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Abstract—Graph analytics are vital in fields such as social
networks, biomedical research, and graph neural networks
(GNNs). However, traditional CPUs and GPUs struggle with the
memory bottlenecks caused by large graph datasets and their fine-
grained memory accesses. While specialized graph accelerators
address these challenges, they often support only moderate-sized
graphs (under 500 million edges).

Our paper proposes Swift, a novel scale-up graph accelerator
framework that processes large graphs by leveraging the flexibility
of FPGA custom datapath and memory resources, and optimizes
utilization of high-bandwidth 3D memory (HBM). Swift supports
up to 8 FPGAs in a node. Swift introduces a decoupled,
asynchronous model based on the Gather-Apply-Scatter (GAS)
scheme. It subgraphs across FPGAs, and each subgraph into
intervals based on source vertex IDs. Processing on these intervals
is decoupled and executed asynchronously, instead of bulk-
synchonous operation, where throughput is limited by the slowest
task. This enables simultaneous processing within each multi-
FPGA node and optimizes the utilization of communication (PCIe),
off-chip (HBM), and on-chip BRAM/URAM resources. Swift
demonstrates significant performance improvements compared to
prior scalable FPGA-based frameworks, performing 12.8 times
better than the ForeGraph. Performance against Gunrock on
NVIDIA A40 GPUs is mixed, because NVlink gives the GPU
system a nearly 5X bandwidth advantage, but the FPGA system
nevertheless achieves 2.6x greater energy efficiency.

Index Terms—Graph Analytics, High Memory Bandwidth
(HBM), FPGA, Scalable Graph Processing, Accelerators

I. INTRODUCTION

The growth of graph data in fields such as social network
analysis, biomedical research, and graph neural networks
(GNNs) [1]–[5] has created a greater need for efficient and
scalable graph analysis [6]–[10]. However, existing hardware
platforms face limitations in handling large-scale graphs. CPUs
[7], [11]–[15] and GPUs [16]–[19] often result in fine-grained
random memory accesses [20]–[25], which typically do not use
memory bandwidth efficiently, limiting processing throughput.

The emergence of modern FPGAs, with High Bandwidth
Memory (HBM) technology (up to 460GB/s) and custom
parallel pipelines for data processing, presents an alterna-
tive to address the challenges associated with accelerating
graph processing [26]–[34]. These state-of-the-art FPGAs offer
significant parallelism compared to CPUs and GPUs, while
maintaining a more efficient power profile. The inclusion
of HBM allows graph data to be distributed across HBM
channels and processed by specialized pipelines that achieve
better memory access patterns, leveraging HBM’s high memory

bandwidth and enhancing parallelism. This feature makes HBM-
enabled FPGAs a promising solution for graph processing.

From single to multi-FPGA graph processing: Prior
research on single FPGA graph accelerators is comprehensive
but typically supports graphs with fewer than 500 million
edges [29], [32], [34]. To improve scalability, multi-FPGA
methods often use a single FPGA solution replicated across
multiple machines or rely on inter-FPGA interconnects [36],
[37], [39]–[41], which can perform poorly in sharing fine-
grained graph data. Such approaches can lead to inefficient
processing, higher power consumption, increased memory
usage, and complex inter-machine communication. Furthermore,
scaling up a single-FPGA design within a machine is limited
by the PCIe communication bandwidth.

Table I presents a performance comparison of the widely-
benchmarked PageRank algorithm among various single- and
multi-FPGA graph processing frameworks. To enable fair
comparison, metrics such as interconnect bandwidth and
memory bandwidth of the FPGAs are also provided. As shown,
multi-FPGA frameworks like Foregraph [36] and FDGLib [39]
often have lower throughput than single-FPGA frameworks
such as ThunderGP [29], [35] across various graph algorithms
and workloads. This is because PCIe-connected FPGAs (multi-
FPGA frameworks) exhibit lower latency compared to network-
connected FPGAs (single-FPGA frameworks) due to fast/high
bandwidth on-chip HBM memory coupled with PCIe DMA,
providing direct access to host memory without the need to
navigate the network stack [42] [43] [44]. This challenges the
presumed superiority of multi-FPGA setups. “Scaling up” refers
to adding more compute power (FPGAs) to a single machine
via PCIe, while “scaling out” involves adding more machines
with the same compute power via a specialized network—in
this context, adding more machines with a single FPGA.

Scaling up single machine multi-FPGA graph processing
and addressing communication overhead: A key factor
in the performance gap of multi-FPGA frameworks is the
communication overhead among FPGAs. Frameworks like
Foregraph [36] necessitate costly inter-FPGA communication
for exchanging vertex property information at each graph
iteration due to the memory-bound nature of graph processing.
FPGA memory bandwidth, such as with High Bandwidth
Memory (HBM) at up to 460GB/s, far exceeds that of inter-
FPGA channels like PCIe at around 17GB/s

Swift: a decoupled Gather-Apply-Scatter graph execution
model: In order to address the communication bottleneck



TABLE I: PageRank (PR) - Comparing Single-FPGA vs. Multi-FPGA ”Scale Out” Graph Accelerators from Prior Art

Work Lang. Impl. Eval. Public Platform Mem (BW) Interconnect/host (BW) Throughput(GTEPSa) FPGA(nodes) Reference

ReGraph HLS HW ✓ Alveo U280 460GB/s 38GB/s 8.037b 1 [29]
ThunderGP HLS HW ✓ Alveo U250 77GB/s 38GB/s 3.355b 1 [35]
GraphLily HLS HW ✓ Alveo U280 460GB/s 38GB/s 5.591b 1 [32]
ACTS HLS HW ✓ Alveo U280 460GB/s 38GB/s 8.557b 1 [34]

ForeGraph HDL Sim - Xilinx VC707 19.2GB/s 98GB/s 1.861, 3.675, 7.350, 9.8d 4, 8, 16, 32e [36]
GraVF-M Python HW ✓ Microsemi 21.7GB/s 5.85GB/s 4.623 4e [37]
GridGAS HDL HW - Xilinx KC705 - 3GB/s 0.170c - [38]
FDGLib HDL HW/Sim ✓ Alveo U250 77GB/s 12.25Gbit/s 2.679, 5.916, 18.816, 33.026 4, 8, 16, 32e [39]
Hadoop HLS HW - Alveo U250 19.2GB/s 32GB/s 0.046 16e [40]

Swift HLS HW ✓ Alveo U280 460GB/s 38GB/s 13.168, 22.407 4, 8f [current]
a (Giga Traversed Edges Per Second) measures graph processing performance.
b Geometric mean GTEPSa was calculated for all graphs with sizes below 300 million edges, as reported in their papers, using
a single FPGA setup.
c Paper evaluation only for SSSP algorithm.
d Paper peak performance for PR on Twitter Graph.
e Single-FPGA per node - ”scale out”.
f Multi-FPGA per node - ”scale up”.

problem, we decouple the main stages of the Gather-Apply-
Scatter (GAS) graph processing scheme. This separation
allows pipelining and overlapping the GAS compute and
memory operations on the multi-FPGA system, enabling higher
throughput while processing large graphs. With Swift, our
decoupled graph processing model, four operations can run
simultaneously: 1) processing edges at a given region (vertex
intervals) for a given iteration; 2) applying vertex updates to
generate active frontiers at a second region. 3) exporting active
vertices (frontiers) to remote FPGAs in a third, different region.
4) importing active frontiers from remote FPGAs in a fourth,
different region. Swift’s overlapping of GAS operations allows
for higher utilization of available channels such as inter-FPGA
communication channel (PCIe), intra-FPGA memory bandwidth
(HBM), and on-chip BRAMs/URAMs. Furthermore, it im-
proves throughput and conceals latency overheads. Swift adapts
the open-source ACTS [34] FPGA accelerator for single-FPGA
graph processing, and introduces decoupled, asynchronous GAS
processing to overcome inter-FPGA communication latency
and bandwidth limits, outperforming previous FPGA graph
accelerator solutions.

II. BACKGROUND AND RELATED WORK

A. Gather-Apply-Scatter (GAS)

The Gather-Apply-Scatter (GAS) [6], [45], [46] model
provides a high-level abstraction for various graph processing
algorithms and is widely adopted by software-based [7], [9],
[47]–[49] and accelerator-based frameworks [29], [35], [36],
[50]–[53]. The two main variants of the GAS model are
the vertex-centric and edge-centric approaches. Swift adopts
the edge-centric variant, which facilitates high throughput
streaming memory accesses, leveraging HBM’s high memory
bandwidth.

Algorithm 1 shows the pseudo code describing the Edge-
centric Gather-Apply-Scatter graph processing model [15], [47].
As shown, this model employs streaming partitions by logically
splitting the graph into intervals by source vertex IDs during pre-
processing. Next, an input of an unordered set of directed edges
is streamed and processed in the Process Edge stage where

Algorithm 1: Edge-centric Gather-Apply-Scatter Model
Data: Edges, vertices, and vertex properties
Result: Updated vertex properties (Vprop)

E(U, V ): Edge E, where U=source vertex ID, V =destination
vertex ID

Eweight: Edge weight of the edge E
U(E)prop: Source vertex property
V (E)prop: Destination vertex property
V (E)temp prop: Temporary destination vertex property
res: Partial result (also known as vertex update) generated

from processing edge E

foreach active Streaming Partition SP in graph do
foreach outgoing edge E(U, V ) in SP do

if vertex U is active then
res← Process_Edge (Eweight, Uprop)
Vprop ← Apply (Vtemp prop, res)

end
end

end

edge data, source and destination vertex properties generate
an update value (res). Only intervals with active vertices are
processed, avoiding redundant reads to all edges. Furthermore,
intervals are based on source IDs, and source vertex properties
are read once from DRAM per iteration. In Apply, these
updates are applied to destination vertices to compute new
vertex properties. These functions iterate until a convergence
criterion is reached.

B. ACTS: Near-Memory FPGA Graph Processing

ACTS [34] is a graph processing accelerator that utilizes
the edge-centric GAS model on FPGAs and employs HBM
to address the memory bandwidth bottlenecks of prior single-
FPGA-based graph processing designs. The key idea behind
ACTS is an online recursive partitioning mechanism that
converts (via partitioning) the low-locality vertex updates
generated from processing the edges of an active sub-graph,
into high-locality vertex-update partitions in efficient time.
This partitioning is done across the destination vertex IDs.



Fig. 1: How Swift (ACTS [34] based pipeline) handles Process Edge, Partition-Updates, and Apply Update operations.

Through this, ACTS improves both read and write bandwidth
performance, even as graph size increases. Consequently, ACTS
achieved an average speedup of 1.5×, with a peak speedup of
4.6× compared to Gunrock [16], a state-of-the-art GPU-based
graph processing accelerator, on the NVIDIA Titan X GPU.
Furthermore, ACTS demonstrates an average speedup of 3.6×,
with a peak speedup of 16.5× over GraphLily [32], a modern
FPGA-based graph accelerator utilizing HBM. These speedups
are found in their paper. We therefore use this as the starting
point for Swift’s multi-FPGA solution.

C. ForeGraph: Scalable FPGA Graph Processing

ForeGraph [36], [39] tackles scaling by using the Catapult
torus interconnect in an FPGA simulated environment; however,
it cannot scale beyond 48 nodes or maintain optimal perfor-
mance as the number of nodes increases. As the number of
FPGA nodes increases, the interconnet becomes a bottleneck,
limiting scalability and degrading performance.

III. SWIFT

A. Graph Processing Decoupled Pipeline

The Swift graph processing accelerator builds upon ACTS
by further decoupling its pipeline into five distinct stages:
process-edge, partition-updates, apply-updates, import-frontier
and export-frontier operations. This decoupling allows Swift to
hide latency by exploiting overlap among operations, speeding
up overall execution time. Figure 1 illustrates the connection
among three key stages—Process-edge, Partition-updates, and
Apply-updates—involved in graph partitioning within an FPGA.
Each stage interfaces with the HBM channels to receive specific
data: edges for Process-edge, vertex updates for Partition-
updates, and both vertex updates and properties for Apply-
updates. The output data from each stage serves as the input
for the subsequent stage, creating a continuous processing flow.

• Process-edge: This operation generates vertex-update
messages from the active sub-graph (source intervals). As
shown in Figure 1, edges are read from HBM into EdgeProperty
Buffers (BRAM), and their source vertex properties are read
into VertexProperty Buffers (URAMs). Edges of active vertices

are processed, and a user-defined edge function generates
vertex-update messages, following the proposed scheme in
Algorithm 1. The vertex updates are buffered in DRAM for
the partition-updates operation. The vertex-update tuple is
formatted as (Value, Dst), where Dst is the destination vertex,
and the value is the message.

• Partition-updates: The partition-updates stage, introduced
in the ACTS paper [34], addresses the challenge of random
accesses and low spatial locality in vertex-updates generated
from the process-edges stage. The operation is online and
happens on the device side to further decompose the ver-
tex updates generated from the process-edges. Partitioning
enhances memory locality by converting low locality vertex
updates (from edge processing) into high locality, enabling
efficient use of fast URAMs for updating vertices. Due to
the initial static partitioning of the graph, edge and vertex
layouts within each HBM channel are optimized for online
partitioning, which is confined to each HBM channel. The
partition-updates operationconverts low-locality vertex updates
into fine-grained, high-locality vertex-update partitions. The
vertex updates generated from the process-edges operation
are loaded into fast on-chip URAMs and BRAMs, and then
partitioned using FPGA logic into high-locality partitions. This
allows updates, represented by key-value pairs, to leverage
the Ultra-RAM (URAM) multi-port parallelism and high
capacity in Xilinx [54] FPGAs when applied to destination
vertices. However, with large graphs, URAM capacity is
still limited, which can lead to partitioning overheads when
swapping vertex updates. As shown in Figure 1, a recursive
BRAM tree (log2(Dst)) manages DRAM access latency with
multilevel passes as updates move between BRAM and HBM,
improving vertex-update locality with each level, thus reducing
DRAM access latency. This makes it preferable to conventional
bucket partitioning, especially for large graphs with low spatial
locality. By breaking the task into recursive steps and buffering
intermediate partial-partitioned results in HBM, the recursive
BRAM tree strategy improves overall partitioning throughput
and efficiency. The number of passes is the logarithm of the
range of destination vertex IDs. This ensures efficient data



Fig. 2: Swift decoupled multi-FPGA graph execution flow compared to prior art - decoupled operations execute asynchronously
on the graph with no bulk synchronization.

transfer from BRAM to HBM, surpassing bucket partitioning.
To illustrate the advantage of the recursive BRAM tree over

conventional bucket-based partitioning, assume we have (N)
vertex updates in HBM from processing active graph edges.
Conventional bucket partitioning reads chunks of updates into
the FPGA, splits them into (P) buckets based on destination
vertex IDs, and writes them back to HBM. As the graph size
increases, both (N) and (P) grow, requiring more partitions
to maintain locality, which increases DRAM access latency
and degrades performance. In contrast, the recursive BRAM
tree strategy splits partitioning into successive steps, reducing
latency and performance degradation. In each pass, after the
buckets are filled, they are streamed into HBM, using its
full bandwidth. Then in the next pass, each bucket is read
back from memory (also streaming), and partitioned again,
until sufficient locality is achieved. Although it may require a
logarithmic number of passes for large graphs, the recursive
BRAM partitioning allows for better performance than prior
art, because it maintains high locality in the HBM accesses.

• Apply-updates: When receiving a vertex update, the apply
updates stage resolves this update to its destination vertex
using a user-defined Apply function. This apply operation
generates an active frontier property. Because the earlier (i.e.,
Partition-updates) operation outputs vertex-update chunks with
high BRAM locality, the Apply operation can benefit from
fast URAM memory. This is because several high-locality
vertex-update partitions (generated from the partition-updates
stage) and their corresponding destination vertex properties are
streamed into independent high-speed URAMs, each connected
to a separate apply-update logic. Therefore, several updates
can be applied concurrently, allowing parallelism. In this way,
the Apply operation can benefit from fast URAM memory.

• Import-frontier and export-frontier operations: A multi-
FPGA graph processing context requires periodically exchang-

ing graph data between FPGAs. Export-frontier operations send
active frontiers from a given FPGA to its remote neighbors
via PCIe through the host. These active frontiers are gathered
and merged at the remote FPGA end using the import-frontier
operation. Host-FPGA communication uses a host-managed
shared buffer for DMA transfers over PCIe. This buffer moves
active vertex properties (frontiers) between host memory and
FPGA’s HBM during export/import operations (Section III).
The DMA engine handles memory transfers, reading from host
memory (H2C) and writing to FPGA, and vice-versa.

B. Understanding the Swift Pipeline

The Swift pipeline leverages the time window between edge
processing within an FPGA and its next iteration to overlap with
other intra-FPGA computation and inter-FPGA communication,
using separate FPGA resources concurrently. Key to our flow
model is that regions within the active sub-graph (vertex
intervals) can start the next operation in the pipeline once
dependencies are met. This contrasts to the bulk-synchronous
model adopted by various prior art that require each operation
to finish on the entire sub-graph before proceeding to the next.
This allows for overlapping operations on two levels:

• Inter-FPGA: Overlapping computation (within FPGAs)
with communication operations (between FPGAs).

• Intra-FPGA: Operations within the same FPGA, hiding
expensive, throughput-limiting operations within each other in
the processing pipeline and improving throughput.

Figure 2 shows Swift’s decoupled execution flow versus
the conventional bulk-synchronous model. In the conventional
model, stages happen sequentially, starting only after the
previous one is completed. For example, exporting active
frontiers to remote FPGAs (export-frontiers stage) occurs only
after applying updates to the active sub-graph (apply-updates
stage). Similarly, processing edges (process-edges stage) occur



only after receiving all import frontiers. In Swift’s model
(Figure 2), a decoupled flow exploits potential overlaps within
and between FPGAs. The graph is divided into partitions,
each assigned to an FPGA. Within each FPGA, partitions are
divided by source vertex IDs into vertex intervals, illustrated
in Figure 2 during pre-processing. Graph layout details are in
Section IV-B. For simplicity, four vertex intervals are shown.
Each interval goes through five stages as in Section III-B.
Unlike the conventional model, there’s no bulk-synchronous
constraint. An interval can start its next operation as soon as its
dependencies are satisfied. This is explained in Section III-C.

To better understand the Swift decoupled pipeline, let us
look at each overlapping feature when processing graphs:

• Overlap between computation within an FPGA and
communication between FPGAs: In Figure 2, FPGA0 starts
processing edges using the process edge operation (denoted
by PE0) in src interval 0 as soon as its active frontiers are
imported from remote FPGAs. This happens concurrently with
src interval 1 importing its active frontiers (IF1). Similarly,
Dst interval 0 in FPGA0 exports active frontiers to remote
FPGAs (EF0), concurrently with interval 1 generating vertex
updates (AU1), allowing computation overlap within an FPGA
and communication between FPGAs.

• Overlap between multiple operations within the same
FPGA: For example, import-frontier operation for interval
1 in iteration 2 runs concurrently with process edge and
partition-updates for interval 0, and apply-updates for interval 3,
overlapping operations within each FPGA and keeping HBM,
URAM, and compute resources simultaneously busy.
Due to strict dependencies, some FPGA operations cannot over-
lap. Partition-updates and apply-updates are such operations.
Apply-updates can begin only after vertex updates from process-
edges are partitioned online. Additionally, process-edges and
partition-updates can be merged into a single step.

C. Swift Flow Example

This section will demonstrate how Swift operates within
FPGA hardware, using a cluster of four FPGAs as an example.
For simplicity, we will focus on the operations within a single
FPGA (FPGA0.) The workload graph assigned to each FPGA
is first divided into vertex intervals based on vertex IDs, as
shown in Figure 2 and 3. A vertex interval consists of vertices
along with their incoming edges. Inside each FPGA, five
execution modules carry out the following operations: Process-
edges (PEM ), Partition-updates (PUM ), Apply-updates
(AUM ), Export-frontier (EFM ), and Import-frontier (IFM ).

At any given time, each vertex interval can be in one of three
states: ”ready-for-process,” ”ready-for-export,” and ”ready-for-
import.” An interval in the ”ready-for-process” state indicates
that all dependencies needed for the process-edges operation
on that interval have been met, allowing the process-edges
module to execute that interval directly. The same principle
applies to the ”ready-for-export” and ”ready-for-import” states.
The modules continuously check the state of vertex intervals
to carry out computation, export, and import operations.

The steps below demonstrate the Swift execution flow in
FPGA hardware, focusing on one FPGA (FPGA0).

1) Initialization: During processing initiation, all vertex
intervals containing active vertices in FPGA0 to FPGA3 are
set to the ready-to-process state.

2) Process-edges and Partition-updates: The process-edge
module (PEM ) in FPGA0 activates in the ready-to-process
state, executing process-edge and partition-update operations on
all vertex intervals. Concurrently, the partition-updates module
(PUM ) partitions low-locality vertex updates into high-locality
vertex-update partitions.

3) Apply-updates After generating and partitioning vertex
updates, the apply-updates module (AUM ) processes each
partition to create active frontiers and flags the intervals as
ready-for-export.

4) Export-frontiers: The export-frontier module (EFM )
starts exporting active frontiers to the host CPU when triggered
by the ready-for-export flag. This enables overlap between
apply-updates and export-frontier operations until all vertex
interval frontiers are processed. Figure 2 illustrates this with
AU0, AU1, AU2, AU3 overlapping EF0, EF1, EF2, EF3.

5) Import-frontiers: Active frontiers associated with vertex
intervals are marked ready-for-import by the export-frontier
module. Thus, the import-frontier module (IFM ) in remote
FPGAs can overlap their operations. This is shown by the
overlap of EF0, EF1, EF2, EF3 from iteration 1 with IF0,
IF1, IF2, IF3 from iteration 2 in Figure 2.

6) Cycle Continuation: This cycle continues until the
algorithm converges (i.e., no more active frontiers) or until each
vertex interval has completed a given number of iterations.

IV. GRAPH PARTITIONING AND WORKLOAD BALANCING

A. Graph Partitioning

Figure 3 illustrates the layout of a graph within Swift FPGA
cluster. The graph is initially partitioned by its destination vertex
IDs across different FPGAs. Graph partitioning is performed
on the host side as a pre-processing step, as represented by
different colors. Since Swift is designed for static graphs (i.e.,
graphs with a fixed topology), this is treated as a one-time cost
that can be amortized over multiple iterations. Each data type is
partitioned differently. As in some prior work, vertex properties
are represented using two dimensions: source/destination. Each
FPGA holds a full copy of the source vertex properties, while
destination vertex properties are distributed across all HBM
channels and all FPGAs, as are edges, which are partitioned by
destination vertex IDs. Each processing element is connected
to one HBM channel, processing edges and destination vertex
properties in that channel. Each destination range and its
incoming edges are assigned to a unique FPGA. Within each
FPGA, the graph partition is further divided by source IDs. Each
FPGA in the cluster has a dedicated HBM channel, the “frontier
HBM,” which accommodates active frontiers imported from the
communication channel. The remaining HBM channels in the
FPGA, the “worker HBMs,” each store a segment of the graph’s
destination vertices and their incoming edges. Each processing



Fig. 3: Swift framework ensures the graph is partitioned into load-balanced intervals distributed across FPGAs and Processing
Elements (PEs), and then processed asynchronously.

element (PE) is linked to a worker HBM and handles the edges
within that specific channel. To prevent graph data duplication
and maintain storage efficiency, unique edges and vertices are
distributed across HBM channels.

The vertices within each HBM are categorized into vertex
intervals, with the range being V

NUM PEs , where V represents
the vertex properties that can fit in URAM. NUM PEs
denotes the number of processing elements in the cluster.
Consequently, the combined range of vertex intervals across
all PEs in the cluster is V .

B. Workload Balancing

Optimizing performance in a cluster-scale environment with
HBM-enabled FPGAs requires an efficient workload placement
strategy that leverages parallelism at multiple levels. The first
level of parallelism comes from the independent FPGAs in the
cluster. Each FPGA has 32 independent HBM channels, adding
a second level of parallelism. Swift configuration allows up to
128 Processing Elements (PEs) to operate independently in a
4-FPGA cluster. The challenge is to prevent any straggler PE
from becoming a bottleneck, which requires a graph placement
strategy that ensures uniform workload balance. Prior schemes
distributes the graph across machines using a pre-processing
step, maintaining balance but sacrificing throughput due to
the graphs’ unstructured nature [55], [56]. This resulted in the
creation of cutting edges across various machines, disrupting the
sequential ordering of vertex IDs. As a result, vertex translation
was necessary for storage efficiency, and it also introduced
communication bottlenecks between FPGAs. Swift avoids trans-
lations at receiver FPGAs by consistently referencing vertices
using global IDs across all FPGAs. Additionally, it enforces
a vertex-interval-based strategy for workload placement. This
means that all vertices and edges within a vertex interval are
placed across the entire cluster before moving to the next
interval. This approach allows imported active frontiers to fit
into low-latency URAM, enhancing throughput. In summary,
our proposed strategy for placing graph workloads balances
workload distribution and optimizes throughput in a cluster-
scale, HBM-enabled FPGA environment. We achieve efficient
graph processing without sacrificing overall performance by
addressing translation bottlenecks and leveraging parallelism.

TABLE II: Graph datasets under evaluation

Dataset Symbol #Vertices #Edges Type

Indochina IND 7.4M 194M Real
Twitter TW 41.6M 1.4B Real
Sk-2005 SK 50.6M 1.9B Real
Uk-2005 UK 39.5M 936M Real
Soc-sinaweibo SN 58.7M 523M Real
Webbase-2001 WB 118M 1.0B Real
RMAT 8 R8 8.39M 1.07B Syn
RMAT 16 R16 16.8M 1.07B Syn
RMAT 32 R32 33.6M 1.07B Syn

V. PERFORMANCE EVALUATION

A. Experimental Methodology

1) Graph Algorithms and Datasets: We studied three com-
monly used graph algorithms: Pagerank (PR), Sparse Matrix-
Vector Multiplication (SpMV), and Hyperlink-Induced Topic
Search (HITS) to explore their distinct contributions within
Swift. These algorithms capture memory access patterns that
are common to various other graph algorithms. Our experiments
involved using both synthetic and real-world datasets as shown
in Table II. We choose these datasets because they express
diverse cache behaviors. The synthetic datasets were generated
from the RMAT graph generator [58], while the real-world
datasets were obtained from the University of Florida’s Sparse
Matrix Collection [59]. Because of the limited HBM memory
capacity (8GB per FPGA), we have postponed the exploration
of very large graphs for future research. Future HBMs are
expected to deliver up to 32GB, allowing for much larger
graphs to be run.

2) Acceleration Environment, Design, Baselines, and Perfor-
mance Metrics: In our study, we conducted a comprehensive
comparison of Swift with several state-of-the-art clusterscale
systems, including ForeGraph (FPGA-based), PowerGraph
(CPU-based), TurboGraph (FPGA-based), FPGP (FPGA-based),
FDGLib (FPGA-based), and Gunrock (GPU-based). We com-
pared Swift with Gunrock, as it was open-sourced. The
complete implementation of Swift, including I/O and FPGA
kernel invocation costs, was carried out using four Xilinx
Alveo Ultrascale+ FPGA Accelerator Cards. These cards are



TABLE III: Benchmark Tools and Hardware Specifications

Benchmark Devices per Node Architecture ≈BWa (GB/s) BWb (GB/s) BWc (GB/s) Runtime Power (W) Freqd (MHz) LUTe FFe BRAMe URAMe

Swift (FPGA) ↑ 4, 8 Alveo U280 1840 1380 68 (PCIe) 100W to 200W 150 MHz 3480K (65.4%) 2880K (25.4%) 8004 (49.3%) 3072 (80.0%)
Gunrock (GPU) [16], [57] ↑ 4 Tesla A40 3072 3072 448 (NVLink) 480W to 720W 1305 MHz
a Memory BW: Off-chip DDR4/HBM memory bandwidth for four (4) cards.
b Total Effective BW: PCIe/NVLink bandwidth between the FPGA/GPU respectively.
c Total Communication BW: Maximum bandwidth the algorithm can use upon deployment.
d Max clock freq: Maximum on-chip clock frequency per card.
e Total LUT, FF, BRAM and URAM utilization across 4 FPGAs

Fig. 4: Performance Comparison of Gunrock (GPU) and Swift (FPGA) for PageRank (left), SpMV (middle), and HITS (right)
using for 16 iterations (trials) 4 FPGAs/GPUs.

Fig. 5: Efficiency improvement for Swift over Gunrock — PR, SPMV, and HITS.

(a) 4-FPGAs performance (b) Geo mean across graph data sets (c) PR with Twitter Graph

Fig. 6: (a) Swift PageRank (PR) performance improvement (synchronous vs asynchronous) and (b) multi-FPGA scalability. (c)
shows Swift MTEPS and speedup vs. ForeGraph [36], PowerGraph [45], and Hadoop [40] on Twitter Graph.

equipped with HBM (High Bandwidth Memory) capable of
delivering up to 460GB/s per FPGA. Gunrock, on the other
hand, was tested on four NVIDIA A40 GPUs with HBM2
memory supporting 696GB/s per GPU (as shown in Table III).
Communication among FPGAs in Swift occurs via PCIe, with
data routed through the host. Our model uses PCIe’s duplex
feature for simultaneous read/write to optimize transfer, using
Gen3 x16 PCIe, which delivers up to 17 GB/s. The RTL code
was generated from the C++ HLS source using the Xilinx
HLS tool, and the design was synthesized and run on the
Xilinx Alveo FPGA board using the Xilinx Vitis tool. It is

important to note that Vitis was only able to synthesize up to
24 Processing Elements (PEs), resulting in a clock frequency
of 150 MHz. Further improvements to the synthesis, to enable
more PEs and a higher clock frequency, are ongoing work, but
this configuration already shows the potential of Swift. Timing
measurements for both Swift and Gunrock begin once the
graph is loaded onto the accelerator and end upon completion
of kernel processing, capturing all exchanges during execution.
The graph loading time is excluded, as it is a one-time cost.

Data movement is facilitated by the host using the DMA
engine, which reads graph data from the host’s allocated



memory (for H2C) and writes it directly into the FPGA’s
HBM memory during import, and vice versa for export. The
synchronization process is overlapped with the FPGA kernels
performing graph processing across multiple FPGAs. This
overlap is achieved through double buffering, out-of-order
command queuing, asynchronous event handling, and non-
blocking calls, all implemented on the host side.

B. Results

1) Throughput: Figure 4 and 5 present a comparative
analysis of Swift with prior accelerators, leading to several
noteworthy observations.

• Swift exhibits mixed performance compared to Gunrock
in Figure 4. Some datasets such as SK-2005 and UK-2005
are characterized by high regularity and cache hit rates,
and have significant benefits from the advanced caching
mechanism of the GPU. In contrast, Swift demonstrates
superior throughput with relatively unstructured datasets
over Gunrock. We could not collect results for HITS on
Swift due to out-of-memory error.

• It’s important to note that the evaluation of Gunrock is
on a GPU cluster using A40 GPUs with NVlink; the
A40 offers higher off-chip memory bandwidth (768 GB/s
vs. 345 GB/s) and NVlink offers higher inter-device
bandwidth (112 GB/s vs. 17 GB/s) compared to the Alveo
U280 FPGAs. To evaluate the benefit the GPU system
derives from NVLink vs. the slower PCIe interconenct,
we evaluated Gunrock on PageRank on R8 with NVlink
disabled. Without NVlink, Gunrock is 4.8X slower than
with NVlink, similar to the bandwidth difference. This
suggests that with a similar high-speed interconnect,
the multi-FPGA system would consistently outperform
Gunrock for all our algorithms and datasets.

• Swift exhibits superior performance over prior multi-
FPGA-based (Foregraph, Hadoop with FPGAs) and CPU-
based (Powergraph) clusterscale graph accelerators. As
shown in Figure 6c, Swift outperforms Foregraph by up
to 12x, Hadoop by 890x, and Powergraph by 57x. This
superiority can be attributed to two main factors:
– Swift effectively manages random accesses related to

vertex-to-vertex communication within each FPGA by
restructuring vertex updates during processing and lever-
aging fast URAMs to perform apply-update operations
(refer to section III-A)

– Swift’s decoupling strategy enables tight interleaving
between computation (within FPGAs) and communica-
tion (between FPGAs), as well as between computation
operations within the same FPGA. This reduces idle
times.

• We compared Swift against the bulk-synchronous GAS
approach (where no overlapping exists) to gain insights
into the impact of our decoupling approach and better
quantify the performance impact of overlapping com-
munication with computation during graph processing.
The result are plotted in Figure 6a. To achieve this we

turned off the asynchronous behavior in Swift to enforce
that each iteration completes a bulk-synchronous step
before the next commences. The results prove that Swift’s
decoupling mechanism provides about 2-3X improvement
to throughput.

2) Energy & Bandwidth Efficiency: Swift (FPGA-based) and
Gunrock (GPU-based) were run on different platforms with
different characteristics. The Alveo U280 FPGA has an off-chip
memory bandwidth of 460GB/s, while the Tesla A40 GPU sup-
ports up to 768GB/s. To compare, we use bandwidth efficiency
(MTEPS/bandwidth), and energy efficiency (MTEPS/Watt) We
query GPU power using Nvidia-smi and FPGA using Xilinx’s
xbutil. Based on our observations, Swift experiences about 1.5X
better bandwidth efficiency than Gunrock and about 2X better
energy efficiency. Further profiling of power consumption in
Swift revealed that as much as 80% of Swift’s overall power
is used by the HBM while only about 20% is spent in on-chip
FPGA activity.

3) Scalability: Figure 6b shows the throughput for a number
of datasets plotted across an increasing number of FPGAs, to
gain insights into how Swift scales. Some datasets (TW, UK
& R32) were too large to fit in a 2-FPGA setup and their
2-FPGA numbers were omitted. As shown, Swift’s throughput
increases relatively linearly as more FPGAs are added. This
linear stability facilitated by the workload balancing mechanism
(Section IV-B) allows a graph workload to be uniformly
distributed across the different FPGAs in the cluster.

VI. CONCLUSIONS

The paper introduces Swift, a clusterscale graph accelerator
for FPGAs with HBM. Swift leverages the open-source
ACTS [34] framework and addresses key challenges not present
in single-FPGA accelerators, in particular the limited bandwidth
of FPGA-to-FPGA communication and inefficiency in prior
workload balancing strategies. To overcome these challenges,
Swift allows overlapping of crucial graph processing primitives,
such as edge processing within a local FPGA, importing
of active frontiers from remote FPGAs, and exporting of
active frontiers to remote FPGAs. This approach maximizes
communication bandwidth across PCIe, off-chip (HBM/DDR),
and on-chip (SRAM), effectively concealing inter-FPGA com-
munication with intra-FPGA computation. Swift outperforms
prior FPGA-based frameworks. Results compared to Gunrock
on a multi-GPU system are mixed, because the GPU system
benefits from 5X higher inter-card bandwidth due to NVlink,
but still achieves over 2X greater energy efficiency. If the
FPGA system had a similar high-bandwidth interconnect, it
should consistently outperform the GPU.
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