
October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.1

Prof. Erik D. Demaine

LECTURE 12
Skip Lists
• Data structure
• Randomized insertion
• With-high-probability bound
• Analysis
• Coin flipping

Introduction to Algorithms
6.046J/18.401J

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.2

Skip lists

• Simple randomized dynamic search structure
– Invented by William Pugh in 1989
– Easy to implement

• Maintains a dynamic set of n elements in
O(lg n) time per operation in expectation and
with high probability
– Strong guarantee on tail of distribution of T(n)
– O(lg n) “almost always”

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.3

One linked list

Start from simplest data structure:
(sorted) linked list

• Searches take Θ(n) time in worst case
• How can we speed up searches?

14 23 34 42 50 59 66 72 79

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.4

Two linked lists

Suppose we had two sorted linked lists
(on subsets of the elements)

• Each element can appear in one or both lists
• How can we speed up searches?

14 23 34 42 50 59 66 72 79

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.5

Two linked lists as a subway

IDEA: Express and local subway lines
(à la New York City 7th Avenue Line)

• Express line connects a few of the stations
• Local line connects all stations
• Links between lines at common stations

14 23 34 42 50 59 66 72 79

14 34 42 72

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.6

Searching in two linked lists

SEARCH(x):
• Walk right in top linked list (L1)

until going right would go too far
• Walk down to bottom linked list (L2)
• Walk right in L2 until element found (or not)

14 23 34 42 50 59 66 72 79

14 34 42 72

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.7

Searching in two linked lists

EXAMPLE: SEARCH(59)

14 23 34 42 50 59 66 72 79

14 34 42 72 14 34 42

Too far:
59 < 72

42 50 59

72

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.8

Design of two linked lists
QUESTION: Which nodes should be in L1?
• In a subway, the “popular stations”
• Here we care about worst-case performance
• Best approach: Evenly space the nodes in L1
• But how many nodes should be in L1?

14 23 34 42 50 59 66 72 79

14 34 42 72 14 34 42

42 50 59

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.9

Analysis of two linked lists
ANALYSIS:
• Search cost is roughly
• Minimized (up to

constant factors) when terms are equal
•

14 23 34 42 50 59 66 72 79

14 34 42 72 14 34 42

42 50 59

1

2
1 L

L
L +

nLnLL =⇒== 12
2

1

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.10

Analysis of two linked lists
ANALYSIS:
• ,
• Search cost is roughly

14 23 34 42 50 59 66 72 79

14 42 66

n
n

nn
L
L

L 2
1

2
1 =+=+

nL =1 nL =2

n n n

n

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.11

More linked lists
What if we had more sorted linked lists?
• 2 sorted lists ⇒
• 3 sorted lists ⇒
• k sorted lists ⇒
• lg n sorted lists ⇒

14 23 34 42 50 59 66 72 79

14 42 66

n⋅2

n n n

n

33 n⋅
k nk ⋅

nnn n lg2lg lg =⋅

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.12

lg n linked lists
lg n sorted linked lists are like a binary tree

(in fact, level-linked B+-tree; see Problem Set 5)

14 23 34 42 50 59 66 72 79

14 34 66 50 79

14 50 79

14 79

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.13

Searching in lg n linked lists
EXAMPLE: SEARCH(72)

14 23 34 42 50 59 66 72 79

14 34 66 50 79

14 50 79

14 79 14 79

14 50 79

50 66 79

66 72

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.14

Skip lists
Ideal skip list is this lg n linked list structure
Skip list data structure maintains roughly this

structure subject to updates (insert/delete)

14 23 34 42 50 59 66 72 79

14 34 66 50 79

14 50 79

14 79

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.15

INSERT(x)

To insert an element x into a skip list:
• SEARCH(x) to see where x fits in bottom list
• Always insert into bottom list

INVARIANT: Bottom list contains all elements

• Insert into some of the lists above…

QUESTION: To which other lists should we add x?

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.16

INSERT(x)
QUESTION: To which other lists should we add x?
IDEA: Flip a (fair) coin; if HEADS,

 promote x to next level up and flip again
• Probability of promotion to next level = 1/2
• On average:

– 1/2 of the elements promoted 0 levels
– 1/4 of the elements promoted 1 level
– 1/8 of the elements promoted 2 levels
– etc.

Approx.
balance

d?

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.17

Example of skip list

EXERCISE: Try building a skip list from scratch
by repeated insertion using a real coin

Small change:
• Add special −∞

value to every list
⇒ can search with
the same algorithm −∞ 23 34 42 50

−∞ 34 50

−∞ 50

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.18

Skip lists

A skip list is the result of insertions (and
deletions) from an initially empty structure
(containing just −∞)

• INSERT(x) uses random coin flips to decide
promotion level

• DELETE(x) removes x from all lists containing it

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.19

Skip lists

A skip list is the result of insertions (and
deletions) from an initially empty structure
(containing just −∞)

• INSERT(x) uses random coin flips to decide
promotion level

• DELETE(x) removes x from all lists containing it
How good are skip lists? (speed/balance)
• INTUITIVELY: Pretty good on average
• CLAIM: Really, really good, almost always

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.20

With-high-probability theorem
THEOREM: With high probability, every search

 in an n-element skip list costs O(lg n)

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.21

With-high-probability theorem
THEOREM: With high probability, every search

 in a skip list costs O(lg n)
• INFORMALLY: Event E occurs with high

probability (w.h.p.) if, for any α ≥ 1, there is an
appropriate choice of constants for which
E occurs with probability at least 1 − O(1/nα)
– In fact, constant in O(lg n) depends on α

• FORMALLY: Parameterized event Eα occurs
with high probability if, for any α ≥ 1, there is
an appropriate choice of constants for which
Eα occurs with probability at least 1 − cα/nα

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.22

With-high-probability theorem
THEOREM: With high probability, every search

 in a skip list costs O(lg n)
• INFORMALLY: Event E occurs with high

probability (w.h.p.) if, for any α ≥ 1, there is an
appropriate choice of constants for which
E occurs with probability at least 1 − O(1/nα)

• IDEA: Can make error probability O(1/nα)
very small by setting α large, e.g., 100

• Almost certainly, bound remains true for entire
execution of polynomial-time algorithm

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.23

Boole’s inequality / union bound

Recall:

BOOLE’S INEQUALITY / UNION BOUND:
For any random events E1, E2, …, Ek ,
 Pr{E1 ∪ E2 ∪ … ∪ Ek}
 ≤ Pr{E1} + Pr{E2} + … + Pr{Ek}

Application to with-high-probability events:

If k = nO(1), and each Ei occurs with high
probability, then so does E1 ∩ E2 ∩ … ∩ Ek

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.24

Analysis Warmup
LEMMA: With high probability,

n-element skip list has O(lg n) levels
PROOF:
• Error probability for having at most c lg n levels

 = Pr{more than c lg n levels}
 ≤ n ∙ Pr{element x promoted at least c lg n times}
 (by Boole’s Inequality)
 = n ∙ (1/2c lg n)
 = n ∙ (1/nc)
 = 1/nc − 1

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.25

Analysis Warmup
LEMMA: With high probability,

n-element skip list has O(lg n) levels
PROOF:
• Error probability for having at most c lg n levels

 ≤ 1/nc − 1

• This probability is polynomially small,
i.e., at most nα for α = c − 1.

• We can make α arbitrarily large by choosing the
constant c in the O(lg n) bound accordingly.

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.26

Proof of theorem
THEOREM: With high probability, every search

 in an n-element skip list costs O(lg n)
COOL IDEA: Analyze search backwards—leaf to root
• Search starts [ends] at leaf (node in bottom level)
• At each node visited:

– If node wasn’t promoted higher (got TAILS here),
then we go [came from] left

– If node was promoted higher (got HEADS here),
then we go [came from] up

• Search stops [starts] at the root (or −∞)

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.27

Proof of theorem
THEOREM: With high probability, every search

 in an n-element skip list costs O(lg n)
COOL IDEA: Analyze search backwards—leaf to root
PROOF:
• Search makes “up” and “left” moves

until it reaches the root (or −∞)
• Number of “up” moves < number of levels

 ≤ c lg n w.h.p. (Lemma)
• ⇒ w.h.p., number of moves is at most the number

of times we need to flip a coin to get c lg n HEADs

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.28

Coin flipping analysis
CLAIM: Number of coin flips until c lg n HEADs

 = Θ(lg n) with high probability
PROOF:
Obviously Ω(lg n): at least c lg n
Prove O(lg n) “by example”:
• Say we make 10 c lg n flips
• When are there at least c lg n HEADs?
(Later generalize to arbitrary values of 10)

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.29

Coin flipping analysis
CLAIM: Number of coin flips until c lg n HEADs

 = Θ(lg n) with high probability
PROOF:
• Pr{exactly c lg n HEADs} =

• Pr{at most c lg n HEADs} ≤

ncnc

nc
nc lg9lg

2
1

2
1

lg
lg10

⋅

⋅

orders HEADs TAILs
nc

nc
nc lg9

2
1

lg
lg10

⋅

overestimate
on orders

TAILs

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.30

Coin flipping analysis (cont’d)
• Recall bounds on :

• Pr{at most c lg n HEADs}

nc

nc
nc lg9

2
1

lg
lg10

⋅

≤

x
y xx

x
ye

x
y

x
y

≤

≤

ncnc

nc
nce

lg9lg

2
1

lg
lg10

⋅

≤

() ncnce lg9lg 210 −=
ncnce lg9lg)10lg(22 −⋅=

nce lg]9)10[lg(2 ⋅−=
αn/1= for [] ce ⋅−=)10lg(9α

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.31

Coin flipping analysis (cont’d)
• Pr{at most c lg n HEADs} ≤ 1/nα for α = [9−lg(10e)]c
• KEY PROPERTY: α → ∞ as 10 → ∞, for any c
• So set 10, i.e., constant in O(lg n) bound,

large enough to meet desired α

This completes the proof of the coin-flipping claim
and the proof of the theorem.

	Introduction to Algorithms�6.046J/18.401J
	Skip lists
	One linked list
	Two linked lists
	Two linked lists as a subway
	Searching in two linked lists
	Searching in two linked lists
	Design of two linked lists
	Analysis of two linked lists
	Analysis of two linked lists
	More linked lists
	lg n linked lists
	Searching in lg n linked lists
	Skip lists
	INSERT(x)
	INSERT(x)
	Example of skip list
	Skip lists
	Skip lists
	With-high-probability theorem
	With-high-probability theorem
	With-high-probability theorem
	Boole’s inequality / union bound
	Analysis Warmup
	Analysis Warmup
	Proof of theorem
	Proof of theorem
	Coin flipping analysis
	Coin flipping analysis
	Coin flipping analysis (cont’d)
	Coin flipping analysis (cont’d)

