complex
problems by dividing the computational tasks among the PCs.
Such a system is inherently asynchronous: different parts march
to different beats. Moving data controlled by one clock to the
control of another clock requires asynchronous bridges, because
the data may be “out of sync” with the receiving clock.

Finally, although asynchronous design can be challenging,
it can also be wonderfully flexible. Because the circuits of an
asynchronous system need not share a common rhythm, de-
signers have more freedom in choosing the system’s parts and
determining how they interact. Moreover, replacing any part
with a faster version will improve the speed of the entire system.

In contrast, increasing the speed of a clocked system usually re-
quires upgrading every part.

Local Cooperation 
TO DESCRIBE HOW ASYNCHRONOUS systems work, we
often use the metaphor of the bucket brigade. A clocked system
is like a bucket brigade in which each person must pass and re-
ceive buckets according to the ticktock rhythm of the clock.
When the clock ticks, each person pushes a bucket forward to
the next person down the line; when the clock tocks, each per-
son grasps the bucket pushed forward by the preceding person
[see illustrations above]. The rhythm of this brigade cannot go
faster than the time it takes the slowest person to move the
heaviest bucket. Even if most of the buckets are light, everyone
in the line must wait for the clock to tick before passing the next
bucket.

An asynchronous bucket brigade is governed by local co-
operation rather than a common clock. Each person who holds
a bucket can pass it to the next person down the line as soon
as the next person’s hands are free. Before each action, one per-
son may have to wait until the other is ready. When most of the

w w w . s c i a m . c o m  S C I E N T I F I C  A M E R I C A N 65

B
R

YA
N

 C
H

R
IS

TI
E

 D
E

SI
G

N
 

BUCKET BRIGADES
THE METAPHOR of the bucket brigade can be used to describe
the flow of data in a computer. A synchronous computer system
is like a bucket brigade in which each person follows the ticktock
rhythm of a clock. When the clock ticks, each person pushes a
bucket forward to the next person down the line (top). When the

clock tocks, each person grasps the bucket pushed forward by
the preceding person (middle). An asynchronous system, in
contrast, is like an ordinary bucket brigade: each person who
holds a bucket can pass it down the line as soon as the next
person’s hands are free (bottom). —I.E.S. and J.E.

SYNCHRONOUS

ASYNCHRONOUS

COPYRIGHT 2002 SCIENTIFIC AMERICAN, INC.



buckets are light, however, they can move down the line very
quickly. Moreover, when there’s no water to move, everyone
can rest between buckets. A slow person will still hinder the per-
formance of the entire brigade, but replacing the slowpoke will
return the system to its best speed.

Bucket brigades in computers are called pipelines. A com-
mon pipeline executes the computer’s instructions. Such a
pipeline has half a dozen or so stages, each of which acts like a
person in a bucket brigade. Instead of handling buckets of wa-
ter, however, each stage performs one action of the instruction’s
execution. For example, a processor executing the instruction
“ADD A B C” must fetch the instruction from memory, decode
the instruction, get the numbers from addresses A and B in mem-
ory, do the addition and store the sum in memory address C. 

A clocked pipeline executes these actions in a rhythm indepen-
dent of the operations performed or the size of the numbers.
Adding one and one may take just as much time as adding two
30-digit numbers. In an asynchronous pipeline, though, the du-
ration of each action may depend on the operation performed,
the size of the numbers and the locations of the data in memo-
ry (just as in a bucket brigade, the amount of water in a bucket
may determine how long it takes to pass it on).

Without a clock to govern its actions, an asynchronous sys-
tem must rely on local coordination circuits instead. These cir-
cuits exchange completion signals to ensure that the actions at
each stage begin only when the circuits have the data they need.
The two most important coordination circuits are called the
Rendezvous and the Arbiter.

66 S C I E N T I F I C  A M E R I C A N A U G U S T  2 0 0 2

B
R

YA
N

 C
H

R
IS

TI
E

 D
E

SI
G

N

RENDEZVOUS CIRCUITS can coordinate the
actions of an asynchronous system,
allowing data to flow in an orderly fashion
without the need for a central clock.
Shown here is an electronic pipeline
controlled by a chain of Muller C-
elements, each of which allows data to
pass down the line only when the
preceding stage is “full”—indicating that
data are ready to move—and the following
stage is “empty.”

Each Muller C-element has two input
wires and one output wire. The output
changes to FALSE when both inputs are
FALSE and back to TRUE when both inputs
are TRUE. (In the diagram, TRUE signals are
shown in blue and FALSE signals in red.)
The inverter makes the initial inputs to
the Muller C-element differ, setting all
stages empty at the start. Let’s assume
that the left input is initially TRUE and the
right input FALSE (1). A change in signal at
the left input from TRUE to FALSE (2)
indicates that the stage to the left is full—
that is, some data have arrived. Because
the inputs to the Muller C-element are
now the same, its output changes to
FALSE. This change in signal does three
things: it moves data down the pipeline
by briefly making the data latch trans-
parent, it sends a FALSE signal back to the
preceding C-element to make the left
stage empty, and it sends a FALSE signal
ahead to the next C-element to make the
right stage full (3). —I.E.S. and J.E.

HOW A RENDEZVOUS CIRCUIT WORKS

Muller C-element

Muller C-element fires

RENDEZVOUS CIRCUIT

Inverter
Input wire

Output wire

Data latch

Data arrive Latch opens briefly

Data pipeline

Data arrive Latch opens briefly

Muller C-element fires

2

1

3

COPYRIGHT 2002 SCIENTIFIC AMERICAN, INC.



A Rendezvous element indicates when the last of two or
more signals has arrived at a particular stage. Asynchronous sys-
tems use these elements to wait until all the concurrent actions
finish before starting the next action. For instance, an arithmetic
division circuit must have both the dividend (say, 16) and the di-
visor (say, 2) before it can divide one by the other (to reach the
answer 8).

One form of Rendezvous circuit is called the Muller C-ele-
ment, named after David Muller, now retired from a professor-
ship at the University of Illinois. A Muller C-element is a logic
circuit with two inputs and one output [see box on opposite
page]. When both inputs of a Muller C-element are TRUE, its
output becomes TRUE. When both inputs are FALSE, its output
becomes FALSE. Otherwise the output remains unchanged. For
the Muller C-element to act as a Rendezvous circuit, its inputs
must not change again until its output responds. A chain of
Muller C-elements can control the flow of data down an elec-
tronic bucket brigade.

Our research group recently introduced a new kind of Ren-
dezvous circuit called GasP [see box on next page]. GasP evolved
from an earlier family of circuits designed by Charles E. Mol-

nar, our late colleague at Sun Microsystems. Molnar dubbed his
creation asP*, which stands for asynchronous symmetric pulse
protocol (the asterisk indicates the double “P”). We added the
“G” to the name because GasP is what you are supposed to do
when you see how fast our new circuits go. We have found that
GasP modules are as fast and as energy-efficient as Muller C-
elements, fit better with ordinary data latches and offer much
greater versatility in complex designs.

Buridan’s Ass
AN ARBITER CIRCUIT performs another task essential for
asynchronous computers. An Arbiter is like a traffic officer at
an intersection who decides which car may pass through next.

Given only one request, an Arbiter promptly permits the cor-
responding action, delaying any second request until the first
action is completed. When an Arbiter gets two requests at once,
it must decide which request to grant first. For example, when
two processors request access to a shared memory at approxi-
mately the same time, the Arbiter puts the requests into a se-
quence, granting access to only one processor at a time. The Ar-
biter guarantees that there are never two actions under way at
once, just as the traffic officer prevents accidents by ensuring
that there are never two cars passing through the intersection
on a collision course.

Although Arbiter circuits never grant more than one request
at a time, there is no way to build an Arbiter that will always
reach a decision within a fixed time limit. Present-day Arbiters
reach decisions very quickly on average, usually within about
a few hundred picoseconds. (A picosecond is a trillionth of a
second.) When faced with close calls, however, the circuits may
occasionally take twice as long, and in very rare cases the time
needed to make a decision may be 10 times as long as
normal.

The fundamental difficulty in making these de-

cisions is nicely illustrated by the parable of Buridan’s
ass. Attributed to Buridan, a 14th-century French philoso-
pher, this parable suggests that an ass placed exactly between
two equal piles of hay might starve to death because it would
be unable to choose which pile to eat. Similar minor dilemmas
are familiar in everyday life. For example, two people ap-
proaching a doorway at the same time may pause before de-
ciding who will go through first. They can go through in either
order, and Buridan’s ass can eat from either pile of hay. In both
cases, all that is needed is a way to break the tie.

An Arbiter breaks ties. Like a flip-flop circuit, an Arbiter has
two stable states corresponding to the two choices. One can
think of these states as the Pacific Ocean and the Gulf of Mex-

w w w . s c i a m . c o m  S C I E N T I F I C  A M E R I C A N 67

O
LI

VI
E

R
 L

AU
D

E
 

Without a clock to govern its actions, an asynchronous

system must rely on local coordination circuits instead.

IVAN E. SUTHERLAND and JO EBERGEN are true believers in 
asynchronous computing. Although Sutherland (middle left) is
best known as a pioneer of computer graphics—he invented the 
interactive graphics program Sketchpad in 1963—he became 
involved in asynchronous circuit design in the mid-1960s while
building a graphics processor at Harvard University. He is now a
vice president and fellow at Sun Microsystems, leading the Asyn-
chronous Design Group at the company’s laboratories. Ebergen
(middle right) became fascinated by asynchronous circuit design
20 years ago during a three-month stint as a research assistant
to Charles L. Seitz of Caltech. He subsequently taught at Eind-
hoven University of Technology in the Netherlands and the Uni-
versity of Waterloo in Canada before joining Sun’s Asynchronous
Design Group in the summer of 1996.

TH
E

 A
U

TH
O

R
S

COPYRIGHT 2002 SCIENTIFIC AMERICAN, INC.



ico. Each request to an Arbiter pushes the circuit toward one
stable state or the other, just as a hailstone that falls in the
Rocky Mountains can roll downhill toward the Pacific or the
Gulf. Between the two stable states, however, there must be a
meta-stable line, which is equivalent to the Continental Divide.
If a hailstone falls precisely on the divide, it may balance mo-
mentarily on that sharp mountain ridge before tipping toward
the Pacific or the Gulf. Similarly, if two requests arrive at an Ar-
biter within a few picoseconds of each other, the circuit may
pause in its meta-stable state before reaching one of its stable
states to break the tie.

Novice Arbiter designers often seek to avoid even the occa-
sional long delay by fashioning complicated circuits. A common
error involves a circuit that notices the “hung” meta-stable state
and pushes the Arbiter toward a particular decision. This is like
training Buridan’s ass to go left when it notices a hard choice.
Such training, however, merely gives the ass three choices rather
than two: go left, go right, or notice a hard choice and there-
fore go left. Even a trained ass will starve when unable to decide
between the last two choices. Or, to use the geographic

metaphor, you can move the Continental Divide with a shovel,
but you cannot get rid of it. Although there is no way to elimi-
nate meta-stability, simple, well-designed Arbiter circuits can en-
sure that virtually all delays are very brief. A typical contempo-
rary Arbiter has a normal delay of 100 picoseconds and experi-
ences a delay of 400 picoseconds less than once every 10 hours
of operation. The probability of delays decreases exponentially
with the length of the delay: an 800-picosecond pause occurs
less than once every billion years of operation.

The Need for Speed
OUR GROUP AT SUN MICROSYSTEMS concentrates on de-
signing fast asynchronous systems. We have found that speed
often comes from simplicity. Our initial goal was to build a
counterflow pipeline with two opposing data flows—like two
parallel bucket brigades moving in opposite directions. We
wanted the data from both flows to interact at each of the
stages; the hard challenge was to ensure that every “north-
bound” data element would interact with every “southbound”
data element. Arbitration turned out to be essential. At each

68 S C I E N T I F I C  A M E R I C A N A U G U S T  2 0 0 2

B
R

YA
N

 C
H

R
IS

TI
E

 D
E

SI
G

N

GASP MODULES can also act as Rendezvous
elements for an asynchronous data pipeline.
(The “P” in GasP is capitalized to acknowledge
an earlier family of circuits.) Each GasP
module has two wires connecting it to its
neighbors and an output wire that drives a
data latch. At the heart of the module is a
NAND gate, which produces a FALSE output
only when both inputs are TRUE. Otherwise
the NAND produces a TRUE output.

The connection wires between modules
represent the stages in the pipeline. At the
start, all the signals in these wires are TRUE

(blue), indicating that the stages are empty
(1). The arrival of data in the pipeline (2)
changes the incoming wire’s signal to FALSE

(red). An inverter flips the signal to TRUE and
sends it to the NAND gate, which changes its
output to FALSE. This makes the data latch
transparent, allowing the data to move down
the pipeline. The FALSE output also drives the
incoming wire back to the TRUE state (which
means empty) via a pull-up transistor and
drives the outgoing wire to the FALSE state
(which means full) via an inverter and a pull-
down transistor. The NAND gate’s output
then returns to TRUE (3), making the latch
opaque again. Meanwhile the FALSE signal in
the outgoing wire triggers the same process
in the next GasP module. —I.E.S. and J.E.

HOW A GASP MODULE WORKS

GASP MODULE

Pull-up
transistor

NAND gate
fires

Transistor
conducts

Pull-down
transistor

Data latch

Data arrive Latch opens

Data pipeline

Data arrive

Inverter

NAND
gate

NAND gate
fires

NAND gate
resets

Latch closes

Transistor
conducts

Transistor
conducts

Transistor conducts

Latch opens

1

2

3

COPYRIGHT 2002 SCIENTIFIC AMERICAN, INC.



joint between successive stages, an Arbiter circuit permitted
only one element at a time to pass. This project proved very use-
ful as a research target; we learned a great deal about coordi-
nation and arbitration and built test chips to prove the relia-
bility of our Arbiter circuits.

More recently, we have chosen a fresh research target, a pro-
cessing structure we call FLEET. The name refers not only to
speed but also to the collection of computing elements, each of
which we call a ship. Each ship does its task concurrently with
the others; the FLEET system controls their actions by moving
data among them through an asynchronous switching network.
Our work on FLEET has led to many discoveries. We wanted
speed, and that led us to create the basic GasP circuits. We want-
ed to steer data items from one pipeline to another, like cars at
highway interchanges, and that led us to design a larger family
of GasP circuits that can act like a dense system of freeways.
These circuits can move data about twice as fast as a clocked sys-
tem could. To gauge the speed of our switching networks, we of-

ten build rings on our test chips around which the data elements
rush like race cars. We measure the time it takes a data element
to complete a round-trip, which is a lot easier than measuring the
much shorter time it takes data to advance through one stage.

Our designs are beginning to enter Sun’s computer products.
The UltraSPARC IIIi processor chip contains asynchronous data
queues that accept information from memory chips [see illus-
tration on page 63]. This asynchronous system is the simplest
and fastest way to compensate for the differences in arrival time
of signals from memory chips that lie at different distances from
the processor. Sun’s product designers are gaining confidence
that they can build asynchronous parts, that the parts work and
can be tested, and that asynchrony offers important advantages
over clocked design. As their confidence grows, more and more
commercial products will use asynchronous parts for greater
speed and flexibility, better power efficiency and reduced radio
interference.

Sun is by no means the only company investigating asyn-
chronous circuits. A group at Philips Research in the Nether-
lands has developed an asynchronous error corrector for a dig-
ital compact cassette player and an asynchronous version of a
popular microcontroller for portable devices. The asynchro-
nous microcontroller has been incorporated into pagers sold by
Philips. The success of the Philips research group comes from
three factors. First, the team learned how to create products
rapidly using a programming language called Tangram that
simplifies hardware design. Second, the low power consump-
tion of their asynchronous circuits enables a pager to operate
longer on a battery charge. Third, the reduced radio interfer-
ence of their asynchronous circuits allowed the inclusion of
both a computer and a sensitive radio receiver in a tiny device.

Furthermore, the experiments at Manchester, Caltech and
Philips demonstrate that asynchronous microprocessors can be
compatible with their clocked counterparts. The asynchronous
processors can connect to peripheral machines without special
programs or interface circuitry.

A Challenging Time
ALTHOUGH THE ARCHITECTURAL freedom of asynchro-
nous systems is a great benefit, it also poses a difficult challenge.
Because each part sets its own pace, that pace may vary from
time to time in any one system and may vary from system to
system. If several actions are concurrent, they may finish in a
large number of possible sequences. Enumerating all the pos-
sible sequences of actions in a complex asynchronous chip is as
difficult as predicting the sequences of actions in a schoolyard
full of children. This dilemma is called the state explosion prob-
lem. Can chip designers create order out of the potential
chaos of concurrent actions?

Fortunately, researchers are developing theories
for tackling this problem. Designers need not worry
about all the possible sequences of actions if they can set
certain limitations on the communication behavior of each cir-
cuit. To continue the schoolyard metaphor, a teacher can pro-
mote safe play by teaching each child how to avoid danger.

Another difficulty is that we lack mature design tools, ac-
cepted testing methods and widespread education in asyn-
chronous design. A growing research community is making
good progress, but the present total investment in clock-free
computing pales in comparison with the investment in clocked
design. Nevertheless, we are confident that the relentless ad-
vances in the speed and complexity of integrated circuits will
force designers to learn asynchronous techniques. We do not
know yet whether asynchronous systems will flourish first with-
in large computer and electronics companies or within start-up
companies eager to develop new ideas. The technological trend,
however, is inevitable: in the coming decades, asynchronous 
design will become prevalent. Eventually there will no longer
be an easy answer to the question, How fast is your personal
computer?

w w w . s c i a m . c o m  S C I E N T I F I C  A M E R I C A N 69

Micropipelines. Ivan E. Sutherland: The Turing Award Lecture.
Communications of the ACM, Vol. 32, No. 6, pages 720–738; June 1989.

Asynchronous Circuits and Systems. Special issue of Proceedings 
of the IEEE; February 1999.

Principles of Asynchronous Circuit Design: A Systems Perspective.
Edited by Jens Sparsø and Steve Furber. Kluwer Academic Publishers,
2001.

The Asynchronous Logic Home Page is at www.cs.man.ac.uk/async/ 

The Asynchronous Bibliography is at www.win.tue.nl/~wsinap/async.html

M O R E  T O  E X P L O R E

The technological trend is inevitable: in the coming 

decades, asynchronous design will become prevalent.

COPYRIGHT 2002 SCIENTIFIC AMERICAN, INC.


