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Problem: Can 5 test tubes be spun simultaneously in a
12-hole centrifuge in a balanced way?

» What approaches fail?
« What techniques work and why?
» Lessons and generalizations



Algorithms (CS6161) Textbook
Textbook: E—

Introduction to Algorithms
by Cormen et al (MIT)
Third Edition, 2009

INTRODUCTION TO

ALGORITHMS

Thomas Cormen Charles Leiserson §

We don't have much time, so we

don't teach them; we acquaint them
with things that they can learn.




computer science

Introduction to Algorithms
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
Third Edition

Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Intro-
duction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algo-
rithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively
self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode
designed to be readable by anyone who has done a little programming. The explanations have been kept elemen-
tary without sacrificing depth of coverage or mathematical rigor.

The first edition became a widely used text in universities worldwide as well as the standard reference for
professionals. The second edition featured new chapters on the role of algorithms, probabilistic analysis and
randomized algorithms, and linear programming. The third edition has been revised and updated throughout.
It includes two completely new chapters, on van Emde Boas trees and multithreaded algorithms, and substan-
tial additions to the chapter on recurrences (now called “Divide-and-Conquer”). It features improved treatment
of dynamic programming and greedy algorithms and a new notion of edge-based flow in the material on flow
networks. Many new exercises and problems have been added for this edition.

As of the third edition, this textbook is published exclusively by the MIT Press.

Thomas H. Cormen is Professor of Computer Science and former Director of the Institute for Writing and
Rhetoric at Dartmouth College. Charles E. Leiserson is Professor of Computer Science and Engineering at MIT.
Ronald L. Rivest is Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT.
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“In light of the explosive growth in the amount of data and the diversity of computing applications, efficient al-
gorithms are needed now more than ever. This beautifully written, thoughtfully organized book is the definitive
introductory book on the design and analysis of algorithms. The first half offers an effective method to teach and
study algorithms; the second half then engages more advanced readers and curious students with compelling
material on both the possibilities and the challenges in this fascinating field.”

—Shang-Hua Teng, University of Southern California

“Introduction to Algorithms, the ‘bible’ of the field, is a comprehensive textbook covering the full spectrum of
modern algorithms: from the fastest algorithms and data structures to polynomial-time algorithms for seemingly




Algorithms (CS6161) Textbook

Supplemental reading:

How to Solve It, by George Polya (MIT) Sgﬁ/\’é t|9[

Princeton University Press, 1945
 Aclassic on problem solving

G. POLYA

Good Articles / videos:

www.cs.virginia.edu/robins/CS_readings.html
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Algorithms Syllabus
Fundamentals:

©
|8

 History of algorithms

* Problem solving

* Pigeon-hole principle

e Occam's razor

« Uncomputability

e Universality

* Asymptotic complexity
* Set theory and logic




Algorithms Syllabus
Data structures:

* Arrays

 Stacks and queues
 Linked lists

* Binary and general trees
 Height-balanced trees

* Heaps

» Hash tables




Algorithms Syllabus
Sorting and searching:

* Classical sorting methods
 Specialized sorting techniques

* Finding max & min

« Median finding and K™ selection
* Majority detection

* Meta algorithms



Algorithms Syllabus

e Convex hulls

* Lower bounds

 Line segment intersection

 Planar subdivision search

« \oronol diagrams

 Nearest neighbors

* Geometric minimum spanning trees
* Delaunay triangulations

* Distance between convex polygons
 Triangulation of polygons

* Collinear subsets




Algorithms Syllabus
Graph algorithms:

 Depth-first search
 Breadth-first search

e Minimum spanning trees
 Shortest paths trees
 Radius-cost tradeoffs

e Steiner trees

» Degree-constrained trees




Algorithms Syllabus

NP-completeness:

* Resource-constrained computation

* Complexity classes

* Intractability

» Boolean satisfiability
 Cook-Levin theorem
e Transformations
 Graph clique problem
* Independent sets
 Hamiltonian cycles

» Colorability problems
* Heuristics




Algorithms Syllabus
Other topics In algorithms:

 Linear programming

e Matrix multiplication

 String matching

» Minimum matchings

* Network flows

e Distributed algorithms —
* Amortized analysis %j
e Zero knowledge proofs
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Overarching Philosophy

Focus on the “big picture” & “scientific method”
Emphasis on problem solving & creativity

Discuss applications & practice

A primary objective: have fun!




Algorithms Throughout History

A Dbrief history of computing:

 Aristotle, Euclid, Archimedes, Eratosthenes
» Abu Ali al-Hasan ibn al-Haytham

* Fibonacci, Descartes, Fermat, Pascal
 Newton, Euler, Gauss, Hamilton

* Boole, De Morgan, Babbage, Ada Agusta

e Venn, Carroll, Cantor, Hilbert, Russell

» Hardy, Ramanujan, Ramsey

» Godel, Church, Turing, von Neumann

» Shannon, Kleene, Chomsky




An Ancient Computer: The Antlkythera

* Oldest known mechanical computer

* Built around 150-100 BCE !

e Calculates eclipses and astronomical ==&
positions of sun, moon, and planets

* \ery sophisticated for its era

» Contains dozens of intricate gears

» Comparable to 1700’s Swiss clocks

« Has an attached “instructions manual”

. StlII the subject of ongomg research
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Prerequisites

Some discrete math & algorithms knowledge
|deally, should have taken CS4102

Course will “bootstrap”

principles
Critical: Tenacity, patience



Course Organization

Exams: probably take home

— Decide by vote

— Flexible exam schedule

Problem sets:

— Lots of problem solving

— Work in groups!

— Not formally graded

— Many exam questions will
come from homeworks!

Extra credit problems

— In class & take-home

— Find mistakes in slides, handouts, etc.

Course materials posted on \Web site
www.cs.virginia.edu/robins/algorithms
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“Go for it, Sidney! You've got it! You've got it! Good
hands! Don't choke!”




Grading Scheme

e Midterm 35%
* Final 35%
Readings 20%
Attendance 10%
Extra credit 10%

Total: 110% +
Best strategy:
 Solve lots of problems!

Do lots of readings / EC!
* “Ninety percent of success is just showing up.” —Woody Allen
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rne, may I be excused? My brain is full.”




Contact Information

Professor Gabriel Robins
Office: 406 Rice Hall
Phone: (434) 982-2207

Email: robins@cs.virginia.edu \
Web: WWW.cs.virginia.edu/robins %

= -
www.cs.virginia.edu/robins/algorithms =
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_ $TATISTICS e =
Office hours: after class orecs. Hours: cﬁ:\
« Any other time o2 ||
« By email (preferred) @ | é/
. By appointment | R~
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Course Readings
www.cs.virginia.edu/robins/CS_readings.html

Goal: broad exposure to lots of cool ideas & technologies!
« Reguired: total of at least 36 items over the semester

Diversity: minimums in each of 3 categories:
1. Minimum of 15 videos
2. Minimum of 15 papers / Web sites
3. Minimum of 6 books

More than 36 total Is even better! (extra credit)

Some required items In each category

o Remaining “elective” items should be a diverse mix

Email all submissions to: homework.cs6161@gmail.com



Required Readings

www.cs.virginia.edu/robins/CS_readings.html

* Required videos:
— Last Lecture, Randy Pausch, 2007
— Time Management, Randy Pausch, 2007
— Powers of Ten, Charles and Ray Eames, 1977


http://www.cs.virginia.edu/~robins/Randy/Randy_TM_jow0247.jpg
http://www.cs.virginia.edu/~robins/Randy/Randy_TM_jow0247.jpg

Required Reading

» “Scale of the Universe”, Cary and Michael Huang, 2012
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« 1024 to 10%° meters = 50 orders of magnitude!


http://htwins.net/scale2/

Required Readings

www.cs.virginia.edu/robins/CS_readings.html

* More required videos:
— Claude Shannon - Father of the Information Age, UCTV
— The Pattern Behind Self-Deception, Michael Shermer, 2010

Claude Shannon
(1916-2001)




Required Readings

www.cs.virginia.edu/robins/CS_readings.html

* Required articles:

— Decoding an Ancient Computer, Freeth, 2009

— Alan Turing’s Forgotten Ideas, Copeland and Proudfoot, 1999
— You and Your Research, Richard Hamming, 1986

— Who Can Name the Bigger Number, Scott Aaronson, 1999
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Basic Concepts and Notation

(Gabriel Robins

a "When I use a word," Humpty Dumpty said, in a rather scornful tone,

\ (ed ( "it means just what | choose it to mean -- neither more nor less."
A A set is formally an undefined term, but intuitively it is a (possibly empty) collection of
arbitrary objects. A set is usually denoted by curly braces and some (optional) restrictions.

Examples of sets are {1,2,3}, {hi, there}, and {k | k is a perfect square}. The symbol € denotes

sct membership, while the symbol ¢ denotes set non-membership; for example, 7€ {p | p

prime} states that 7 is a prime number, while q¢ {0,2,4.6....} states that q is not an even number.

Some common_sets are denoted by special notation:

The natural numbers: = {1.,2.3....}

= {0-3,2-1,0,1,.2.3,..)
={T |abe Z,b20}

The integers:

The rational numbers:

The real numbers: = {x | x is a real number}

}

Q = & Mk =

~—

The empty set:

http://www.cs.virginia.edu/robins/cs6161/basics.pdf
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Discrete Math Review Slides

Symbolic Logic Boolean Functions Logical Implication Logical Equivalence Predicates Quantifiers
L oposition - e and® A + “implies” = = “biconditional” (=1
Del: 7 ‘WJPC{-””””T 5131?}']13"1 . ‘and implies it and only i (“i Defipredicate - a funetion or formula +  Universal: “forall” ¥
either true (T) or false (F) . et v Truth table: or~itand oniyt i e involving some variables x M(x)
or or necessary and sulficient
. 19 lp=9 or  “logically equivalent” = N = P(K‘? APCo) A Plxs)
Ix: 111=2 * not B Ex I Pl ="x> ¥ Fx:  vx x<x+|
h o rmr Truth table: % is the variable Tx AR
2472=3 : Xar ® FIF P 19 [pog “x-37 is the predicate
- P FyT | T TIT|T ; +  Lxistential: “there exigrs” J
37 T oand 9 T TIF|E P(5) Jx Pix)
. “nor” D & _ F AT | F P(1} < Plx)) v P(xa) v P(x3) v ...
s Tt \ XOPR(0) = (x-0) o le | o P R
. mplicatio l<x=y=x?<y? Ex: p=p Fx: Qixy, 7y —“x+y—7 " Ix x<x-1
“today is Monday™ “today is Sunday” = 1+1-3 ) T
e eguivalence” % [(x=0) v (y=0)] <> (xy=0) Q2.3.4) Combmatmn; -
min(x,y)=max(x,y} < x=y Q(3:4,5) rY R
. - . e T
Sets Common Sets Subsets « Universal set: U (everything) DeMorgan's Laws
. Union: (W) . Lar < TN
Naturals: N={1,2,5,4, ..} . Subset notation: - - - Selcomplement: 8’ or 8 (SuT) =81
Tntegers: Z—{.,2,-1,0,1,2,.) SUT={x|xe8 v xeT} S x| xgS8}—U-8

ScTe(xeS=xeT)
Rationals: Q= {ﬁ | a,.beZ, b0}

Reals: R - {x|xareal i}
Fmply gel: G- { . Proper subset: = . Intersection: A » Disjoint sets: SAT=(
L .. TN . ALlerseclion.
Def: two sets are equal it they contain + e ScTe(Sch (1) L, § . @
the same elements Z" = non-negative intgers ST (TSSH ST SAT={x | xe8 ~ xeT}
o = 1= non-positive reals, etc. Sy — &
B ;(I) Z ?i} 231 P z: @ ‘;: S-T-SAT Boolean logic version:
S8 . (XAYY=X'vY'
£3,51={3.5,3,3, 5} $-8=0 (XA Y=X A"
Function Types 1-to-1 Correspondence Generalized Cardinality Infinite Sets Thm: 3 1-1 correspondence G>N e el
Df (dove-tailing): Thm: - [ N|
| | 4 coT * Sisalleast as large as T: « Infinite sct: [$ = k ¥keZ [ : : : : P (diagonalization):
H IR + 1-to-1 correspondence: [:8 ., . . . ! ! ! )
« Oue-lo-one lunchion: *1-1 o-1 correspandence: f:8«> [8=T|= 3 f:5->T. f onlo or . 12} 43 8 Aggume 3 1-1 corres, /3 ReN
abe8 *azh = flak/fib) 1 is both 1-1 and onte i.e., ™S covers T” 3 1-1comes. {156 T, ST Toos s e e s Conslrucl X e 9
. 1z 31 4 3 s TS
Lx: fr MW, fix)=2x is 1-1 Ex: rR—Z, r{x)—round(x) Fx:{p|pprime}, R 5 0% 3 F % 3o ? tioz.eleEElans. . i
’i 1 s 2 1213562, .. ¥
g(x)-x"is not 1-1 = [®2/2] * Countable set: |8 < N| PR R T R S i e
« Sand | have same cardinalily: Ex:@, {p|pprime}, N, Z PR MO X = 0,270 ... #fik) ¥keN
+ Onto [unction: Ex: {: R 3 f(x)=x (identity) S=T|= \‘P\Tl \T\>|S » S is gurietly smaller than T: 108 1 4 s = frota I-1 correspondencs
TteT IseS 35yt hNoZ 3 h(x):% . x odd, 3141 Wl'l'USPU“d‘v“‘-‘- Ser I S =[] = [SE(T] [SkT] Lozo1o4 2 e > contradiction
Lx: Jr 22, fx)13-x is onto X < even. + Ceneralizes finite cardinality: ) Uincoum?b‘lc et [NJ < 18] 1w e - = R is uncoutlable
g(x)—x° is not onlo 2 [N| =%

11,2,3,4,5 = {a b, c) IN| < [0,1] - {x | xe%, Dsx<1}

http://www.cs.virginia.edu/robins/cs6161/discrete_math_review_slides.pdf




Required Readings

www.cs.virginia.edu/robins/CS_readings.html

* Required books:
— “How to Solve It”, Polya, 1957
— “Infinity and the Mind”, Rucker, 1995
— “Godel, Escher, Bach”, Hofstadter, 1979
— “The Demon-Haunted World, Sagan, 2009
— “What If”, Munroe, 2014
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Required Readings

www.cs.virginia.edu/robins/CS_readings.html
Remaining videos / articles / books are “electives”
Pacing: at least 2 submissions per week (due 5pm Monday)

- Policy intended to help you avoid “cramming”
Length: 1-2 paragraphs per article / video
1-2 pages per book

Books are worth more credit than articles / videos
Email all submissions to: homework.cs6161@gmail.com
Additional readings beyond 36 are welcome! (extra credit)



Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

» Theory and Algorithms:

Who Can Name the Bigger Number, Scott Aaronson, 1999

The Limits of Reason, Gregory Chaitin, Scientific American, March
2006, pp. 74-81.

Breaking Intractability, Joseph Traub and Henryk Wozniakowski,
Scientific American, January 1994, pp. 102-107.

Confronting Science's Logical Limits, John Casti, Scientific
American, October 1996, pp. 102-105.

Go Forth and Replicate, Moshe Sipper and James Reggia, Scientific
American, August 2001, pp. 34-43.

The Science Behind Sudoku, Jean-Paul Delahaye, Scientific
American, June 2006, pp. 80-87.

The Traveler's Dilemma, Kaushik Basu, Scientific American, June
2007, pp. 90-95.



Other “Elective” Readings

www.cs.virginia.edu/robins/CS_readings.html

 Biological Computing:
— Computing with DNA, Leonard Adleman, Scientific American,
August 1998, pp. 54-61.

— Bringing DNA Computing to Life, Ehud Shapiro and Yaakov
Benenson, Scientific American, May 2006, pp. 44-51.

— Engineering Life: Building a FAB for Biology, David Baker et
al., Scientific American, June 2006, pp. 44-51.

— Big Lab on a Tiny Chip, Charles Chol, Scientific American,
October 2007, pp. 100-103.

— DNA Computers for Work and Play, Macdonald et al, Scientific
American, November 2007, pp. 84-91.

Email all submissions to: homework.cs6161@gmail.com



Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

* Quantum Computing:

— Quantum Mechanical Computers, Seth Lloyd, Scientific
American, 1997, pp. 98-104.

— Quantum Computing with Molecules, Gershenfeld and Chuang,
Scientific American, June 1998, pp. 66-71.

— Black Hole Computers, Seth Lloyd and Jack Ng, Scientific
American, November 2004, pp. 52-61.

— Computing with Quantum Knots, Graham Collins, Scientific
American, April 2006, pp. 56-63.

— The Limits of Quantum Computers, Scott Aaronson, Scientific
American, March 2008, pp. 62-69.

— Quantum Computing with lons, Monroe and Wineland,
Scientific American, August 2008, pp. 64-71.



Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

 History of Computing:
— The Origins of Computing, Campbell-Kelly, Scientific
American, September 2009, pp. 62-69.

— Ada and the First Computer, Eugene Kim and Betty Toole,
Scientific American, April 1999, pp. 76-81.

 Security and Privacy:

— Malware Goes Mobile, Mikko Hypponen, Scientific American,
November 2006, pp. 70-77.

— RFID Powder, Tim Hornyak, Scientific American, February
2008, pp. 68-71.

— Can Phishing be Foiled, Lorrie Cranor, Scientific American,
December 2008, pp. 104-110.



Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

 Future of Computing:

Microprocessors in 2020, David Patterson, Scientific American, September
1995, pp. 62-67.

Computing Without Clocks, Ivan Sutherland and Jo Ebergen, Scientific
American, August 2002, pp. 62-69.

Making Silicon Lase, Bahram Jalali, Scientific American, February 2007,
pp. 58-65.

A Robot in Every Home, Bill Gates, Scientific Am, January 2007, pp. 58-65.
Ballbots, Ralph Hollis, Scientific American, October 2006, pp. 72-77.

Dependable Software by Design, Daniel Jackson, Scientific American, June
2006, pp. 68-75.

Not Tonight Dear - | Have to Reboot, Charles Choi, Scientific American,
March 2008, pp. 94-97.

Self-Powered Nanotech, Zhong Lin Wang, Scientific American, January
2008, pp. 82-87.



Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

e The Web:

— The Semantic Web in Action, Lee Feigenbaum et al., Scientific American,
December 2007, pp. 90-97.

— Web Science Emerges, Nigel Shadbolt and Tim Berners-Lee, Scientific
American, October 2008, pp. 76-81.

* The Wikipedia Computer Science Portal: 5 |
— Theory of computation and Automata theory f )
— Formal languages and grammars
— Chomsky hierarchy and the Complexity Zoo \
— Regular, context-free &Turing-decidable languages RS
— Finite & pushdown automata; Turing machines
— Computational complexity

— List of data structures and algorithms
Email all submissions to: homework.cs6161@gmail.com



http://upload.wikimedia.org/wikipedia/commons/b/b7/Wikipedia-logo.svg
http://upload.wikimedia.org/wikipedia/commons/b/b7/Wikipedia-logo.svg

Other “Elective” Readings
www.cs.virginia.edu/robins/CS_readings.html

« The Wikipedia Math Portal:
— Problem solving
— List of Mathematical lists
— Sets and Infinity
— Discrete mathematics
— Proof techniques and list of proofs
— Information theory & randomness
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Email all submissions to: homework.cs6161@gmail.com # rm_u
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Good Advice

» Ask questions ASAP
 Solve problems ASAP
* Work in study groups
* Do not fall behind

« “Cramming” won’t work

* Do lots of extra credit

» Attend every lecture

* Visit class Website often
 Solve lots of problems

Latin convulsions

/
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) ™
Physics ﬂounderinﬂ

Wood shop apathy Basic stupidity

Classtoom afflictions




Goal: Become a more effective problem solver!
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Email all submissions to: homework.cs6161@gmail.com



Problem: Can 5 test tubes be spun simultaneously in a

e O

 What does “balanced” mean? = 3 \ N
- Why are 3 test tubes balanced? R ot
'Symmetry! P05 b 5
-rge solutions? S0 | & D '\1»6\ \

Superposition 3 N 6(5\&\%°
e Linearity! f(x4y) = f(X) + £(y) \'©

° I ? '
Can you spin 7 test tubes" o o

ccomplemenays S (8¢
» Empirical testing. .. W




Problem:1+2+3+4+ .. +100="7

= (100*101)/2
Proof: = 5050

1 +2 + 3 +...+9 + 100
100+ 99 + 98 +...+ 2 + 1

101+101+101+...+101+ 101 = 100*101

—~. n(n+1)
2.1=75




Drawbacks of Induction

* You must a priori know the formula / result
 Easy to make mistakes in inductive proof

* Mostly “mechanical” — ignores intuitions
 Tedious to construct
* Difficult to check
 Hard to understand
« Not very convincing .
 Generalizations not obvious :

* Does not “shed light on truth” 7{
 Obfuscates connections

Conclusion: only use induction as a last resort! (i.e., rarely)



Problem: (1/4) + (1/4)2 + (1/4)3 + (1/4)* + ... =2

= 1

— =7
= 4

Extra Credit:
Find a short, geometric, induction-free proof.



Problem: (1/4) + (1/4)? + (1/4)3+ (1/4)* + ... =7
Find a short, geometric, induction-free proof.




Problem: (1/8) + (1/8)% + (1/8)3 + (1/8)* + ...=?

Extra Credit:
Find a short, geometric, induction-free proof.



Problem: (1/8) + (1/8)? + (1/8)3+ (1/8)* + ...=7?
Find a short, geometric, induction-free proof.




Problem:; 13+ 23+ 33+ 43+ .. +n3=7?

+ 3 o) e
I i R
— i S
|
i 1 :;?:E.:."'.':.':‘5"';"'-5-:?:53}-‘:':'5':-::-:;-E-':':-:::'-.:":5::-::5fi;3;5:3:.f‘.f:?'.5:"'.'"."'.'E‘5':3'!'?'-E13‘ri‘-7:';-5551::;‘:::-.?.’.:.‘—:':&'&'—5.:.i..'-.:":-::i::'.-i.‘.»':-'::-:--.-,-.. -
:::i ) I

Extra Credit:
find a short, geometric,
Induction-free proof.

“Yes, yes, | know that, Sidney ... everybody knows that! ..
But look: Four wrongs squared, minus two wrongs to the
fourth power, divided by this formula, do make a right.”



Problem: Can an 8x8 board with two opposite
corners missing be tiles with 31 dominoes?

= 31X ?

» What approaches fail?
« What techniques work and why?
» Lessons and generalizations



Problem: Given any five points in/on the unit
square, 1s there always a pair with distance < % ?

Y hf Slde One Twe, one fw ane“ﬁy
eﬂ's de One Tug,one Two,one Tivg one.

/ ( keep those cere bellums up?.
- '

» What approaches fail?
« What techniques work and why?
» Lessons and generalizations




Problem: Given any five points in/on the unit
equilateral triangle, Is there always a pair with
distance <12 ?

OKGYJ now listen up. Nobody
gets in here wi%w*answerms

the following question: A frgi,

ves Phiadephia at 1:00p.m. |
15 Traveling at 65 miles per hour. A
Another Train leaves Denver 1
at 4:00... Say, you need .

» What approaches fail?
« What techniques work and why?
» Lessons and generalizations

Math phobic’s nightmare




Problem: Prove that there are an infinity of primes.

Extra Credit: Find a short, induction-free proof.

» What approaches fail?
« What techniques work and why?
» Lessons and generalizations




Problem: True or false: there are arbitrary long
blocks of consecutive composite integers

(1.e., big “prime deserts”)

Extra Credit: find a short, induction-free proof.

AND OVER THERE WE HAVE THE LABYRINTH GUARDS.
ONE ALWAYS LIES, ONE ALWAYS TELLS THE TRUTH, AND
ONE STABS PEOPLE WHO ASK TRICKY QUESTIONS.

» What approaches fail?
» What techniques work and why?} |
» Lessons and generalizations




Problem: Prove that /2 is irrational.

Extra Credit: find a short, induction-free proof.

» What approaches fail? | ‘

» What techniques work and why? ..._

» Lessons and generalizations

T~

Suuue:rgf\:/ 2™ (2030
R E 2D

(?4‘_6,0) Ao~
,.: > } S x=Ma,
- [
P Ny Yk = #

Einstein discovers that time is actually money.




Problem: Does exponentiation preserve irrationality?
l.e., are there two Irrational numbers x and y such
that x¥ Is rational?

Extra Credit: find a short, induction-free proof.

» What approaches fail?
« What techniques work and why?
» Lessons and generalizations

¥




Problem: Solve the following equation for X:
X<
X =2

X
where the stack of exponentiated x’s extends forever.

» What approaches fail?
« What techniques work and why?
» Lessons and generalizations

A)—

“Mr. Osborne, may I be excused? My brain is full.”




Problem: Are the complex numbers closed under
exponentiation ? E.g., what is the value of i'?

- | IN My Parer, I USE AN IT MIGHT

" | FUNCTION OVER THE GAUSSIEN IS THIS PAPER
; | INTEGERS To GENERALIZE THE %‘U""'L"LD"’ L‘?P?r'_g‘” IR 2\; ﬁaﬁﬁh‘é WERE
et Real [ -CALLED “FRIENDLY NUMBERS" el BKING YOUR
® G ﬁm THE COMPLEX PLANE. AN “IMAGINARY MATH LICEMSE
FRIENDS" PUN?

M%




Theorem [Turing]: not all problems are solvable by algorithms.
Theorem: not all functions are computable by algorithms.
Theorem: not all Boolean functions are computable by algorithms.
Theorem: most Boolean functions are not computable!

Q: Can we find a concrete example of an uncomputable function?
A: [Turing] Yes, for example, the Halting Problem. '

Definition: The Halting problem: given a program P
and input I, will P ever halt if we ran it on 1?

Define H:NxN—{0,1}
H(P,N=1 if program P halts on input |
H(P,1)=0 otherwise P—gli®

+ Both P and | can be encoded as strings | — S sl

« P and | can also be encoded as integers (in some canonical order)

* H Is an everywhere-defined Boolean function on natural #’s




Theorem [Turing]: the halting problem (H) is not computl

Ex: the “3X+1” problem (the Ulam conjecture):

e Start with any integer X>0

o If X Is even, then replace it with X/2

o If X Is odd then replace it with 3X+1

 Repeat until X=1 (i.e., shortcycle 4, 2, 1, ...)

EX: 26 terminates after 10 steps
27 terminates after 111 steps

Termination verified for X<1018

Q: Does this terminate for every X>0 ? -

-3
< ®
o °
°
° ‘e
0 % ®
] °
. [ I ] 4 oo:". -
I l 4 % e, e
] e S I n Ce = 150 ] °o°:0°'..'
o°.o’ -
1 go%e
1 5%

“Mathematics is not yet ready for such confusing, ™
troubling, and hard problems.” - Paul Erdés, who _ j&ssrisse s
offered a $500 bounty for a solution to this problem EEE=EEare=t

T T T T T T T T T
1,000 3,000 5,000 7,000 9,000

Observation: termination Is Number of steps to termination
In general difficult to detect! for the first 10,000 numbers



Theorem [Turing]: the halting problem (H) is not computable.
Corollary: we can not algorithmically detect all infinite loops.

Q: Why not? E.g., do the following programs halt?
main() main() E:’
{intk=3; } { while(1) {} } il e

Halts! Runs forever! ?
main() main()
{ Find a Fermat { Find a Goldbach
triple a"+b"=c" Integer that Is not a sum
with n>2 then stop} of two primes & stop}
Runs forever! ?
Open from 1637-1995! Still open since 1742!

Theorem: solving the halting problem is at least as hard
as solving arbitrary open mathematical problems!
Corollary: Its not about size!



Theorem [Turing]: the halting problem (H) is not computable.
Proof: Assume Jalgorithm S that solves the halting problem
H, that always stops with the correct answer for any P & |.

MY NOSE WILL
GROW NOW!
A\
¥ o
g

T(T) haits = T(T) does not halt

~ iction!
T(T) does not halt = T(T) halts }Q &~Q = Contradiction
— S cannot exist! (at least as an algorithm / program / TM)



Theorem: all computable numbers are finitely describable.

Proof: A computable number can be outputted by a TM.
A TM is a (unique) finite description.

What the unsolvability of the Halting Problem means:

There Is no single algorithm / program / TM that correctly
solves all instances of the halting problem in finite time each.

This result does not necessarily apply if we allow:

e Incorrectness on some instances

o Infinitely large algorithm / program

o Infinite number of finite algorithms / programs
« Some instances to not be solved _
» Infinite “running time” / steps |’ T
 Powerful enough oracles X

e
VFU




Q:
A:
Q: Why?
A:

To make them more efficient!

When do we want to feed a program to itself in practice?
When we build compilers.
W

To boot-strap the coding in the compiler’s own language!

Program

: Executable

code

MY N WwILL
GROW NOW!
N\
RO ES:
d

OSE
w
New %




Theorem: Infinite loop

detection is not computable.

LSRG

READY?
READY.

’/ S
ﬁ 22208

— —,

Roﬁ'ﬁ

ch}
7 )

Theorem: virus detection
Is not@omputable.

PREITY ISN'T 1T
WHAT 15 J'I'?

& @

P

IVE GOT ABUNCH OF VIRTUAL WINDOWS
MACHINES NETWORKED TOGETHER, HOOKED UP
10 AN INCOMING PIPE FROM THE NET. THEY
EXECUTE EMAIL ATTACHMENTS SHARE FILES,
AND HBVE NO SECLRITY PRTCHES,

THERE ARE MAILTROTANS WARHOL WORMS,
AND ALLSORTS OF EXOTIC POLYMORPHICS.
A MONITORING SYSTEM ADDS AND WIPES
MACHINES AT RANDOM. THE DISPLAY SHOJS
THE VIRUSES AS THEY MOVE THROVGH THE
NETWORE, » /' GROWING AND
STRUGGLING.

BENJEEN
— THEM THEY

HAVE PRACTCALLY

EVERY VIRUS,

JUST HAVE

f

YOU KNOW,
NORMAL PEORLE  BLASTER. ARE

ﬂaum:arms / W32, wELr;Hm

GOOD MORNING,
YOu AND

ﬂLﬂNG?

WHO'S A GOOD VIRUS?
YOU ARE! YES, YOU ARE!

OFERATION: DUCKLING LCoP



Self-Replication

* Biology / DNA
« Nanotechnology

Self-replicating

« Computer viruses cellular automata L4485
« Space exploration designed by von Neumann
» Memetics / memes 8 ¢y b, o B
e “Gray goo” T

Problem (extra credit): write a program that
prints out its own source code (no inputs of
any kind are allowed).

’ ITS NEAT HOW YOU
CONTAIN A FACTORY
FOR MAKING MORE
I OF YOU.

\
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Replicate

Birds do it, bees do it,

Copyright 2001 Scientific American, Inc.

but could machines do it?
New computer simulations
suggest that the answer is yes

A p p le S ]Jeget a p p le S, but can machines
beget machines? Today it takes an elaborate manufacturing ap-
paratus to build even a simple machine. Could we endow an ar-
tificial device with the ability to multiply on its own? Self-repli-
cation has long been considered one of the fundamental prop-
erties separating the living from the nonliving. Historically our
limited understanding of how biological reproduction works
has given it an aura of mystery and made it seem unlikely that
itwould ever be done by a man-made object. It is reported that
when René Descartes averred to Queen Christina of Sweden
that animals were just another form of mechanical automata,
Her Majesty pointed to a clock and said, “See to it that it pro-
duces offspring.”

The problem of machine self-replication moved from phi-
losophy into the realm of science and engineering in the late
1940s with the work of eminent mathematician and physicist
John von Neumann, Some researchers have actually construct-
ed physical replicators. Forty years ago, for example, geneticist

Lionel Penrose and his son, Roger (the famous physicist), built
small assemblies of plywood that exhibited a simple form of
self-replication [see “Self-Reproducing Machines,” by Lionel

By Moshe Sipper and James A. Reggia

Penrose; SCIENTIFIC AMERICAN, June 1959]. But self-replica-
tion has proved to be so difficult that most researchers study it

with the conceptual tool that von Neumann developed: two-
dimensional cellular automata.

Implemented on a computer, cellular automata can simu-
late a huge varicty of self-replicators in what amount to austere
universes with different laws of physics from our own. Such
models free rescarchers from having to worry about logistical
issues such as energy and physical construction so that they can
focus on the fundamental questions of information flow. How

is a living being able to replicate unaided, whereas mechanical
objects must be constructed by humans? How does replication
at the level of an organism emerge from the numerous interac-
tions in tissues, cells and molecules? How did Darwinian evo-
lution give rise to self-replicating organisms?

The emerging answers have inspired the development of self-
repairing silicon chips [see box on page 40] and autocartalyzing
molecules [see “Synthetic Self-Replicating Molecules,” by Julius
Rebek, Jr.; SCIENTIFIC AMERICAN, July 1994). And this may be
just the beginning. Researchers in the field of nanotechnology
have long proposed that self-replication will be crucial to manu-

=

Photoillustrations by David Emmite

www.sciam.cam
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facturing molecular-scale machines, and
proponents of space exploration sec a
macroscopic version of the process as a
way to colonize planets using in situ ma-
terials. Recent advances have given cre-
dence to these futuristic-sounding ideas.
Aswith other scientific disciplines, includ-
ing genetics, nuclear energy and chemistry,
those of us who study self-replication face
the twofold challenge of creating replicat-
ing machines and avoiding dystopian pre-

dictions of devices running amok. The
knowledge we gain will help us separate
good technologies from destructive ones,

Playing Life
SCIENCE-FICTION STORIES often de-
pict cybernetic self-replication as a nat-
ural development of current technology,
but they gloss over the profound problem
it poses: how rto avoid an infinite regress.
(A system might try to build a clone using)
a blueprint—that is, a self-description. Yet
the self-description is part of the machine,
is it not? If so, what describes the descrip-
tion? And what describes the description
of the description? Self-replication in this
case would be like asking an architect to
make a perfect blueprint of his or her own
studio. The blueprint would have to con-
tain a miniature version of the blueprint,
which would contain a miniature version

of the blueprint and so on. Without this
information, a construction crew would
be unable to re-create the studio fully;
there would be a blank space where the
blueprint had been.

Von Neumann’s great insight was an
explanation of how to break our of the in-

scription could be used in two distinet
ways: first, as the instructions whose in-
terpretation leads to the construction of an
identical copy of the device; next, as data
to be copied, uninterpreted, and attached
to the newly created child so that it too
possesses the ability to self-replicate. With
this two-step process, the self-description
need not contain a description of itself. In
the architectural analogy, the blueprint
would include a plan for building a pho-

tocopy machine. Once the new studio
and the photocopier were built, the con-
struction crew would simply run off a
copy of the blueprint and put it into the

new studio.
-

Living cells use their self-description, )

which biologists call the genotype, in ex-
actly these two ways: transcription (DNA
is copied mostly uninterpreted to form
mRINA | and translation (mRNA is inter-
preted to build proteins). Von Neumann
made this transcription-translation dis-
tinction several years before molecular bi-
ologists did, and his work has been crucial

\tume regress. He realized that the selh‘te—/

\in understanding self-replication in nature. )
To prove these ideas, von Neumann
and mathematician Stanislaw M. Ulam
came up with the idea of cellular au-
tomara. A cellular-automara simulation
involves a chessboardlike grid of squares,
or cells, each of which is either empty or
occupied by one of several possible com-
ponents. At discrete intervals of time,
each cell looks at itself and its neighbors
and decides whether to metamorphose
into a different component. In making this
decision, the cell follows relatively simple
rules, which are the same for all cells.
These rules constitute the basic physics of

THE AUTHORS

MOSHE SIPPER and JAMES A. REGGIA share a long-standing interest in how complex systems
can self-organize. Sipper is a senior lecturer in the department of computer science at Ben-
Gurion Universityin Israeland avisiting researcherat the Logic Systems Laboratory of the Swiss
Federal Institute of Technology in Lausanne. He is interested mainly in bio-inspired computa-
tional paradigms such as evolutionary computation, self-replicating systems and cellularcom-
puting. Reggiais a professorof computerscience and neurology, working in the Institune for Ad-

vanced Computer Studies at the University of Maryland. In addition to studying self-replication,
he conducts research on computational models of the brain and its disorders, such as stroke.
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the cellular-automata world. All decisions
and actions take place locally; cells do not
know directly whar is happening outside
their immediate neighborhood.

The apparent simplicity of cellular au-
tomata is deceptive; it does not imply ease
of design or poverty of behavior. The
most famous automata, John Horton
Conway’s Game of Life, produces amaz-
ingly intricate patterns. Many questions
about the dynamic behavior of cellular

automata are formally unsolvable. To see
how a pattern will unfold, you need to
simulate it fully [see Mathematical
Games, by Martin Gardner; SCIENTIFIC
AMERICAN, October 1970 and February
1971; and “The Ultimate in Anty-Parti-
cles,” by [an Stewart, July 1994]. In its
own way, a cellular-automata model can
be just as complex as the real world.

Copy Machines

WITHIN CELLULAR AUTOMATA, self-
replication occurs when a group of com-
ponents—a “machine”—goes through a
sequence of steps to construct a nearby
duplicate of itself. Von Neumann’s ma-
chine was based on a universal construc-
tor, a machine that, given the appropri-
are instructions, could create any partern.
The constructor consisted of numerous
types of components spread over tens of
thousands of cells and required a book-
length manuscript to be specified. It has
still not been simulated in its entirety, let
alone actually built, on account of its
complexity. A constructor would be even
more complicated in the Game of Life be-
cause the functions performed by single
cells in von Neumann's model—such as
transmission of signals and generation of
new components—have to be performed
by composite structures in Life.

Going to the other extreme, it is casy
to find trivial examples of self-replication.
For example, suppose a cellular automata
has only one type of component, labeled
+, and that each cell follows only a single
rule: if exactly one of the four neighboring

AUGUST 2001

cells contains a +, then the cell becomes a
+; otherwise it becomes vacant. With this
rule, a single + grows into four more +7s,
cach of which grows likewise, and so forth.

Such weedlike proliferation does not
shed much light on the principles of repli-
cation, because there is no significant ma-
chine. Of course, that invites the question
of how you would tell a “significant” ma-
chine from a trivially prolific automata.
No one has vet devised a satisfactory an-
swer. What is clear, however, is that the
replicaring structure must in some sense
be complex. For example, it must consist
of multiple, diverse components whose
interactions collectively bring about repli-
cation—the proverbial “whole must be
greater than the sum of the parts,” The
existence of multiple distinct components
permits a self-description to be stored
within the replicating structure.

In the years since von Neumann’s sem-
inal work, many researchers have probed
the domain between the complex and the
trivial, developing replicators that require
fewer components, less space or simpler
rules. A major step forward was taken in
1984 when Christopher G. Langton, then
at the University of Michigan, observed
that looplike storage devices—which had
formed modules of earlier self-replicating
machines—could be programmed to repli-
cate on their own. These devices typically
consist of two pieces: the loop itself,
which is a string of components that cir-
culate around a rectangle, and a con-
struction arm, which protrudes from a
corner of the rectangle into the surround-
ing space. The circulating components
constitute a recipe for the loop—for ex-
ample, “go three squares ahead, then turn
left.” When this recipe reaches the con-
struction arm, the automata rules make a
copy of it. One copy continues around
the loop; the other goes down the arm,
where it is interpreted as instructions,

By giving up the requirement of uni-
versal construction, which was central
to von Neumann’s approach, Langton
showed that a replicator could be con-
structed from just seven unique compo-
nents occupying only 86 cells, Evensmall-
er and simpler self-replicating loops have
been devised by one of us (Reggia) and
our colleagues [see box on next page)]. Be-

www.sciam.com

cause they have multiple interacting com-
ponents and include a self-description,
they are not trivial. Intriguingly, asym-
metry plays an unexpected role: the rules
governing replication are often simpler
when the components are not rotational-

ly symmetric than when they are.

Emergent Replication

ALL THESE SELF-REPLICATING struc-
tures have been designed through inge-
nuity and much trial and error. This pro-
cess is arduous and often frustrating; a
small change to one of the rules results in
an entirely different global behavior,
most likely the disintegration of the strue-
ture in question. But recent work has
gone beyond the direct-design approach.
Instead of tailoring the rules to suit a par-

ticular type of structure, researchers have
experimented with various sets of rules,
filled the cellular-automara grid with a
“primordial soup™ of randomly selected
components and checked whether self-
replicators emerged spontaneously.

In 1997 Hui-Hsien Chou, now at
Towa State University, and Reggia noticed
that as long as the initial density of the
free-floating components was above a cer-
tain threshold, small self-replicating loops
reliably appeared. Loops that collided un-
derwent annihilation, so there was an on-
going process of death as well as birth.
Over time, loops proliferated, grew in size
and evolved through mutations triggered
by debris from past collisions. Although
the automata rules were deterministic,
these mutations were effectively random,
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because the system was complex and the
components started in random locations.

Such loops are intended as abstract
machines and not as simulacra of any-
thing biological, but it is interesting to
compare them with biomolecular struc-
tures. A loop loosely resembles circular
DNA in bacteria, and the construction
arm acts as the enzyme that catalyzes
DNA replication. More important, repli-
cating loops illustrate how complex glob-
al behaviors can arise from simple local in-

teractions. For example, components
move around a loop even though the rules
say nothing about movement; what is ac-
tually happening is that individual cells are
coming alive, dying or metamorphosing in
such a way that a pattern is eliminated
from one position and reconstructed clse-
where—a process that we perceive as mo-
tion. In short, cellular automara acr local-
ly but appear to think globally. Much the
same is true of molecular biology.

In a recent computational experiment,

Jason Lohn, now at the NASA Ames Re-
search Center, and Reggia experimented
not with different structures but with dif-
ferent sets of rules. Starting with an arbi-
wary block of four components, they
found they could determine a set of rules
that made the block self-replicate. They
discovered these rules via a genetic algo-
rithm, an automated process that simu-
lates Darwinian evolution.

The most challenging aspect of this
work was the definition of the so-called

BUILD YOUR OWN REPLICATOR

SIMULATING A SMALL self-replicating loop using an
ordinary chess setis a good way to get an intuitive sense of
how these systems work. This particular cellular-automnata
model has four different types of components: pawns,
knights, bishops and rooks. The machine initially comprises
four pawns, a knight and a bishop. It has two parts: the loop
itself, which consists of a two-by-two square, and a
construction arm, which sticks out to the right.

The knight and bishop represent the self-description: the
knight, whose orientation is significant, determines which
direction to grow, while the bishop tags along and determines
how long the side of the loop should be. The pawns are fillers
that define the rest of the shape of the loop, and therook is a
transient signal to guide the growth of a new construction arm.

As time progresses, the knight and bishop circulate
counterclockwise around the loop. Whenever they encounter
the arm, one copy goes out the arm while the original
continues around the loop.

STAGES OF REPLICATION

1 The knight and
bishop move counter-
clockwise around

the loop. Aclone of the
knight heads out

the arm.

INITIALLY, the self-
description, or
“genome”—a knight
followed by a bishop—is
poised at the start of

the canstruction arm. the arm.

38 SCIENTIFIC AMERICAN

2 The eriginal knight-
bishop pair continues
to circulate. The bishop
is cloned and follows
the new knight out

HOW TO PLAY: You will need two chessboards: one to
represent the current configuration, the other to show the
next configuration. For each round, look at each square of the
current configuration, consult the rules and place the
appropriate piece in the corresponding square on the other
board. Each piece metamorphoses depending on itsidentity
and that of the four squares immediately to the left, to the
right, above and below. When you have reviewed each square
and set up the next configuration, the round is over. Clear the
first board and repeat. Because the rules are complicated, it
takes a bit of patience at first. You can also view the
simulation atIslwww.epfl.ch/chess

The direction in which a knight faces is significant. In the
drawings here, we use standard chess conventions to indicate
the orientation of the knight: the horse’s muzzle points forward.
If no rule explicitly applies, the contents of the square stay
the same. Squares on the edge should be treated as if they
have adjacent empty squares off the board. —M.S. and JAR.

3 The knight triggers
the formation of two
corners of the child
loop. The bishop tags
along, completing
the gene transfer.

4The knight forges
the remaining corner of
the child loop. The loops
are connected by the
construction arm and a
knight-errant.

AUGUST 2001

fitness function—the criteria by which sets
of rules were judged, thus separating
good solutions from bad ones and driving
the evolutionary process toward rule sets
that facilitated replication. You cannot
simply assign high fitness to those sets of
rules that cause a structure to replicate,
because none of the initial rule sets is like-
ly to allow for replication. The solution
was to devise a fitness function composed
of a weighted sum of three measures: a
growth measure (the extent to which

KNIGHT
AB-8
Aw-8
?
? u 2 -+l
£l square empty.

PAWN

OTHERWISE, if at least one of the
neighboring squaresis occupied,
remove the knight and leave the

each component type generates an in-
creasing supply of that component), a rel-
ative position measure (the extent to
which neighboring components stay to-
gether) and a replicant measure (a func-
tion of the number of actual replicators
present). With the right fitness function,
evolution can turn rule sets that are ster-
ile into ones that are fecund; the process
usually takes 150 or so generations.
Self-replicating structures discovered
in this fashion work in a fundamentally

BISHOP OR ROOK

IF THERE is a bishop just behind or
1o the left of the knight, replace the
knight with another bishop.

EMPTY SQUARE
&
EN-B

£
4 V43
£

IF THERE is a neighboring knight, replace the pawn with a

knight with a certain orientation, as follows:

Am-B

i
EEL-|
x faces that pawn.

?
] Ry -
?

neighboring knight.

5 The knight-errant
moves up to endow the
parentwith a new arm.
Asimilar precess, one
step delayed, begins
for the child loop.

www.sciam.com

IF ANEIGHBORING knight is facing
away from the pawn, the new knight
faces the opposite way.

OTHERWISE, if there is exactly one
neighboring pawn, the new knight

OTHERWISE the new knight faces in i
the same direction as the

BThe knight-errant,
together with the
original knight-bishop
pair, conjures up a
rook. Meanwhile the
old arm is erased.

different way than self-replicating loops
do. For example, they move and deposit
copies along the way—unlike replicating
loops, which are essentially sraric. And al-
though these newly discovered replicators
consist of multiple, locally interacting com-
ponents, they do not have an identifiable
self-description—there is no obvious ge-
nome. The ability to replicate withour a
self-description may be relevant to ques-
tions about how the earliest biological

Continued on page 43

B> REPLACEIT withapawn.

2|

IF THERE are two neighboring knights
and either faces the empty square, fill
the square with a rook.

IF THERE is only one neighboring knight
and it faces the square, fill the square
with aknight rotated 90 degrees
counterclockwise.

IF THERE is a neighboring knight and its

@

? The rookkills the
knight and generates
the new, upward arm.
Anotherrook prepares
to do the same for
the child.

8 At last the two
loops are separate and
whole. The self-
descriptions continue
to circulate, but
otherwise allis calm.

left side faces the square, and the
other neighbors are emptuy, fill the square
withapawn.

IF THERE is a neighboring rook, and the
otherneighbors are empty, fill the square
with a pawn.

IF THERE are three neighboring pawns,
fill the square with a knight facing
the fourth, empty neighbor.

9 The parent prepares
to give birth again.

In the following step,
the child too will begin
to replicate.
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ROBO T, HEAL THYSELE

Computers that fix themselves are the first application of artificial self-replication

LAUSANNE, SWITZERLAND—Not many researchers encourage the
wanton destruction of equipment in their labs. Daniel Mange,
however, likes it when visitors walk up to one of his inventions and
press the button markedKILL. The lights on the panel go out; a
small box full of circuitry is toast. Early in May his team unveiled
its latest contraption at a science festival here—a wall-size digital
clock whose components you can zap at will—and told the public:
Give it your best shot. See if you can crash the system.

The goal of Mange and his team is to instill electronic circuits
with the ability to take a lickin' and keep on tickin'—just like living
things. Flesh-and-blood creatures might not be so good at
calculating T to the millionth digit, but they can get through the
day without someone pressing Ctrl-Alt-Del. Combining the
precision of digital hardware with the resilience of biological
wetware is a leading challenge for modern electronics.

Electronics engineers have been working on fault-tolerant
circuits ever since there were electronics engineers [see
“Redundancy in Computers,” by William H. Pierce; SCIENTIFIC
AMERICAN, February 1964]. Computer modems would still be
dribbling data at 1200 baud if it weren't for error detection and
correction. In many applications, simple quality-control checks,
such as extra data bits, suffice. More complex systems provide
entire backup computers. The space shuttle, for example, has five
processors. Four of them perform the same calculations; the fifth
checks whether they agree and pulls the plug on any dissenter.

The problem with these systems, though, is that they rely on
centralized control. What if that control unit goes bad?

Nature has solved that problem through radical decentral-
ization. Cells in the body are all basically identical; each takeson a
specialized task, performs it autonomously and, in the event of
infection or failure, commits hara-kiri so that its tasks can be
taken up by new cells. These are the attributes that Mange, a
professor at the Swiss Federal Institute of Technology here, and
others have sought since 1993 to emulate in circuitry, as part of
the “Embryonics” (embryonic electronics) project.

One of their earlierinventions, the MICTREE (microinstruction
tree) artificial cell, consisted of a simple processor and four bits of
data storage. The cellis contained in a plastic box roughly the size of
apack of Post-its. Electrical contacts run along the sides so that
cells can be snapped together like Legos. As in cellular automata,
the models used to study the theory of self-replication, the MICTREE
cells are connected only to theirimmediate neighbors. The
communication burden on each cell is thus independent of the total
number of cells. The system, in other words, is easily scalable—
unlike many parallel-computing architectures.

Cells follow the instructions in their “genome,” a program
written in a subset of the Pascal computer language. Like their
biological antecedents, the cells all contain the exact same
genome and execute part of it based on their position within the
array, which each cell calculates relative to its neighbors. Waste-

fulthough it may seem, this redundancy allows the array to
withstand the loss of any cell. Whenever someone presses the KILL
button on a cell, that cell shuts down, and its left and right neigh-
bors become directly connected. The right neighbor recalculates
its position and starts executing the deceased's program. lts
tasks, in turn, are taken up by the next cell to the right, and so on,
until a cell designated as aspare is pressed into service.

Writing pragrams for any parallel processaris tricky, but the
MICTREE array requires an especially unconventional approach.
Instead of giving explicitinstructions, the programmer must devise
simple rules out of which the desired function will emerge. Being
Swiss, Mange demonstrates by building a superreliable stopwatch.
Displaying minutes and seconds requires four cells in a row, one for
each digit. The genome allows for two cell types: a counter from
zero to nine and a counter from zero to five. An oscillator feeds one
pulse per second into the rightmost cell. After 10 pulses, this cell
cycles back tozero and sends a pulse to the cell on its left, and so
on down the line. The watch takes up part of an array of 12 cells;
when you kill one, the clock transplants itself one cell over and
carries on. Obviously, though, there is a limit to its resilience: the
whole thing will fail after, at most, eight kills.

The prototype MICTREE cells are hardwired, so their pro-
cessing power cannot be tailored to a specific application. Ina
finished product, cells would instead be implemented on a field-
programmable gate array, a grid of electronic components that
can be reconfigured on the fly [see “Configurable Computing,” by
JohnVillasenor and William H. Mangione-Smith; SCIENTIFIC AMERICAN,
June 1997]. Mange's team is now custom-designing a gate array,
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known as MUXTREE [multiplexer tree], that is optimized for
artificial cells. In the biological metaphor, the components of this
array are the “molecules” that constitute a cell. Each consists of a
logic gate, a data bit and a string of configuration bits that
determines the function of this gate.

Building a cell out of such molecules offers not only flexibility
but also extra endurance. Each molecule contains two copies of
the gate and three of the storage bit. If the two gates ever give
different results, the molecule kills itself for the greater good of
the cell. As alast gasp, the molecule sends its data bit [preserved
by the triplicate storage] and configuration toits right neighbor,
which does the same, and the process continues until the right-
most molecule transfers its data to a spare. This second level of
fault tolerance prevents a single error from wiping out an entire cell.

Atotal of 2,000 molecules, divided into four 20-by-25 cells,
make up the BioWall—the giant digital clock that Mange's team has
just put on display. Each molecule is enclosed in asmall box and
includes a KILL button and an LED display. Some molecules are
configured to perform computations; others serve as pixels in the
clock display. Making liberal use of the KILL buttons, | did my utmost
to crash the system, something I'm usually quite good at. But the
plucky clock just wouldn't submit. The clock display did start to look
funny—numerals bent over as their pixels shifted to the right—but
atleast it was still legible, unlike most faulty electronic signs.

That said, the system did suffer from display glitches, which
Mange attributed mainly to timing problems. Although the pro-
cessing power is decentralized, the cells still rely on a central
oscillator to coordinate their communications; sometimes they fall
out of sync. Another Embryonics team, led by Andy Tyrrell of the
University of York in England, has been studying making the cells

is a two-dimensional array of artificial asynchronous, like their biological counterparts. Cells would

cells, each one a simple processor. In this application, four cells
work together as a stopwatch, one cell per digit. Each cell counts up
to either five or nine, depending on its coordinates within the array.
The rest of the cells in the array are spares that take overif a cell fails
oriskilled. The Biodule 601 cells shown here are based on the
MICTREE architecture described in the text.

INSTRUCTION

generate handshaking signals to orchestrate data transfers. The
present system is also unable to catch certain types of error,
including damaged configuration strings. Tyrrell's team has
proposed adding watchdog molecules—an immune system—that
would monitor the configurations (and one another] for defects.
Although these systems demand an awful lot of overhead, so do
POWER other fault-tolerance technologies. “While Embryonics appears to
INDICATOR be heavy on redundancy, it actually is not that bad when compared
gu#r%k to other systems,” Tyrrell argues. Moreover, MUXTREE should be
easier to scale down to the nano level; the “molecules” are simple
enoughtoreally be molecules. Says Mange, “We are preparing for

[X,¥) COORDINATES

OF CELL the situation where electronics will be at the same scale as biology.”

0n a philosophical level, Embryonics comes very close to the
dream of building a self-replicating machine. It may not be quite
as dramatic as a robot that can go down to Radio Shack, pull parts

CONTROL CIRCUITRY POWER SUPPLY SPARE CELL

off the racks, and take them home to resolder a connection or
build a loving mate. But the effectis muchthe same. Letting
rmachines determine their own destiny—whether reconfiguring
themselves on asilicon chip or reprogramming themselves using

n L | L
[} [ ] [} [} L[]
TENS OF UNITS OF TENS OF UNITS OF
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L L LI LI L] aneural network or genetic algorithm—sounds scary, but perhaps
[} ° ] ° n . n . n we should be gratified that machines are becoming more like us:
Ial g e o o= m imperfect, fallible but stubbomly resourceful.
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—George Musser, imperfect but resourceful staff editor and writer
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Continued from page 39

replicators originated. In a sense, re-
searchers are seeing a continuum between
nonliving and living structures.

Many researchers have tried other
computational models besides the tradi-
tional cellular automata. In asynchronous
cellular automata, cells are not updared in
concert; in nonuniform cellular automata,
the rules can vary from cell to cell. Anoth-
er approach altogether is Core War [see
Computer Recreations, by A. K. Dewd-
ney; SCIENTIFIC AMERICAN, May 1984]
and its successors, such as ecologist
Thomas S. Ray’s Tierra system. In these

simulations the “organisms” are comput-
er programs that vie for processor time
and memory. Ray has observed the emer-
gence of “parasites” that co-opt the self-
replication code of other organisms.

Getting Real
SO WHAT GOOD are these machines?
Von Neumann’s universal constructor
can compute in addition to replicating,
but it is an impractical beast. A major ad-
vance has been the development of simple
vet useful replicators. In 1995 Gianluca
Tempesti of the Swiss Federal Institute of
Technology in Lausanne simplified the
loop self-description so it could be inter-
laced with a small program—in this case,
one that would spell the acronym of his
lab, “LSL.” His insight was to create au-
tomata rules that allow loops to replicate
in two stages. First the loop, like Langton’s
loop, makes a copy of itself. Once finished,
the daughter loop sends a signal back to
its parent, at which point the parent sends
the instructions for writing out the letrers.
Drawing letters was just a demonstra-
tion. The following year Jean-Yves Perri-
er, Jacques Zahnd and one of us (Sipper)
designed a self-replicating loop with uni-
versal computational capabilities—that is,
with the computational power of a uni-
versal Turing machine, a highly simplified
but fully capable computer. This loop has
two “tapes,” or long strings of compo-
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nents, one for the program and the other
for data. The loops can execute an arbi-
trary program in addition to self-replicat-
ing. In a sense, they are as complex as the
computer that simulates them. Their main
limitation is that the program is copied un-
changed from parent to child, so that all
loops carry out the same set of instructions.

In 1998 Chou and Reggia swept away
this limiration. They showed how self-
replicating loops carrying distinct infor-
mation, rather than a cloned program, can
be used to solve a problem known as sat-
isflability. The loops can be used to deter-
mine whether the variables in a logical ex-

pression can be assigned values such that
the entire expression evaluates to “true.”
This problem is NP-complete—in other
words, it belongs to the family of nasty
puzzles, including the famous traveling-
salesman problem, for which there is no
known efficient solution. In Chou and
Reggia’s cellular-automara universe, each
replicator received a different partial solu-
tion. During replication, the solutions mu-
tated, and replicators with promising so-
lutions were allowed to proliferate while
those with failed solutions died out.
Although various teams have created
cellular automata in electronic hardware,
such systems are probably too wasteful for
prac
er really intended to be implemented di-
rectly. Their purpose is to illuminate the
underlying principles of replication and,
by doing so, inspire more concrete efforts.
The loops provide a new paradigm for de-

cal applications; automata were nev-

signing a parallel computer from either
transistors or chemicals [see “Computing
with DNA,” by Leonard M. Adleman;
SCIENTIFIC AMERICAN, August 1998].
In 1980 a NASA team led by Robert
Freitas, Jr., proposed planting a factory on
the moon that would replicate itself, using
local lunar marterials, to populate a large
area exponentially. Indeed, a similar probe
could colonize the entire galaxy, as physi-
cist Frank |. Tipler of Tulane University
has argued. In the nearer term, computer

scientists and engineers have experiment-
ed with the automared design of robots
[see “Dawn of a New Species?” by George

Musser; SCIENTIFIC AMERICAN, Novem-
ber 2000]. Although these systems are not
truly self-replicating—the offspring are
much simpler than the parent—they are a
first step toward fulfilling the queen of
Sweden’s request.

(" Should physical sclf-replicating ma-)
chines become practical, they and relat-
ed technologies will raise difficulr issues,
including the Terminator film scenario in

which artificial creatures outcompete nat-
ural ones. We prefer the more optimistic,
and more probable, scenario that replica-
tors will be harnessed to the benefit of hu-
manity [see “Will Robots Inherit the
Earth?” by Marvin Minsky; SCIENTIFIC
AMERICAN, October 1994]. The key will
be taking the advice of 14th-century Eng-
lish philosopher William of Ockham: en-
tia non sunt nultiplicanda praeter n
sitatem—entities are not to be multiplied

25
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MORE TO EXPLORE

Simple Systems That Exhibit Self-Directed Replication. J. Reggia, S. Armentrout, H. Chou and Y. Peng
in Science, Vol. 259, No. 5099, pages 1282-1287; February 26, 1993.

Emergence of Self-Replicating Structures in a Cellular Automata Space. H. Chou and J. Reggia
inPhysica 0, Vol. 110, Nos. 3-4, pages 252-272; December 15, 1997,

Special Issue: Von Neumann's Legacy: On Self-Replication. Edited by M. Sipper, 6. Tempesti,
D. Mange and E. Sanchez in Artificial Life, Vol. 4, No. 3; Summer 1898,

Towards Robust Integrated Circuits: The Embryonics Approach. D. Mange, M. Sipper, A. Stauffer and
G. Tempestiin Proceedings of the IEEE, Vol. B8, No. 4, pages 516—541; April 2000.

Moshe Sipper's Web page on artificial self-replicationis at Islwww.epfl.ch/~moshes/selfrep/
Animations of self-replicating loops can be found at necsi.org/postdocs/sayama/sdsr/java/
Fer Johnvon Neurnann's universal constructor, see alife.santafe. edu/alife/topies/jvn/jvn.html
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Alan Turing, at age 35, about the time
heawrote “Intelligent Machinery”

Alan Turing's

Computer Science

Well known for the machine,
test and thesis that bear his name,
the British genius also anticipated

neural-network computers
and “hypercomputation”

by B. Jack Copeland and Diane Proudfoot

Alan Turing's Forgotten Ideas in Computer Science

lan Mathison Turing conceived of the modern
computer in 1935, Today all digital comput-
ers are, in essence, “Turing machines.” The
British mathematician also pioneered the field of
arrtificial intelligence, or Al, proposing the famous
and widely debared Turing test as a way of determin-
ing whether a suitably programmed computer can
think. During World War II, Turing was instrumental
in breaking the German Enigma code in part of a
top-secret British operation that historians say short-
ened the war in Europe by two years. When he died
at the age of 41, Turing was doing the earliest work
on what would now be called artificial life, simulat-
ing the chemistry of biological growth.

Throughout his remarkable career, Turing had no
great interest in publicizing his ideas, Consequently,
important aspects of his work have been neglected or
forgotten over the years. In particular, few people—
even those knowledgeable about computer science—
are familiar with Turing’s fascinating anticipation of
connectionism, or neuronlike compuring. Also ne-
glected are his groundbreaking theoretical conceprs
in the exciting area of “hypercomputation.™ Accord-
ing to some experts, hypercomputers might one day
solve problems heretofore deemed intracrable.

The Turing Connection

igital computers are superb number crunchers.

Aslk them to predict a rocket’s trajectory or calcu-
late the financial figures for a large multinational cor-
poration, and they can churn out the answers in sec-
onds. But seemingly simple actions that people routine-
ly perform, such as recognizing a face or reading
handwriting, have been devilishy tricky to program.
Perhaps the networks of neurons that make up the
brain have a natural facility for such rasks that standard
computers lack. Scientists have thus been investigating
computers modeled more closely on the human brain.

Connectionism is the emerging science of computing
with networks of artificial neurons. Currently research-
ers usually simulate the neurons and their interconnec-
tions within an ordinary digital computer (just as engi-
neers create virtual models of aircraft wings and
skyscrapers). A training algorithm thar runs on the
computer adjusts the connections between the neurons,
honing the network into a special-purpose machine
dedicated to some particular function, such as forecast-
ing international currency markets.

Modern connectionists look back to Frank Rosen-
blatt, who published the first of many papers on the
topic in 1957, as the founder of their approach. Few re-
alize that Turing had already investigated connectionist
networks as early as 1948, in a lirtle-known paper enti-
ted “Intelligent Machinery.™

Written while Turing was working for the National
Physical Laboratory in London, the manuscript did not
meet with his employers approval. Sir Charles Darwin,
the rather headmasterly director of the laboratory and
grandson of the great English naturalist, dismissed it as
a “schoolboy essay.” In reality, this farsighted paper
was the first manifesto of the field of artificial intelli-
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gence, In the work—which remained un-
published until 1968, 14 years after Tur-
ing’s death—rthe British mathemarician
not only set out the fundamentals of con-
nectionism bue also brilliantly introduced
many of the concepts that were later to
become central to Al, in some cases after
reinvention by others.

In the paper, Turing invented a kind of
neural network that he called a “B-type

be accomplished by groups of NAND
neurons. Furthermore, he showed that
even the connection modifiers themselves
can be built out of NAND neurons.
Thus, Turing specified a network made
up of nothing more than NAND neu-
rons and their connecting fibers—about
the simplest possible model of the cortex.
In 1958 Rosenblatt defined the theo-
retical basis of connectionism in one suc-
cinet statement: “Stored

information  takes the

Few realize that Turing \

had already investigated
connectionist networks
as early as 1948.

form of new connections,
or transmission channels
in the nervous system (or
the creation of conditions
which are functionally
equivalent to new connec-
tions).” Because the de-
struction of existing con-

unorganized machine,” which consists of
artificial neurons and devices that modify
the connections between them. B-type
machines may contain any number of
neurons connected in any pattern but are
always subject ro the restriction that each
NEUron-to-Neuron Connection must pass
through a modifier device.

All connection modifiers have two
training fibers. Applying a pulse to one
of them sets the modifier to “pass
mode,” in which an input—either 0 or
1—passes through unchanged and be-
comes the output. A pulse on the other
fiber places the modifier in “interrupt
mode,” in which the output is always
1, no matter what the input is. In this
state the modifier destroys all informa-
tion attempting to pass along the con-
nection to which it is attached.

Once set, a modifier will maineain its
function (either “pass™ or “interrupt™)
unless it receives a pulse on the other
training fiber. The presence of these inge-
nious connection modifiers enables the
training of a B-type unorganized ma-
chine by means of whar Turing called
“appropriate interference, mimicking
education.” Actually, Turing theorized
that “the cortex of an infant is an unor-
ganized machine, which can be orga-
nized by suitable interfering training,™

Each of Turing’s model neurons has
two input fibers, and the output of a
neuron is a simple logical function of its
two inputs, Every neuron in the net-
work executes the same logical opera-
tion of “not and” (or NAND): the out-
put is 1 if either of the inputs is 0. If
both inputs are 1, then the output is 0.

Turing selected NAND because every
other logical (or Boolean) operation can
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J nections can be func-
tionally equivalent to the creation of new
ones, researchers can build a nerworle
for accomplishing a specific task by tak-
ing one with an excess of connections
and selectively destroying some of them.
Both actions—destruction and creation—
are employed in the training of Turing’s
B-types.

At the outset, B-types contain random
interneural connections whose modifiers
have been set by chance to either pass or
interrupt. During training, unwanted
connections are destroyed by switching
their attached modifiers to interrupr
mode. Conversely, changing a modifier
from interrupt to pass in effect creates a
connection. This selective culling and en-
livening of connections hones the initially
random network into one organized for
a given job.

Turing wished to investigate other
kinds of unorganized machines, and he
longed to simulate a neural network and
its training regimen using an ordinary
digital computer. He would, he said, “al-
low the whole system to run for an ap-
preciable period, and then break in as a
kind of ‘inspector of schools™ and see
what progress had been made.” But his
own work on neural networks was car-
ried out shortly before the first general-
purpose electronic compurers became
available. (It was not until 1954, the year
of Turing’s death, that Belmont G. Farley
and Wesley A. Clark succeeded at the
Massachusetts Institute of Technology in
running the first compurer simulation of
a small neural network.)

Paper and pencil were enough, though,
for Turing t show that a sufficiently
large B-type neural network can be
configured (via its connection modifiers)

in such a way that it becomes a general-
purpose computer. This discovery illumi-
nates one of the most fundamental prob-
lems concerning human cognition.

From a rop-down perspective, cogni-
tion includes complex sequential process-
es, often involving language or other
forms of symbolic representation, as in
mathemartical calculation. Yet from a
bottom-up view, cognition is nothing but
the simple firings of neurons, Cognitive
scientists face the problem of how to rec-
oncile these very different perspectives.

Turing s discovery offers a possible so-
lution: the cortex, by virtue of being a
neural network acting as a general-pur-
pose computer, is able to carry out the se-
quential, symbol-rich processing dis-
cerned in the view from the top. In 1948
this hypothesis was well ahead of its
time, and today it remains among the
best guesses concerning one of cognitive
science’s hardest problems.

Computing the Uncomputable

In 1935 Turing thought up the ab-
stract device that has since become
known as the “universal Turing ma-
chine.” It consists of a limitless memory

that stores both program and data and
a scanner that moves back and forth
through the memory, symbol by sym-
bol, reading the information and writ-
ing additional symbols. Each of the ma-
chine’s basic actions is very simple—
such as “identify the symbol on which
the scanner is positioned,” “write ‘1°”
and “move one position to the left.”
Complexity is achieved by chaining to-
gether large numbers of these basic ac-
tions. Despite its simplicity, a universal
Turing machine can execute any task
that can be done by the most powerful
of today’s computers. In fact, all mod-
ern digital computers are in essence
universal Turing machines [see “Turing
Machines,” by John E. Hopcroft; Sci-
ENTIFIC AMERICAN, May 1984].
Turing’s aim in 1935 was to devise a
machine—one as simple as possible—
capable of any calculation that a human
mathematician working in accordance
with some algorithmic method could
perform, given unlimited time, energy,
paper and pencils, and perfect concen-
tration. Calling a machine “universal”
merely signifies that it is capable of all
such calculations. As Turing himself
wrote, “Electronic computers are in-

tended to carry out any definite rule-of-
thumb process which could have been
done by a human operator working in a
disciplined but unintelligent manner.”

Such powerful computing devices
notwithstanding, an intriguing question
arises: Can machines be devised that are
capable of accomplishing even more?
The answer is that these “hyperma-
chines” can be described on paper, but
no one as yet knows whether it will be
possible to build one. The field of hyper-
computation is currently attracting a
growing number of scientists. Some
speculate that the human brain itself—
the most complex information proces-
sor known—is actually a naturally oc-
curring example of a hypercompurter.

Before the recent surge of interest in
hypercomputation, any information-
processing job that was known to be
too difficult for universal Turing ma-
chines was written off as “uncom-
putable.” In this sense, a hypermachine
computes the uncomputable.

Examples of such tasks can be found
in even the most straightforward arcas
of mathemarics. For instance, given
arithmetical statements picked at ran-
dom, a universal Turing machine may

not always be able to tell which are the-
orems (such as “7 + 5 = 12”) and which
are nontheorems (such as “every num-
ber is the sum of two even numbers™).
Another type of uncomputable problem
comes from geometry. A set of tiles—
variously sized squares with different
colored edges—*“tiles the plane™ if the
Euclidean plane can be covered by
copies of the tiles with no gaps or over-
laps and with adjacent edges always the
same color. Logicians William Hanf and
Dale Myers of the University of Hawaii
have discovered a tile set that tiles the
plane only in patterns too complicated
for a universal Turing machine to calcu-
late. In the field of computer science, a
universal Turing machine cannot always
predict whether a given program will
terminate or continue running forever.
This is sometimes expressed by saying
that no general-purpose programming
language (Pascal, BASIC, Prolog, C and
so on) can have a foolproof crash de-
bugger: a tool that detects all bugs that
could lead to crashes, including errors
that result in infinite processing loops.
Turing himself was the first to investi-
gate the idea of machines that can per-
form mathemarical tasks too difficult

Turing’s Anticipation
of Connectionism

In a paper that went unpublished
until 14 years after his death (top),
Alan Turing described a network of
artificial neurons connected in a ran-
dom manner. In this “B-type unorga-
nized machine” (bottom left), each
connection passes through a modifi-
er that is set either to allow data to
pass unchanged (green fiber) or to de-
stroy the transmitted information (red
fiber). Switching the modifiers from
one mode to the other enables the
network to be trained. Note that each
neuron has two inputs (bottem left, in-
set) and executes the simple logical
operation of “not and,” or NAND: if
both inputs are 1, then the output is
0; otherwise the outputis 1.

In Turing’s network the neurons in-
terconnect freely, In contrast, modern
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Using an Oracle to Compute
the Uncomputable

lan Turing proved that his universal machine—and by ex-
tension, even today's most powerful computers—could
never solve certain problems. For instance, a universal Turing
machine cannot always determine whether a given software
program will terminate or continue running forever. In some
cases, the best the universal machine can do is execute the
program and wait—maybe eternally—for it to finish. Butin his
doctoral thesis (below), Turing did imagine that a machine
equipped with a special “oracle” could perform this and other
“uncomputable” tasks. Here is one example of how, in princi-
ple, an oracle might work.
Consider a hypothetical machine for solving the formidable
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COMPUTER PROGRAM

“terminating program” problem (above). A computer pro-
gram can be represented as a finite string of 1s and 0s. This
sequence of digits can also be thought of as the binary rep-
resentation of an integer, just as 1011011 is the equivalent
of 91. The oracle’s job can then be restated as, “Given an in-
teger that represents a program (for any computer that can
be simulated by a universal Turing machine), output a ‘1’ if
the program will terminate or a ‘0’ otherwise.”

The oracle consists of a perfect measuring device and a
store, or memaory, that contains a precise value—call it t for
Turing—of some physical quantity. (The memaory might, for
example, resemble a capacitor storing an exact amount of

—wooom...oonn “

BINARY REPRESENTATION

ORACLE'S MEMORY WITH ©=0.00000001101...

L EQUIVALENT
4RY NUMEER

electricity.) The value of tis an irrational number; its written representation would
be an infinite string of binary digits, such as 0.00000001101...

The crucial property of 1 is that its individual digits happen to represent accu-
rately which programs terminate and which do not. So, for instance, if the integer
representing a program were 8,735,439, then the oracle could by measurement
obtain the 8,735,439th digit of t (counting from left to right after the decimal
point). If that digit were 0, the oracle would conclude that the program will process

farever.

Obviously, without T the oracle would be useless, and finding some physical vari-
ablein nature that takes this exact value might very well be impossible, Sothe search
is on for some practicable way of implementing an oracle. If such a means were found,
the impact on the field of computer science could be enormous.

ORACLE

chines “fall outside Turing’s concep-
tion” and are “computers of a type nev-
er envisioned by Turing,” as if the
British genius had not conceived of such
devices more than half a century ago.
Sadly, it appears that what has already
occurred with respect to Turing’s ideas
on connectionism is starting to happen

PROGRAM 2
— 0— WILL all over again.
NOT
TERMINATE The Final Years

—B.JC.and D.P.

for universal Turing machines. In his
1938 doctoral thesis at Princeton Uni-
versity, he described *“a new kind of ma-
chine,” the “O-machine.”

An O-machine is the result of aug-
menting a universal Turing machine
with a black box, or “oracle,” that is a
mechanism for carrying out uncom-
purable tasks. In other respects, O-ma-
chines are similar to ordinary com-
puters. A digitally encoded program is

chine—for example, “identify the sym-
bol in the scanner”—might take place.)
But notional mechanisms that fulfill the
specifications of an O-machine’s black
box are not difficult to imagine [see box
above). In principle, even a suirable B-
type network can compute the uncom-
putable, provided the activity of the neu-
rons is desynchronized. (When a central
clock keeps the neurons in step with one
another, the functioning of the network

can be exactly simulat-

Even among experts, Turing’s

pioneering theoretical
concept of a bypermachine
has largely been forgotten.

ed by a universal Turing
machine.)

In the exotic mathe-
matical theory of hyper-
compuration, tasks such
as that of distinguishing
theorems from nonthe-
orems in arithmetic are
no longer uncomput-

fed in, and the machine produces digital
ourput from the inpur using a step-by-
step procedure of repeated applications
of the machine’s basic operations, one
of which is to pass data to the oracle
and register its response.

Turing gave no indication of how an
oracle might work. (Neither did he ex-
plain in his earlier research how the ba-
sic actions of a universal Turing ma-
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able. Even a debugger
that can tell whether any program writ-
ten in C, for example, will enter an
infinite loop is theoretically possible.

It hypercomputers can be built—and
that is a big if—the potential for crack-
ing logical and mathematical problems
hitherto deemed intractable will be
enormous. Indeed, computer science
may be approaching one of its most sig-
nificant advances since researchers

wired together the first electronic em-
bodiment of a universal Turing machine
decades ago. On the other hand, work
on hypercomputers may simply fizzle
out for want of some way of realizing
an oracle.

The search for suitable physical,
chemical or biological phenomena is
getting under way. Perhaps the answer
will be complex molecules or other
structures thar link together in patterns
as complicated as those discovered by
Hanf and Myers. Or, as suggested by
Jon Doyle of M.LT,, there may be natu-
rally occurring equilibrating systems
with discrete spectra that can be seen as
carrying out, in principle, an uncom-
putable task, producing appropriate
output (1 or 0, for example) afrer being
bombarded with inpur.

Outside the confines of mathematical
logic, Turing’s O-machines have largely
been forgotten, and instead a myth has
taken hold. According to this apoc-
ryphal account, Turing demonstrated in
the mid-1930s that hypermachines are
impossible. He and Alonzo Church, the
logician who was Turing’s doctoral ad-
viser at Princeton, are mistakenly credit-
ed with having enunciated a principle to
the effect that a universal Turing ma-
chine can exactly simulate the behavior

Alan Turing’s Forgotten Ideas in Computer Science

of any other information-processing ma-
chine. This proposition, widely burt in-
correctly known as the Church-Turing
thesis, implies that no machine can carry
out an information-processing task that
lies beyond the scope of a universal Tur-
ing machine. In truch, Church and Tur-
ing claimed only that a universal Turing
machine can match the behavior of any
human mathematician working with
paper and pencil in accordance with
an algorithmic method—a considerably

weaker claim that certainly does not rule
our the possibility of hypermachines.
Even among those who are pursuing
the goal of building hypercomputers,
Turing’s pioneering theoretical contribu-
tons have been overlooked. Experts
routinely talk of carrying out informa-
tion processing “beyond the Turing lim-
it” and describe themselves as attempt-
ing to “break the Turing barrier.” A re-
cent review in New Scientist of this
emerging field states that the new ma-

TOM IADORE

In the early 1950s, during the last
years of his life, Turing pioneered the
field of artificial life. He was trying to
simulate a chemical mechanism by
which the genes of a fertilized egg cell
may determine the anatomical structure
of the resulring animal or plant. He de-
scribed this research as “not altogether
unconnected” to his study of neural net-
works, because “brain structure has to
be ... achieved by the genetical embry-
ological mechanism, and this theory
that I am now working on may make
clearer what restrictions this really im-
plies.” During this period, Turing
achieved the distinction of being the first
to engage in the computer-assisted ex-
ploration of nonlinear dynamical sys-
tems. His theory used nonlinear differ-
ential equations to express the chem-
istry of growth.

But in the middle of this groundbreak-
ing investigation, Turing died from
cyanide poisoning, possibly by his own
hand. On June 8, 1954, shortly before
what would have been his 42nd birth-
day, he was found dead in his bedroom.
He had left a large pile of handwritten
notes and some computer programs.
Decades later this fascinating material is
still not fully understood.
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Pigeon-Hole Principle

» J. Dirichlet (1834)
* “Drawer principle”
* “Shelf Principle”

* “Box principle”

Theorem (pigeon-hole): There Is no |nject|ve (1 to -1) u'nctl'on
from a finite set (domain) to a smaller finite set (range).

Generalization. oo
N objects placed in M containers; then: BRI
. at least 1 container must hold 2|, 5 |

e at least 1 container must hold <

M
N
M
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Theorem: some real numbers are not finitely describable!
Theorem: some finitely describable real numbers are not computable!



