
October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.1

Prof. Charles E. Leiserson

LECTURE 13
Amortized Analysis
• Dynamic tables
• Aggregate method
• Accounting method
• Potential method

Introduction to Algorithms
6.046J/18.401J

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.2

How large should a hash
table be?

Problem: What if we don’t know the proper size
in advance?

Goal: Make the table as small as possible, but
large enough so that it won’t overflow (or
otherwise become inefficient).

IDEA: Whenever the table overflows, “grow” it
by allocating (via malloc or new) a new, larger
table. Move all items from the old table into the
new one, and free the storage for the old table.

Solution: Dynamic tables.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.3

Example of a dynamic table

1. INSERT 1

2. INSERT overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.4

1

Example of a dynamic table

1. INSERT
2. INSERT overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.5

1
2

Example of a dynamic table

1. INSERT
2. INSERT

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.6

Example of a dynamic table

1. INSERT
2. INSERT

1
2

3. INSERT overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.7

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT

2
1

overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.8

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT

2
1

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.9

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT 4

3
2
1

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.10

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.11

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.12

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.13

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT

6. INSERT 6
5. INSERT 5

4
3
2
1

7 7. INSERT

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.14

Worst-case analysis

Consider a sequence of n insertions. The
worst-case time to execute one insertion is
Θ(n). Therefore, the worst-case time for n
insertions is n · Θ(n) = Θ(n2).

WRONG! In fact, the worst-case cost for
n insertions is only Θ(n) ≪ Θ(n2).

Let’s see why.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.15

Tighter analysis

 i 1 2 3 4 5 6 7 8 9 10
 sizei 1 2 4 4 8 8 8 8 16 16
 ci 1 2 3 1 5 1 1 1 9 1

Let ci = the cost of the i th insertion

= i if i – 1 is an exact power of 2,
1 otherwise.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.16

Tighter analysis

Let ci = the cost of the i th insertion

= i if i – 1 is an exact power of 2,
1 otherwise.

 i 1 2 3 4 5 6 7 8 9 10
 sizei 1 2 4 4 8 8 8 8 16 16
 1 1 1 1 1 1 1 1 1 1
 1 2 4 8 ci

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.17

Tighter analysis (continued)

 

)(
3

2

)1lg(

0

1

n
n

n

c

n

j

j

n

i
i

Θ=
≤

+≤

=

∑

∑
−

=

=
Cost of n insertions

.

Thus, the average cost of each dynamic-table
operation is Θ(n)/n = Θ(1).

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.18

Amortized analysis
An amortized analysis is any strategy for
analyzing a sequence of operations to
show that the average cost per operation is
small, even though a single operation
within the sequence might be expensive.

Even though we’re taking averages, however,
probability is not involved!
• An amortized analysis guarantees the

average performance of each operation in
the worst case.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.19

Types of amortized analyses
Three common amortization arguments:
• the aggregate method,
• the accounting method,
• the potential method.
We’ve just seen an aggregate analysis.
The aggregate method, though simple, lacks the
precision of the other two methods. In particular,
the accounting and potential methods allow a
specific amortized cost to be allocated to each
operation.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.20

Accounting method
• Charge i th operation a fictitious amortized cost
ĉi, where $1 pays for 1 unit of work (i.e., time).

• This fee is consumed to perform the operation.
• Any amount not immediately consumed is stored

in the bank for use by subsequent operations.
• The bank balance must not go negative! We

must ensure that

∑∑
==

≤
n

i
i

n

i
i cc

11
ˆ

 for all n.
• Thus, the total amortized costs provide an upper

bound on the total true costs.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.21

$0 $0 $0 $0 $2 $2

Example:
$2 $2

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

overflow

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.22

Example:

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

overflow

$0 $0 $0 $0 $0 $0 $0 $0

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.23

Example:

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

$0 $0 $0 $0 $0 $0 $0 $0 $2 $2 $2

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.24

Accounting analysis
(continued)

Key invariant: Bank balance never drops below 0.
Thus, the sum of the amortized costs provides an
upper bound on the sum of the true costs.

 i 1 2 3 4 5 6 7 8 9 10
 sizei 1 2 4 4 8 8 8 8 16 16
 ci 1 2 3 1 5 1 1 1 9 1
 ĉi 2 3 3 3 3 3 3 3 3 3
 banki 1 2 2 4 2 4 6 8 2 4

*

*Okay, so I lied. The first operation costs only $2, not $3.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.25

Potential method
IDEA: View the bank account as the potential
energy (à la physics) of the dynamic set.
Framework:
• Start with an initial data structure D0.
• Operation i transforms Di–1 to Di.
• The cost of operation i is ci.
• Define a potential function Φ : {Di} → R,
 such that Φ(D0) = 0 and Φ(Di) ≥ 0 for all i.
• The amortized cost ĉi with respect to Φ is

defined to be ĉi = ci + Φ(Di) – Φ(Di–1).

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.26

Understanding potentials
ĉi = ci + Φ(Di) – Φ(Di–1)

potential difference ∆Φi

• If ∆Φi > 0, then ĉi > ci. Operation i stores
work in the data structure for later use.

• If ∆Φi < 0, then ĉi < ci. The data structure
delivers up stored work to help pay for
operation i.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.27

The amortized costs bound
the true costs

The total amortized cost of n operations is

()∑∑
=

−
=

Φ−Φ+=
n

i
iii

n

i
i DDcc

1
1

1
)()(ˆ

Summing both sides.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.28

The amortized costs bound
the true costs

The total amortized cost of n operations is

()

)()(

)()(ˆ

0
1

1
1

1

DDc

DDcc

n

n

i
i

n

i
iii

n

i
i

Φ−Φ+=

Φ−Φ+=

∑

∑∑

=

=
−

=

The series telescopes.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.29

The amortized costs bound
the true costs

The total amortized cost of n operations is

()

∑

∑

∑∑

=

=

=
−

=

≥

Φ−Φ+=

Φ−Φ+=

n

i
i

n

n

i
i

n

i
iii

n

i
i

c

DDc

DDcc

1

0
1

1
1

1

)()(

)()(ˆ

since Φ(Dn) ≥ 0 and
 Φ(D0) = 0.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.30

Potential analysis of table
doubling

Define the potential of the table after the ith
insertion by Φ(Di) = 2i – 2lg i. (Assume that
2lg 0 = 0.)
Note:
• Φ(D0) = 0,
• Φ(Di) ≥ 0 for all i.
Example:

• • • • • • Φ = 2·6 – 23 = 4

$0 $0 $0 $0 $2 $2 accounting method) (

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.31

Calculation of amortized costs

The amortized cost of the i th insertion is
ĉi = ci + Φ(Di) – Φ(Di–1)

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.32

Calculation of amortized costs

The amortized cost of the i th insertion is
ĉi = ci + Φ(Di) – Φ(Di–1)

i if i – 1 is an exact power of 2,
1 otherwise; =

+ (2i – 2lg i) – (2(i –1) – 2lg (i–1))

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.33

Calculation of amortized costs

The amortized cost of the i th insertion is
ĉi = ci + Φ(Di) – Φ(Di–1)

i if i – 1 is an exact power of 2,
1 otherwise; =

+ (2i – 2lg i) – (2(i –1) – 2lg (i–1))

+ 2 – 2lg i + 2lg (i–1) .

i if i – 1 is an exact power of 2,
1 otherwise; =

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.34

Calculation
Case 1: i – 1 is an exact power of 2.

ĉi = i + 2 – 2lg i + 2lg (i–1)

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.35

Calculation
Case 1: i – 1 is an exact power of 2.

ĉi = i + 2 – 2lg i + 2lg (i–1)

 = i + 2 – 2(i – 1) + (i – 1)

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.36

Calculation
Case 1: i – 1 is an exact power of 2.

ĉi = i + 2 – 2lg i + 2lg (i–1)

 = i + 2 – 2(i – 1) + (i – 1)
 = i + 2 – 2i + 2 + i – 1

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.37

Calculation
Case 1: i – 1 is an exact power of 2.

ĉi = i + 2 – 2lg i + 2lg (i–1)

 = i + 2 – 2(i – 1) + (i – 1)
 = i + 2 – 2i + 2 + i – 1
 = 3

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.38

Calculation
Case 1: i – 1 is an exact power of 2.

ĉi = i + 2 – 2lg i + 2lg (i–1)

 = i + 2 – 2(i – 1) + (i – 1)
 = i + 2 – 2i + 2 + i – 1
 = 3

Case 2: i – 1 is not an exact power of 2.
ĉi = 1 + 2 – 2lg i + 2lg (i–1)

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.39

Calculation
Case 1: i – 1 is an exact power of 2.

ĉi = i + 2 – 2lg i + 2lg (i–1)

 = i + 2 – 2(i – 1) + (i – 1)
 = i + 2 – 2i + 2 + i – 1
 = 3

Case 2: i – 1 is not an exact power of 2.
ĉi = 1 + 2 – 2lg i + 2lg (i–1)
 = 3 (since 2lg i = 2lg (i–1))

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.40

Calculation
Case 1: i – 1 is an exact power of 2.

ĉi = i + 2 – 2lg i + 2lg (i–1)

 = i + 2 – 2(i – 1) + (i – 1)
 = i + 2 – 2i + 2 + i – 1
 = 3

Case 2: i – 1 is not an exact power of 2.
ĉi = 1 + 2 – 2lg i + 2lg (i–1)
 = 3

Therefore, n insertions cost Θ(n) in the worst case.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.41

Calculation
Case 1: i – 1 is an exact power of 2.

ĉi = i + 2 – 2lg i + 2lg (i–1)

 = i + 2 – 2(i – 1) + (i – 1)
 = i + 2 – 2i + 2 + i – 1
 = 3

Case 2: i – 1 is not an exact power of 2.
ĉi = 1 + 2 – 2lg i + 2lg (i–1)
 = 3

Therefore, n insertions cost Θ(n) in the worst case.
Exercise: Fix the bug in this analysis to show that
the amortized cost of the first insertion is only 2.

October 31, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L13.42

Conclusions
• Amortized costs can provide a clean abstraction

of data-structure performance.
• Any of the analysis methods can be used when

an amortized analysis is called for, but each
method has some situations where it is arguably
the simplest or most precise.

• Different schemes may work for assigning
amortized costs in the accounting method, or
potentials in the potential method, sometimes
yielding radically different bounds.

	Introduction to Algorithms�6.046J/18.401J
	How large should a hash table be?
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Example of a dynamic table
	Worst-case analysis
	Tighter analysis
	Tighter analysis
	Tighter analysis (continued)
	Amortized analysis
	Types of amortized analyses
	Accounting method
	Accounting analysis of dynamic tables
	Accounting analysis of dynamic tables
	Accounting analysis of dynamic tables
	Accounting analysis (continued)
	Potential method
	Understanding potentials
	The amortized costs bound the true costs
	The amortized costs bound the true costs
	The amortized costs bound the true costs
	Potential analysis of table doubling
	Calculation of amortized costs
	Calculation of amortized costs
	Calculation of amortized costs
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Calculation
	Conclusions

