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Prof. Charles E. Leiserson 

LECTURE 13  
Amortized Analysis 
• Dynamic tables 
• Aggregate method 
• Accounting method 
• Potential method 

Introduction to Algorithms 
6.046J/18.401J 
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How large should a hash 
table be? 

Problem: What if we don’t know the proper size 
in advance? 

Goal: Make the table as small as possible, but 
large enough so that it won’t overflow (or 
otherwise become inefficient). 

IDEA: Whenever the table overflows, “grow” it 
by allocating (via malloc or new) a new, larger 
table.  Move all items from the old table into the 
new one, and free the storage for the old table. 

Solution: Dynamic tables. 
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Example of a dynamic table 

1. INSERT 1 

2. INSERT overflow 
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1 

Example of a dynamic table 

1. INSERT 
2. INSERT overflow 
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1 
2 

Example of a dynamic table 

1. INSERT 
2. INSERT 
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Example of a dynamic table 

1. INSERT 
2. INSERT 

1 
2 

3. INSERT overflow 
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Example of a dynamic table 

1. INSERT 
2. INSERT 
3. INSERT 

2 
1 

overflow 
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Example of a dynamic table 

1. INSERT 
2. INSERT 
3. INSERT 

2 
1 
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Example of a dynamic table 

1. INSERT 
2. INSERT 
3. INSERT 
4. INSERT 4 

3 
2 
1 
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Example of a dynamic table 

1. INSERT 
2. INSERT 
3. INSERT 
4. INSERT 
5. INSERT 

4 
3 
2 
1 

overflow 
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Example of a dynamic table 

1. INSERT 
2. INSERT 
3. INSERT 
4. INSERT 
5. INSERT 

4 
3 
2 
1 

overflow 
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Example of a dynamic table 

1. INSERT 
2. INSERT 
3. INSERT 
4. INSERT 
5. INSERT 

4 
3 
2 
1 
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Example of a dynamic table 

1. INSERT 
2. INSERT 
3. INSERT 
4. INSERT 

6. INSERT 6 
5. INSERT 5 

4 
3 
2 
1 

7 7. INSERT 
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Worst-case analysis 

Consider a sequence of n insertions.  The 
worst-case time to execute one insertion is 
Θ(n).  Therefore, the worst-case time for n 
insertions is n · Θ(n) = Θ(n2). 

WRONG!  In fact, the worst-case cost for 
n insertions is only Θ(n) ≪ Θ(n2). 

Let’s see why. 
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Tighter analysis 

 i 1 2 3 4 5 6 7 8 9 10 
 sizei 1 2 4 4 8 8 8 8 16 16 
  ci  1 2 3 1 5 1 1 1 9 1 

Let ci =  the cost of the i th insertion 

= i if i – 1 is an exact power of 2, 
1 otherwise. 
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Tighter analysis 

Let ci =  the cost of the i th insertion 

= i if i – 1 is an exact power of 2, 
1 otherwise. 

 i 1 2 3 4 5 6 7 8 9 10 
 sizei 1 2 4 4 8 8 8 8 16 16 
  1 1 1 1 1 1 1 1 1 1 
    1 2  4    8  ci 
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Tighter analysis (continued) 
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Thus, the average cost of each dynamic-table 
operation is Θ(n)/n = Θ(1). 
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Amortized analysis 
An amortized analysis is any strategy for 
analyzing a sequence of operations to 
show that the average cost per operation is 
small, even though a single operation 
within the sequence might be expensive. 

Even though we’re taking averages, however, 
probability is not involved! 
• An amortized analysis guarantees the 

average performance of each operation in 
the worst case. 
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Types of amortized analyses 
Three common amortization arguments: 
• the aggregate method, 
• the accounting method, 
• the potential method. 
We’ve just seen an aggregate analysis.   
The aggregate method, though simple, lacks the 
precision of the other two methods.  In particular, 
the accounting and potential methods allow a 
specific amortized cost to be allocated to each 
operation. 
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Accounting method 
• Charge i th operation a fictitious amortized cost 
ĉi, where $1 pays for 1 unit of work (i.e., time). 

• This fee is consumed to perform the operation. 
• Any amount not immediately consumed is stored 

in the bank for use by subsequent operations. 
• The bank balance must not go negative!  We 

must ensure that 

∑∑
==

≤
n

i
i

n

i
i cc

11
ˆ

 for all n. 
• Thus, the total amortized costs provide an upper 

bound on the total true costs. 
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$0 $0 $0 $0 $2 $2 

Example: 
$2 $2 

Accounting analysis of 
dynamic tables 

Charge an amortized cost of ĉi = $3 for the i th 
insertion. 
• $1 pays for the immediate insertion. 
• $2 is stored for later table doubling. 
When the table doubles, $1 pays to move a 
recent item, and $1 pays to move an old item. 

overflow 
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Example: 

Accounting analysis of 
dynamic tables 

Charge an amortized cost of ĉi = $3 for the i th 
insertion. 
• $1 pays for the immediate insertion. 
• $2 is stored for later table doubling. 
When the table doubles, $1 pays to move a 
recent item, and $1 pays to move an old item. 

overflow 

$0 $0 $0 $0 $0 $0 $0 $0 



October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.23 

Example: 

Accounting analysis of 
dynamic tables 

Charge an amortized cost of ĉi = $3 for the i th 
insertion. 
• $1 pays for the immediate insertion. 
• $2 is stored for later table doubling. 
When the table doubles, $1 pays to move a 
recent item, and $1 pays to move an old item. 

$0 $0 $0 $0 $0 $0 $0 $0 $2 $2 $2 
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Accounting analysis 
(continued) 

Key invariant: Bank balance never drops below 0.  
Thus, the sum of the amortized costs provides an 
upper bound on the sum of the true costs. 

 i 1 2 3 4 5 6 7 8 9 10 
 sizei 1 2 4 4 8 8 8 8 16 16 
  ci  1 2 3 1 5 1 1 1 9 1 
 ĉi 2 3 3 3 3 3 3 3 3 3 
 banki 1 2 2 4 2 4 6 8 2 4 

* 

*Okay, so I lied.  The first operation costs only $2, not $3. 
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Potential method 
IDEA: View the bank account as the potential 
energy (à la physics) of the dynamic set. 
Framework:   
• Start with an initial data structure D0. 
• Operation i transforms Di–1 to Di.   
• The cost of operation i is ci. 
• Define a potential function Φ : {Di} → R, 
 such that Φ(D0 ) = 0 and Φ(Di ) ≥ 0 for all i.  
• The amortized cost ĉi with respect to Φ is 

defined to be ĉi = ci + Φ(Di) – Φ(Di–1).  
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Understanding potentials 
ĉi = ci + Φ(Di) – Φ(Di–1) 

potential difference ∆Φi 

• If  ∆Φi > 0, then ĉi > ci.  Operation i stores 
work in the data structure for later use. 

• If  ∆Φi < 0, then ĉi < ci.  The data structure 
delivers up stored work to help pay for 
operation i. 
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The amortized costs bound 
the true costs 

The total amortized cost of n operations is 
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Summing both sides. 
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The amortized costs bound 
the true costs 

The total amortized cost of n operations is 
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The series telescopes. 
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The amortized costs bound 
the true costs 

The total amortized cost of n operations is 
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since Φ(Dn) ≥ 0 and 
 Φ(D0 ) = 0. 
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Potential analysis of table 
doubling 

Define the potential of the table after the ith 
insertion by Φ(Di) = 2i – 2lg i.  (Assume that 
2lg 0 = 0.) 
Note: 
• Φ(D0 ) = 0, 
• Φ(Di) ≥ 0 for all i. 
Example: 

• • • • • • Φ = 2·6 – 23 = 4 

$0 $0 $0 $0 $2 $2 accounting method) ( 
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Calculation of amortized costs 

The amortized cost of the i th insertion is 
ĉi = ci + Φ(Di) – Φ(Di–1) 



October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.32 

Calculation of amortized costs 

The amortized cost of the i th insertion is 
ĉi = ci + Φ(Di) – Φ(Di–1) 

i  if i – 1 is an exact power of 2, 
1 otherwise; = 

+ (2i – 2lg i) – (2(i –1) – 2lg (i–1)) 
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Calculation of amortized costs 

The amortized cost of the i th insertion is 
ĉi = ci + Φ(Di) – Φ(Di–1) 

i  if i – 1 is an exact power of 2, 
1 otherwise; = 

+ (2i – 2lg i) – (2(i –1) – 2lg (i–1)) 

+ 2 – 2lg i + 2lg (i–1) . 

i  if i – 1 is an exact power of 2, 
1 otherwise; = 
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Calculation 
Case 1: i – 1 is an exact power of 2. 

ĉi = i + 2 – 2lg i + 2lg (i–1) 
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Calculation 
Case 1: i – 1 is an exact power of 2. 

ĉi = i + 2 – 2lg i + 2lg (i–1) 

 = i + 2 – 2(i – 1) + (i – 1) 
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Calculation 
Case 1: i – 1 is an exact power of 2. 

ĉi = i + 2 – 2lg i + 2lg (i–1) 

 = i + 2 – 2(i – 1) + (i – 1) 
 = i + 2 – 2i + 2 + i – 1 
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Calculation 
Case 1: i – 1 is an exact power of 2. 

ĉi = i + 2 – 2lg i + 2lg (i–1) 

 = i + 2 – 2(i – 1) + (i – 1) 
 = i + 2 – 2i + 2 + i – 1 
 = 3 
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Calculation 
Case 1: i – 1 is an exact power of 2. 

ĉi = i + 2 – 2lg i + 2lg (i–1) 

 = i + 2 – 2(i – 1) + (i – 1) 
 = i + 2 – 2i + 2 + i – 1 
 = 3 

Case 2: i – 1 is not an exact power of 2. 
ĉi = 1 + 2 – 2lg i + 2lg (i–1) 
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Calculation 
Case 1: i – 1 is an exact power of 2. 

ĉi = i + 2 – 2lg i + 2lg (i–1) 

 = i + 2 – 2(i – 1) + (i – 1) 
 = i + 2 – 2i + 2 + i – 1 
 = 3 

Case 2: i – 1 is not an exact power of 2. 
ĉi = 1 + 2 – 2lg i + 2lg (i–1) 
 = 3 (since 2lg i = 2lg (i–1) ) 
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Calculation 
Case 1: i – 1 is an exact power of 2. 

ĉi = i + 2 – 2lg i + 2lg (i–1) 

 = i + 2 – 2(i – 1) + (i – 1) 
 = i + 2 – 2i + 2 + i – 1 
 = 3 

Case 2: i – 1 is not an exact power of 2. 
ĉi = 1 + 2 – 2lg i + 2lg (i–1) 
 = 3 

Therefore, n insertions cost Θ(n) in the worst case. 
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Calculation 
Case 1: i – 1 is an exact power of 2. 

ĉi = i + 2 – 2lg i + 2lg (i–1) 

 = i + 2 – 2(i – 1) + (i – 1) 
 = i + 2 – 2i + 2 + i – 1 
 = 3 

Case 2: i – 1 is not an exact power of 2. 
ĉi = 1 + 2 – 2lg i + 2lg (i–1) 
 = 3 

Therefore, n insertions cost Θ(n) in the worst case. 
Exercise:  Fix the bug in this analysis to show that 
the amortized cost of the first insertion is only 2. 
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Conclusions 
• Amortized costs can provide a clean abstraction 

of data-structure performance. 
• Any of the analysis methods can be used when 

an amortized analysis is called for, but each 
method has some situations where it is arguably 
the simplest or most precise. 

• Different schemes may work for assigning 
amortized costs in the accounting method, or 
potentials in the potential method, sometimes 
yielding radically different bounds. 
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