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Prof. Erik D. Demaine 

LECTURE 12  
Skip Lists 
• Data structure 
• Randomized insertion 
• With-high-probability bound 
• Analysis 
• Coin flipping 

Introduction to Algorithms 
6.046J/18.401J 
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Skip lists 

• Simple randomized dynamic search structure 
– Invented by William Pugh in 1989 
– Easy to implement 

• Maintains a dynamic set of n elements in 
O(lg n) time per operation in expectation and 
with high probability 
– Strong guarantee on tail of distribution of T(n) 
– O(lg n) “almost always” 
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One linked list 

Start from simplest data structure: 
(sorted) linked list 

 

• Searches take Θ(n) time in worst case 
• How can we speed up searches? 

14 23 34 42 50 59 66 72 79 
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Two linked lists 

Suppose we had two sorted linked lists 
(on subsets of the elements) 

 

• Each element can appear in one or both lists 
• How can we speed up searches? 

14 23 34 42 50 59 66 72 79 
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Two linked lists as a subway 

IDEA: Express and local subway lines 
(à la New York City 7th Avenue Line) 

• Express line connects a few of the stations 
• Local line connects all stations 
• Links between lines at common stations 

14 23 34 42 50 59 66 72 79 

14 34 42 72 
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Searching in two linked lists 

SEARCH(x): 
• Walk right in top linked list (L1) 

until going right would go too far 
• Walk down to bottom linked list (L2) 
• Walk right in L2 until element found (or not) 

14 23 34 42 50 59 66 72 79 

14 34 42 72 
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Searching in two linked lists 

EXAMPLE: SEARCH(59) 

14 23 34 42 50 59 66 72 79 

14 34 42 72 14 34 42 

Too far: 
59 < 72 

42 50 59 

72 
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Design of two linked lists 
QUESTION: Which nodes should be in L1? 
• In a subway, the “popular stations” 
• Here we care about worst-case performance 
• Best approach: Evenly space the nodes in L1 
• But how many nodes should be in L1? 

14 23 34 42 50 59 66 72 79 

14 34 42 72 14 34 42 

42 50 59 
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Analysis of two linked lists 
ANALYSIS: 
• Search cost is roughly 
• Minimized (up to 

constant factors) when terms are equal 
•   

14 23 34 42 50 59 66 72 79 

14 34 42 72 14 34 42 

42 50 59 
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Analysis of two linked lists 
ANALYSIS: 
•                 , 
• Search cost is roughly 

14 23 34 42 50 59 66 72 79 

14 42 66 
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More linked lists 
What if we had more sorted linked lists? 
• 2 sorted lists  ⇒  
• 3 sorted lists  ⇒ 
• k sorted lists  ⇒ 
• lg n sorted lists  ⇒ 

14 23 34 42 50 59 66 72 79 

14 42 66 
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lg n linked lists 
lg n sorted linked lists are like a binary tree 

(in fact, level-linked B+-tree; see Problem Set 5) 

14 23 34 42 50 59 66 72 79 

14 34 66 50 79 

14 50 79 

14 79 



October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.13 

Searching in lg n linked lists 
EXAMPLE: SEARCH(72) 

14 23 34 42 50 59 66 72 79 

14 34 66 50 79 

14 50 79 

14 79 14 79 

14 50 79 

50 66 79 

66 72 
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Skip lists 
Ideal skip list is this lg n linked list structure 
Skip list data structure maintains roughly this 

structure subject to updates (insert/delete) 

14 23 34 42 50 59 66 72 79 

14 34 66 50 79 

14 50 79 

14 79 
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INSERT(x) 

To insert an element x into a skip list: 
• SEARCH(x) to see where x fits in bottom list 
• Always insert into bottom list 

 

INVARIANT: Bottom list contains all elements 
 

• Insert into some of the lists above… 
 

QUESTION: To which other lists should we add x? 
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INSERT(x) 
QUESTION: To which other lists should we add x? 
IDEA: Flip a (fair) coin; if HEADS, 

  promote x to next level up and flip again 
• Probability of promotion to next level = 1/2 
• On average: 

– 1/2 of the elements promoted 0 levels 
– 1/4 of the elements promoted 1 level 
– 1/8 of the elements promoted 2 levels 
– etc. 

Approx. 
balance

d? 
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Example of skip list 

EXERCISE: Try building a skip list from scratch 
by repeated insertion using a real coin 

 
Small change: 
• Add special −∞ 

value to every list 
⇒ can search with 
the same algorithm −∞ 23 34 42 50 

−∞ 34 50 

−∞ 50 



October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.18 

Skip lists 

A skip list is the result of insertions (and 
deletions) from an initially empty structure 
(containing just −∞) 

• INSERT(x) uses random coin flips to decide 
promotion level 

• DELETE(x) removes x from all lists containing it 
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Skip lists 

A skip list is the result of insertions (and 
deletions) from an initially empty structure 
(containing just −∞) 

• INSERT(x) uses random coin flips to decide 
promotion level 

• DELETE(x) removes x from all lists containing it 
How good are skip lists? (speed/balance) 
• INTUITIVELY: Pretty good on average 
• CLAIM: Really, really good, almost always 
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With-high-probability theorem 
THEOREM: With high probability, every search 

   in an n-element skip list costs O(lg n) 
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With-high-probability theorem 
THEOREM: With high probability, every search 

   in a skip list costs O(lg n) 
• INFORMALLY: Event E occurs with high 

probability (w.h.p.) if, for any α ≥ 1, there is an 
appropriate choice of constants for which 
E occurs with probability at least 1 − O(1/nα) 
– In fact, constant in O(lg n) depends on α 

• FORMALLY: Parameterized event Eα occurs 
with high probability if, for any α ≥ 1, there is 
an appropriate choice of constants for which 
Eα occurs with probability at least 1 − cα/nα 
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With-high-probability theorem 
THEOREM: With high probability, every search 

   in a skip list costs O(lg n) 
• INFORMALLY: Event E occurs with high 

probability (w.h.p.) if, for any α ≥ 1, there is an 
appropriate choice of constants for which 
E occurs with probability at least 1 − O(1/nα) 

• IDEA: Can make error probability O(1/nα) 
very small by setting α large, e.g., 100 

• Almost certainly, bound remains true for entire 
execution of polynomial-time algorithm 
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Boole’s inequality / union bound 

Recall: 
 

BOOLE’S INEQUALITY / UNION BOUND: 
For any random events E1, E2, …, Ek , 
 Pr{E1 ∪ E2 ∪ … ∪ Ek} 
  ≤  Pr{E1} + Pr{E2} + … + Pr{Ek} 

 
Application to with-high-probability events: 

If k = nO(1), and each Ei occurs with high 
probability, then so does E1 ∩ E2 ∩ … ∩ Ek 
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Analysis Warmup 
LEMMA: With high probability, 

n-element skip list has O(lg n) levels 
PROOF: 
• Error probability for having at most c lg n levels 

  = Pr{more than c lg n levels} 
  ≤ n ∙ Pr{element x promoted at least c lg n times} 
    (by Boole’s Inequality) 
  = n ∙ (1/2c lg n) 
  = n ∙ (1/nc)  
  = 1/nc − 1 



October 26, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L11.25 

Analysis Warmup 
LEMMA: With high probability, 

n-element skip list has O(lg n) levels 
PROOF: 
• Error probability for having at most c lg n levels 

  ≤ 1/nc − 1 

• This probability is polynomially small, 
i.e., at most nα for α = c − 1. 

• We can make α arbitrarily large by choosing the 
constant c in the O(lg n) bound accordingly. 
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Proof of theorem 
THEOREM: With high probability, every search 

   in an n-element skip list costs O(lg n) 
COOL IDEA: Analyze search backwards—leaf to root 
• Search starts [ends] at leaf (node in bottom level) 
• At each node visited: 

– If node wasn’t promoted higher (got TAILS here), 
then we go [came from] left 

– If node was promoted higher (got HEADS here), 
then we go [came from] up 

• Search stops [starts] at the root (or −∞) 
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Proof of theorem 
THEOREM: With high probability, every search 

   in an n-element skip list costs O(lg n) 
COOL IDEA: Analyze search backwards—leaf to root 
PROOF: 
• Search makes “up” and “left” moves 

until it reaches the root (or −∞) 
• Number of “up” moves < number of levels 

          ≤ c lg n w.h.p.   (Lemma) 
• ⇒ w.h.p., number of moves is at most the number 

of times we need to flip a coin to get c lg n HEADs 
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Coin flipping analysis 
CLAIM: Number of coin flips until c lg n HEADs 

     = Θ(lg n) with high probability 
PROOF: 
Obviously Ω(lg n): at least c lg n 
Prove O(lg n) “by example”: 
• Say we make 10 c lg n flips 
• When are there at least c lg n HEADs? 
(Later generalize to arbitrary values of 10) 
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Coin flipping analysis 
CLAIM: Number of coin flips until c lg n HEADs 

     = Θ(lg n) with high probability 
PROOF: 
• Pr{exactly c lg n HEADs} =  

 
 

• Pr{at most c lg n HEADs} ≤ 
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Coin flipping analysis (cont’d) 
• Recall bounds on       : 

 
• Pr{at most c lg n HEADs} 
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Coin flipping analysis (cont’d) 
• Pr{at most c lg n HEADs} ≤ 1/nα for α = [9−lg(10e)]c 
• KEY PROPERTY: α → ∞ as 10 → ∞, for any c 
• So set 10, i.e., constant in O(lg n) bound, 

large enough to meet desired α 
 

This completes the proof of the coin-flipping claim 
and the proof of the theorem. 
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