K. Skadron, T. Abdelzaher, and M. R. Stan
In Proc. of the 2002 International Symposium on High-Performance
Computer Architecture, February, 2002, Cambridge, MA.
Abstract
This paper proposes the use of formal feedback control theory as a
way to implement adaptive techniques in the processor architecture. Dynamic
thermal management (DTM) is used as a test vehicle, and variations of a
PID controller (Proportional-Integral-Differential) are developed and tested
for adaptive control of fetch "toggling." To accurately test the DTM mechanism
being proposed, this paper also develops a thermal model based on lumped
thermal resistances and thermal capacitances. This model is computationally
efficient and tracks temperature at the granularity of individual functional
blocks within the processor. Because localized heating occurs much faster
than chip-wide heating, some parts of the processor are more likely to
be "hot spots" than others.
Experiments using Wattch and the SPEC2000 benchmarks show that the thermal
trigger threshold can be set within 0.2 degrees of the maximum temperature
and yet never enter thermal emergency. This cuts the performance loss of
DTM by 65% compared to the previously described fetch toggling technique
that uses a response of fixed magnitude.
Erratum
This paper contains four errors that require clarification.