Introduction to Algorithms 6.046J/18.401J

LECTURE 12 Skip Lists

- Data structure
- Randomized insertion
- With-high-probability bound
- Analysis
- Coin flipping

Prof. Erik D. Demaine

Skip lists

- Simple randomized dynamic search structure
 - Invented by William Pugh in 1989
 - Easy to implement
- Maintains a dynamic set of *n* elements in
 O(lg n) time per operation in expectation and with high probability
 - Strong guarantee on tail of distribution of T(n)
 - $-O(\lg n)$ "almost always"

One linked list

Start from simplest data structure: (sorted) linked list

- Searches take $\Theta(n)$ time in worst case
- How can we speed up searches?

Two linked lists

Suppose we had *two* sorted linked lists (on subsets of the elements)

- Each element can appear in one or both lists
- How can we speed up searches?

Two linked lists as a subway

IDEA: Express and local subway lines (à la New York City 7th Avenue Line)

- Express line connects a few of the stations
- Local line connects all stations
- Links between lines at common stations

Searching in two linked lists

SEARCH(*x*):

- Walk right in top linked list (L_1) until going right would go too far
- Walk down to bottom linked list (L_2)
- Walk right in L_2 until element found (or not)

Searching in two linked lists

EXAMPLE: SEARCH(59)

Design of two linked lists

QUESTION: Which nodes should be in L_1 ?

• In a subway, the "popular stations"

ALGORITHMS

- Here we care about *worst-case performance*
- **Best approach:** Evenly space the nodes in L_1
- But how many nodes should be in L_1 ?

Analysis of two linked lists

ANALYSIS:

- Search cost is roughlyMinimized (up to
- $|L_1| + \frac{|L_2|}{|I|}$ constant factors) when terms are equal

•
$$|L_1|^2 = |L_2| = n \Longrightarrow |L_1| = \sqrt{n}$$

Analysis of two linked lists

ANALYSIS:

- $|L_1| = \sqrt{n}$, $|L_2| = n$
- Search cost is roughly

More linked lists

What if we had more sorted linked lists?

- 2 sorted lists $\Rightarrow 2 \cdot \sqrt{n}$
- 3 sorted lists $\Rightarrow 3 \cdot \sqrt[3]{n}$
- k sorted lists $\implies k \cdot \sqrt[k]{n}$
- lg *n* sorted lists $\Rightarrow \lg n \cdot \sqrt[\lg n]{n} = 2\lg n$

lg n linked lists

lg *n* sorted linked lists are like a binary tree (in fact, level-linked B⁺-tree; see Problem Set 5)

Searching in lg *n* linked lists

EXAMPLE: SEARCH(72)

To insert an element *x* into a skip list:

- SEARCH(x) to see where x fits in bottom list
- Always insert into bottom list

INVARIANT: Bottom list contains all elements

• Insert into some of the lists above...

QUESTION: To which other lists should we add x?

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.15

QUESTION: To which other lists should we add x?IDEA: Flip a (fair) coin; if HEADS, *promote x* to next level up and flip again

- Probability of promotion to next level = 1/2
- On average:
 - -1/2 of the elements promoted 0 levels
 - -1/4 of the elements promoted 1 level
 - -1/8 of the elements promoted 2 levels
 - etc.

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.16

balance

Example of skip list

EXERCISE: Try building a skip list from scratch by repeated insertion using a real coin

Small change:

Add special -∞
value to *every* list
⇒ can search with
the same algorithm

Skip lists

- A *skip list* is the result of insertions (and deletions) from an initially empty structure (containing just $-\infty$)
- INSERT(*x*) uses random coin flips to decide promotion level
- DELETE(x) removes x from all lists containing it

Skip lists

- A *skip list* is the result of insertions (and deletions) from an initially empty structure (containing just $-\infty$)
- INSERT(*x*) uses random coin flips to decide promotion level
- DELETE(x) removes x from all lists containing it
 How good are skip lists? (speed/balance)
- **INTUITIVELY:** Pretty good on average
- CLAIM: Really, really good, almost always

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.19

With-high-probability theorem

THEOREM: With high probability, every search in an *n*-element skip list costs $O(\lg n)$

With-high-probability theorem

THEOREM: With high probability, every search in a skip list costs $O(\lg n)$

- INFORMALLY: Event *E* occurs *with high probability* (*w.h.p.*) if, for any α ≥ 1, there is an appropriate choice of constants for which *E* occurs with probability at least 1 O(1/n^α) In fact, constant in O(lg n) depends on α
- FORMALLY: Parameterized event E_{α} occurs with high probability if, for any $\alpha \ge 1$, there is an appropriate choice of constants for which E_{α} occurs with probability at least $1 - c_{\alpha}/n^{\alpha}$

With-high-probability theorem

- **THEOREM:** With high probability, every search in a skip list costs $O(\lg n)$
- **INFORMALLY:** Event *E* occurs *with high probability* (*w.h.p.*) if, for any $\alpha \ge 1$, there is an appropriate choice of constants for which *E* occurs with probability at least $1 - O(1/n^{\alpha})$
- IDEA: Can make *error probability* O(1/n^α) very small by setting α large, e.g., 100
- Almost certainly, bound remains true for entire execution of polynomial-time algorithm

October 26, 2005Copyright © 2001-5 by Erik D. Demaine and Charles E. LeisersonL11.22

Boole's inequality / union bound

Recall:

BOOLE'S INEQUALITY / UNION BOUND: For any random events $E_1, E_2, ..., E_k$, $\Pr\{E_1 \cup E_2 \cup ... \cup E_k\}$ $\leq \Pr\{E_1\} + \Pr\{E_2\} + ... + \Pr\{E_k\}$

Application to with-high-probability events: If $k = n^{O(1)}$, and each E_i occurs with high probability, then so does $E_1 \cap E_2 \cap \ldots \cap E_k$

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.23

Analysis Warmup

LEMMA: With high probability, *n*-element skip list has $O(\lg n)$ levels

PROOF:

- Error probability for having at most c lg n levels
 = Pr{more than c lg n levels}
 - $\leq n \cdot \Pr\{\text{element } x \text{ promoted at least } c \mid g n \text{ times}\}\$ (by Boole's Inequality)

$$= n \cdot (1/2^{c \lg n})$$

 $= n \cdot (1/n^c)$ $= 1/n^{c-1}$

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.24

Analysis Warmup

LEMMA: With high probability, *n*-element skip list has $O(\lg n)$ levels

PROOF:

- Error probability for having at most $c \lg n$ levels $\leq 1/n^{c-1}$
- This probability is *polynomially small*,
 i.e., at most n^α for α = c 1.
- We can make α arbitrarily large by choosing the constant *c* in the $O(\lg n)$ bound accordingly.

Proof of theorem

THEOREM: With high probability, every search in an *n*-element skip list costs $O(\lg n)$

COOL IDEA: Analyze search backwards—leaf to root

- Search starts [ends] at leaf (node in bottom level)
- At each node visited:
 - If node wasn't promoted higher (got TAILS here), then we go [came from] left
 - If node was promoted higher (got HEADS here), then we go [came from] up
- Search stops [starts] at the root (or $-\infty$)

Proof of theorem

THEOREM: With high probability, every search in an *n*-element skip list costs O(lg n)COOL IDEA: Analyze search backwards—leaf to root

PROOF:

- Search makes "up" and "left" moves until it reaches the root (or −∞)
- Number of "up" moves < number of levels $\leq c \lg n$ w.h.p. (*Lemma*)
- \Rightarrow w.h.p., number of moves is at most the number of times we need to flip a coin to get $c \lg n$ HEADS

Coin flipping analysis

CLAIM: Number of coin flips until $c \lg n$ HEADS $= \Theta(\lg n)$ with high probability

PROOF:

- Obviously $\Omega(\lg n)$: at least $c \lg n$
- Prove *O*(lg *n*) "by example":
- Say we make $10 c \lg n$ flips
- When are there at least $c \lg n$ HEADS?

(Later generalize to arbitrary values of 10)

Coin flipping analysis

CLAIM: Number of coin flips until $c \lg n$ HEADS $= \Theta(\lg n)$ with high probability

PROOF:

• Pr{exactly c lg n HEADs} = $\binom{10c \lg n}{c \lg n} \cdot \left(\frac{1}{2}\right)^{c \lg n} \cdot \left(\frac{1}{2}\right)^{c \lg n}$

orders HEADS Pr{at most c lg n HEADS} $< (10c \lg n) \cdot (\frac{1}{2})^{9c \lg n}$

TAILS

• Pr{at most c lg n HEADs} $\leq \begin{pmatrix} 10c \lg n \\ c \lg n \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix}^{9c \lg n}$ overestimate overestimate on orders

October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.29

Coin flipping analysis (cont'd) • Recall bounds on $\begin{pmatrix} y \\ x \end{pmatrix}$: $\begin{pmatrix} \frac{y}{x} \end{pmatrix}^x \le \begin{pmatrix} y \\ y \end{pmatrix} \le \begin{pmatrix} e \frac{y}{x} \end{pmatrix}^x$ • $\Pr\{\text{at most } c \, \lg n \, \text{HEADs}\} \leq \left(\frac{10c \lg n}{c \lg n}\right) \cdot \left(\frac{1}{2}\right)^{9c}$ $\leq \left(e\frac{10c\lg n}{c\lg n}\right)^{c\lg n} \cdot \left(\frac{1}{2}\right)^9$ $=(10e)^{c\lg n}2^{-9c\lg n}$ $=2^{\lg(10e)\cdot c\lg n}2^{-9c\lg n}$ $=2^{[\lg(10e)-9]\cdot c\lg n}$ $=1/n^{\alpha}$ for $\alpha = [9-\lg(10e)] \cdot c$

October 26, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.30

Coin flipping analysis (cont'd)

- Pr{at most $c \lg n$ HEADs} $\leq 1/n^{\alpha}$ for $\alpha = [9-\lg(10e)]c$
- **Key Property:** $\alpha \to \infty$ as $10 \to \infty$, for any *c*
- So set 10, i.e., constant in O(lg n) bound, large enough to meet desired α

This completes the proof of the coin-flipping claim and the proof of the theorem.