
Automata-to-Routing: An Open-Source Toolchain
for Design-Space Exploration of Spatial Automata

Processing Architectures

Jack Wadden, Samira Khan, and Kevin Skadron
University of Virginia

Charlottesville, Virginia 22904
{wadden,samirakhan,skadron}@virginia.edu

Abstract—Newly-available spatial architectures to accelerate
finite-automata processing have spurred research and develop-
ment on novel automata-based applications. However, spatial
automata processing architecture research is lacking, because of a
lack of automata optimization and place-and-route tools. To solve
this issue, we propose a new, open-source toolchain–Automata-to-
Routing (ATR)–that enables design-space exploration of spatial
automata architectures. ATR leverages existing open-source tools
for both automata processing and FPGA architecture research.
To demonstrate the usefulness of this new toolchain, we use
it to analyze design choices of spatial automata processing
architectures. We first show that ATR is capable of modeling the
logic tiles of a commercially-available spatial automata processing
architecture, and identify sources of inaccuracy. We then use
ATR to compare and contrast two different routing architecture
methodologies–hierarchical and 2D-mesh–over a set of diverse
automata benchmarks. We show that shallower 2D-mesh-style
routing fabrics can route complex automata with equal channel
width, while using up to 4.2x fewer logic tile resources.

I. INTRODUCTION

As we enter the era of “big data,” quickly filtering and
extracting information from petabyte datasets and tens to
hundreds of gigabytes per second of network traffic has be-
come increasingly important. One prominent methodology for
identifying patterns in large files is to use regular expressions
and equivalent finite state machines (finite automata), which
are extremely powerful tools for pattern recognition and pattern
mining. Finite automata recognize patterns by traversing a set
of states according to transition rules guided by symbols from
an input text. If the automaton enters into a ”final” state, it
has recognized a pattern in the text, and reports the location
in the input stream and the pattern that was recognized.

Most prior research in automata processing is motivated
by the acceleration of regular-expression ruleset matching
for deep packet inspection [1, 2] and virus detection [3].
New research has identified novel, promising domains for
automata-based application acceleration, including machine
learning [4], bio-informatics [5], pattern-mining [6], entity
resolution [7], natural-langauge processing [8], high-energy
particle physics [9], and agent-based simulation and pseudo-
random number generation [10].

Finite automata simulation typically has very low arith-
metic computational intensity, and in general offers little
spatial and temporal locality in its memory accesses. Thus,
today’s server-class CPUs struggle with large-scale automata
processing (with possibly many hundreds of random memory

accesses required per cycle). Graphics processing units (GPUs)
offer a large amount of parallel resources, which can aid in
hiding the latency of DRAM accesses. However, the random
and varying parallelism of automata accesses can be hard to
map to a GPU’s SIMD architecture [11]. These off-the-shelf
von Neumann architectures struggle to meet today’s big-data
and streaming line-rate processing requirements [11].

While von Neumann CPU and GPU architectures strug-
gle with the difficult parallel memory accesses and/or local
memory capacity challenges inherent in automata processing
workloads, spatial architectures (reconfigurable networks of
processing elements such as FPGAs) excel. Spatial archi-
tectures can place-and-route automata states and connections
just like a sequential circuit, and are a natural target for the
acceleration of finite automata processing.

Prior spatial automata acceleration has investigated using
FPGA fabrics to place-and-route automata states [12, 13, 14].
New commercially available hardware such as Micron’s Au-
tomata Processor [15] uses a finite-automata-specific recon-
figurable fabric to improve state density over techniques on
more general-purpose fabrics. In order to achieve the full
potential of automata processing, it is necessary to further re-
search automata-specific spatial architectures that can identify
tradeoffs among different design decisions. However, of the
new automata processing architectures published since Micron
published details of the Automata Processor [16, 17, 18], all
are either von Neumann-based techniques or implemented in
existing FPGA fabrics.

The reason for this lack of spatial architecture research is
three-fold:

1) A benchmark suite of diverse, real-world automata
processing benchmarks was not available for fair apples-to-
apples evaluations of automata processing architectures.

2) Suitable open-source tools for the optimization of au-
tomata (tantamount to good performance on both von Neu-
mann and spatial architectures) did not exist. Thus, important
standard optimizations must be reproduced, making research
in automata processing high-effort.

3) Furthermore, no open-source tools for spatial automata
architecture research (including high-quality place-and-route
algorithms, and flexible, parametric automata-processing fabric
description languages) existed for fair evaluation of spatial
automata-processing architecture design choices.

In FCCM 2017. This is the author's version. The authoritative version appears in IEEE Xplore. 



To solve the above problems, this paper presents a new
open-source toolchain–Automata-to-Routing (ATR)–that can
place-and-route any AP application on a parameterizable spa-
tial automata processing architecture. ATR builds upon three
open-source tools: a newly available automata processing
benchmark suite, ANMLZoo [11], an open-source framework
for automata optimization and transformation, VASim [19],
and a well-known existing FPGA architecture research frame-
work, VPR [20]. Integration of these tools was not straightfor-
ward, and required additional capabilities to enforce spatial ar-
chitecture design rules on abstract automata, and emit automata
in a VPR-readable format. The ATR toolchain enables research
on novel spatial automata processing architectures, and can
be used to evaluate design choices in existing, commercially
available processors.

To show the usefulness of the ATR toolchain we use it
to explore bottlenecks in a commercially available automata
processor. We first create a baseline model of Micron’s
Automata Processor (AP) [15] to see if ATR is capable
of faithfully modeling the AP’s logic-tile architecture. We
compare placement performance of this baseline AP model
architecture to the real AP, using the ANMLZoo benchmark
suite. In many cases, the ATR toolchain can closely model the
AP’s logic-tile architecture, matching placement statistics to
within an average of 7.9% for 9/14 benchmarks. This result
indicates that we are able to accurately model the AP’s tile
architecture for most applications, and motivates future high-
level design-space exploration of automata-processing logic-
tile architectures using the toolchain.

ATR cannot closely model five benchmarks. We hypothe-
size that this is due to differences between the AP and ATR’s
routing matrix designs. Micron’s AP uses a deep hierarchical
routing matrix, while VPR is only able to model 2D-mesh
routing fabrics. Our results indicate that ATR’s shallower, 2D-
mesh routing fabric–in contrast to the AP’s deep hierarchi-
cal fabric–reduces resource requirements by up to 4.2x for
difficult-to-route benchmarks. We then identify two properties
of automata that cause inefficient resource usage on the AP:
average automaton subgraph size and average fan-out. We
show that highly connected automata that span a significant
portion of the chip are difficult to place-and-route efficiently
in the deep hierarchical design of the AP. This result provides
application specific insight into how future AP architectures
should be designed.

II. BACKGROUND

A. Automata Processing

Non-deterministic finite automata (NFAs or simply finite
automata) are defined by a set of states and transition rules
between states. Transitions in a finite automaton are driven by
an input tape of symbols that are globally visible. For each
input symbol, each active state in the automata considers the
symbol and causes transitions according to its own transition
rules. Each automaton has one or more start states that initiate
computation. Each automaton also has one or more “accept”
states. If an input symbol causes the automata to enter into an
accept state, the ID of the accept state and the current position
in the input symbol tape are reported.

Automata processing can consider any arbitrary number
of automaton graphs and activity within those graphs. On
von Neumann architectures, automata are usually simulated by
consulting the transition rules for every active automata state
in a loop. Therefore, naively, automata processing performance
is related to the number of active states or “active set,” and the
number of frequently visited states or “visited set.” Active set
determines the bandwidth required from the memory hierarchy,
and visited set determines the size of the cache or other
memory structure required to effectively serve all memory
requests [11].

Finite automata can be transformed into deterministic finite
automata or DFAs. DFAs are constructed to only ever take
one transition per input symbol, reducing active set and band-
width requirements. However, DFAs can have exponentially
more states than equivalent NFAs, greatly increasing storage
requirements and visited set. Therefore, full DFA conversion
is usually impractical for large, real-world finite automata.
Simulation of many parallel automata and required transitions
can cause poor performance in von Neumann architectures.
However, automata can be minimized to reduce redundant
states and redundant computation [11]. This process is anal-
ogous to circuit minimization techniques used in FPGA logic
synthesis tools.

Spatial architectures (i.e., architectures with arrays of re-
configurable processing elements such as FPGAs) can place-
and-route automata states in a reconfigurable fabric and do
not need to access a memory store. This allows direct NFA
implementation, and as long as the automata graph can fit
within the resources of the spatial architecture, all states can
operate in parallel and process a single input symbol per
cycle. Therefore, for large, highly active automata, spatial
architectures can be several orders of magnitude faster than
von Neumann architectures for finite automata simulation [11].

B. Micron’s Automata Processor

Micron, leveraging their experience in DRAM, has devel-
oped the Automata Processor (AP) [15]. The AP re-purposes
the parallel address decode logic and parallel bit look-up
inherent in DRAM arrays as a large set of dense parallel NFA
rule look-up-tables. Coupled with a small amount of logic,
each DRAM column can encode a state transition rule and
state storage bit, and is dubbed a “state transition element” or
STE. An illustrative diagram describing the micro-architecture
of an STE is shown in Figure 2.

An STE acts as a type of logic gate. If an STE received an
input signal on the previous cycle, it checks its DRAM column
look-up-table to see if the current symbol is in its symbol set.
If the STE matches the current input symbol, it activates and
transmits an output signal to child STEs. Each STE receives
and transmits signals to other STEs via a hierarchical, on-chip
routing matrix. Input symbol broadcast, matching, and enable-
signal broadcast happen within a single AP cycle.

The first-generation AP is divided into two disjoint “half-
cores.” Each half-core has 96 blocks. Each block has 16 Rows
and thus each AP chip has 3,072 Rows. Each Row has 16
“groups-of-two” or GoTs. Each GoT has two STEs. GoTs have
two input ports but only one output port. The output port is
MUXed to select between either STE’s output or the logical



Fig. 1. An Automata Processing state transition element or STE. STEs repur-
pose memory columns as 8-input/1-output look-up-tables used for matching
symbols from the input stream. Coupled with state logic, STEs implement a
homogeneous automata state. Similar to an FPGA, inputs and outputs to STEs
are routed through a reconfigurable routing matrix.

Fig. 2. Groups-of-Two (GoT) [21] can hold two STE nodes. Each STE has
an input, can enable its pair STE, or enable itself. The output enable signal is
chosen between the left STE, right STE, or the logical OR of both outputs.

OR or their output signals. The micro-architecture of a GoT
is detailed in Figure 1. The hierarchy and organization of AP
structures is shown in Figure 3.

Analogous to final states in a finite automata, STEs can
“report” by sending their signal from a GoT to one of two
reporting ports in a Row. Each Row’s reporting ports are stat-
ically routed to a particular portion of a reporting region [22]
and do not use the general purpose routing fabric.

The re-purposing of DRAM arrays as look-up-tables, and
the addition of a reconfigurable routing matrix, make the AP a
form of spatial architecture. While the AP has been shown
to accelerate a large number of application domains, it is
just a single design point. This paper is the first study that
quantitatively motivates changes to this architecture using a
large and diverse benchmark suite of automata applications.

III. AUTOMATA-TO-ROUTING TOOLCHAIN

This section first describes the three tools used to enable
Automata-to-Routing: ANMLZoo, VASim, and VPR. We then
describe the ATR architecture and how it enables spatial
automata processing architecture research.

A. ANMLZoo Automata Benchmark Suite

ANMLZoo [11] is a public repository of 14 automata pro-
cessing benchmarks and corresponding input stimuli. Twelve

benchmarks are from real-world use-cases for automata pro-
cessing and two are synthetic. Each benchmark is roughly clas-
sified into a “family” of automata based on the topology and
size of disjoint automata subgraphs. The first family are reg-
ular expression automata (Dotstar, Brill, PowerEN, ClamAV,
Protomata). Regular expressions tend to correspond to long,
narrow automata, with low topological complexity. “Mesh”
automata (Hamming, Levenshtein) have regular, 2-dimensional
properties and can grow quadratically with problem size.
“Widget” automata (EntityResolution, RandomForest, SPM)
are generally composed of smaller custom automaton engines
with complex topology that can vary in individual size and
complexity depending on application and problem size. Syn-
thetic automata (BlockRings, CoreRings) are designed to test
particular properties of execution engines while controlling for
automata properties such as active set and visited set.

Because both the number of automata states and routing
complexity affect fabric utilization, there is no “right” way
to standardize automata benchmarks. Instead of picking one
metric, each ANMLZoo benchmark is compiled to completely
fill the resources of an AP chip, thus standardizing for both
state and routing resources at the same time. This methodology
allows easy and fair comparisons of the capacity and routing
capabilities of the AP versus other spatial architectures.

B. VASim Virtual Automata Simulator

VASim [19] is an open-source platform for manipulation,
optimization, and simulation of finite automata. VASim offers
an easy-to-use, object oriented view of automata-processing
directed graphs and is designed from the ground up to be an
easy to understand research platform for automata processing
application and architecture research.

VASim offers traditional, well known automata minimiza-
tion passes, e.g. prefix merging. Prefix merging is an algorithm,
analogous to circuit minimization, that can greatly improve
processing performance in von Neumann automata processing
engines, and reduce resource requirements for automata imple-
mented on spatial architectures [11]. VASim allows automata
researchers access to these standard algorithms without the
need for lengthy re-implementation. Furthermore, VASim also
acts as an open-source repository for new automata opti-
mization algorithms so that researchers can easily share their
optimizations with others and use them for both application
and architecture research.

VASim can also enforce architecture specific design rules.
While von Neumann automata processing architectures gener-
ally do not place any restrictions on the number of states,
fan-in, and fan-out allowed in an automata graph, spatial
architectures are usually very sensitive to these parameters.
Just as in FPGA place-and-route, a large fan-in or fan-out
in an automaton might prevent a graph from being routable.
For ATR, we extend VASim to automatically enforce fan-in
requirements of spatial architectures.

C. Versitile Place and Route

Versatile Place and Route (VPR) [20] is a well known
open-source tool for research on tiled, “island style” spatial
architectures and is widely used in the FPGA design com-
munity. VPR allows researchers to define their own spatial



Fig. 3. Elements in the Micron AP architecture. State Transition Elements (STEs) are groupted into ”Groups of Two” (GoTs). Eight GoTs form a Row. Sixteen
Rows form a Block. Ninety-six blocks form a half-chip. Two distinct half-chips form the AP. We choose the Row as an appropriate tile for the ATR model AP
because it is the first element that has access to the AP’s routing matrix.

fabrics using an XML-based parameterizable architecture de-
scription language. The language describes fabric dimensions
(number of logic tiles wide and tall), switch-block architecture,
connection-block architecture, channel width, and logic-tile
architecture. Logic tiles can be hierarchical, and may be com-
posed of smaller elements such as basic LUTs and registers
connected using a basic, but fairly flexible interconnect library.

Once an architecture description file has been defined,
VPR takes a Berkeley logic interconnect format (.blif) logic
circuit netlist as input. VPR packs each logic tile with circuit
elements, places and optimizes placement of tiles in the
architecture, and then routes each tile within the reconfigurable
fabric.

While VPR is geared towards placement and routing of
gate-level logic, VPR also allows place-and-route of “black
box” elements, to represent hard logic such as multipliers that
may exist as non-LUT computation blocks in the FPGA fabric.
VPR is so general, that it allows the definition of any arbitrary
black box element, not just traditional FPGA logic elements.
Thus, in ATR, we use VPR to model reconfigurable arrays
of automata state transition elements, rather than traditional
logic gates. This new use-case for VPR highlights its flexibility
as a back-end architecture description and place-and-route
tool for any application domain targeting an island style
reconfigurable array of processors, as long as a benchmark
suite and optimization and transformation tools exist to support
this domain.

D. ATR Toolchain Architecture

Automata-to-routing (ATR) combines ANMLZoo [11],
VASim [19], and VPR [20] into a new toolchain for spatial
automata processing research. Figure 4 describes the high-level
architecture of the ATR toolchain. First, automata are fed into
VASim. VASim is responsible for optimizing automata (e.g.
applying prefix merging) and applying transformations to en-
force user-specified design rules. One particular transformation
required for this work, fan-in relaxation, is described below.
Once automata have been optimized and transformed to fit the
design rules of a particular architecture, VASim emits automata
netlist in a VPR readable .blif format. ATR then feeds the .blif
circuit and spatial automata processor description file defined
by the researcher to VPR. VPR then packs, places, and routes
the automata circuit into the architecture.

Fig. 4. The Automata-to-Routing or ATR toolchain flow. ANMLZoo
applications are used to evaluate automata architectures. These automata
graphs are fed to VASim which parses and optimizes the automata. VASim
can also enforce design rules on automata and automatically transform them
to fit an architecture without changing the semantics of the automata. VASim
emits these automata graphs as .blif circuit files for corresponding automata
processing spatial architecture models. VPR takes an architecture description
and places-and-routes circuits in this hypothetical architecture.

Results from place-and-route can then be used to evaluate
the “goodness” of a given architecture depending on desired
properties. ANMLZoo provides a large set of diverse bench-
marks to fairly evaluate the relative merits of hypothetical and
real automata processing architectures.

Together, ANMLZoo, VASim, and VPR form Automata-
to-Routing, a powerful spatial architecture research toolchain.
The following sections describe modifications to the open-
source VASim tool to enable this toolchain and results and
conclusions from placing and routing ANMLZoo benchmarks
on both real and ATR modeled spatial automata processing
architectures.

IV. VASIM EXTENSIONS

A. Design Rule Transformation: Fan-in Relaxation

We add one new transformation to VASim to better allow
it to serve spatial-architecture researchers: fan-in relaxation.



While abstract automata states can have arbitrarily large fan-
in, spatially-routed automata can have fan-in restrictions based
on the underlying spatial architecture’s routing matrix and tile
architecture. Fan-in relaxation duplicates a state that has a fan-
in that violates a maximum defined by the architect.

When duplicating a state, inputs to the original state are
divided among the new duplicate states, while output edges
are copied. A picture illustrating a simple example of input
duplication is show in Figure 5. If the fan-in was N before
relaxation, fan-in is guaranteed to be at most ceil(N/2) after
relaxation. Note that this technique doubles the fan-in of the
child states of the duplicated state. This algorithm proceeds
in a breadth-first manner to ensure that the required fan-in is
enforced for all nodes in a single pass.

Fig. 5. Fan-in relaxation example. The maximum fan-in is reduced from 4
to 2 by duplicating a state.

Three applications from the ANMLZoo automata bench-
mark suite have high fan-ins: ClamAV, EntityResolution, and
Snort. All three required the fan-in relaxation transformation
before successful place-and-route on the architectures mod-
elled below.

B. Design Rule Transformation: Group-of-Two Grouping

In order to save logic and routing resources on-chip, the AP
D480 couples every two STEs into a Group-of-Two or GoT. A
Group-of-Two allows configurable connectivity between a pair
of STEs without consuming global routing resources [21]. A
figure describing the GoT functionality is shown in Figure 6.
VPR is currently unable to model the logical OR of signals,
and so, we implement a pass in VASim to identify pairs of
STEs that might use this OR-gate and pre-group them into a
pair.

C. .blif Emission Algorithm

VASim is also extended to convert abstract automata to
.blif circuit files readable by VPR. .blif files have three distinct
sections that define a circuit. The first section defines the top
level input/output signals. The second section describes all
instantiations of circuit elements. The third section describes
module definitions of each circuit element.

We guide VASim to emit a single clock input pin and no
output pins. Because I/O is handled by specialized IP blocks
in the AP and not by individual pins in the chip, we essentially
ignore I/O pins and turn off dangling block removal in VPR.
Output reporting signals for STEs are left unconnected to better
match the AP’s statically routed reporting architecture [22].

We then guide VASim to emit a circuit element for each
STE in the automata graph. Each STE lists its input-enable

ports, assigning the wire names of each STE that connects
to it. It also lists a single output wire that can connect
to other STEs in the netlist. We finally guide VASim to
emit circuit element module definitions for STEs. While this
methodology is specific to Micron’s AP, ATR is flexible to
support the addition of any arbitrary processing elements and
I/O architectures. Thus, allowing researchers to investigate the
impact of new, hypothetical automata-processing elements.

V. MODELLING MICRON’S AUTOMATA PROCESSOR

In order to demonstrate the usefulness of ATR, we first
attempt to model Micron’s Automata Processor in the VPR
architecture description language as accurately as possible.
By attempting to accurately model the AP, we can create a
baseline architecture from which we can evaluate potential
architectural changes. Thus, researchers will be able to explore
new spatial architecture design parameters (such tile com-
plexity or channel width), new hardware features, or entirely
new spatial architectures for automata processing. Previously,
no such capability was available to researchers, inhibiting
advances in this area.

A. Defining A Baseline Tile Architecture

Because the AP’s routing matrix is hierarchical in nature,
and the VPR tool assumes a 2D mesh-style routing fabric, the
AP architecture cannot be modeled 100% faithfully. We must
choose a layer of the AP’s hierarchy (described in Figure 3)
to expose to VPR’s 2D routing fabric as the base level tile to
model. We choose the AP Row as the tile abstraction for our
baseline AP model. The AP Row is the first AP structure to
directly connect the global reconfigurable routing network [15]
and thus is a natural (although admittedly imprecise) structure
to implement as the base tile.

B. Defining A Baseline Routing Network

Once the baseline tile abstraction has been defined, we
can design our baseline routing architecture to model the
corresponding level of the AP’s routing network.

Detailed architectural descriptions of the AP’s routing net-
work have not been made publicly available. However, patents
filed by Micron that correspond to the AP give us a high-level
idea of how tiles might connect to the routing matrix [21].
Figure 6 describes the assumed routing matrix organization of
the AP. This organization is presumptive and not authoritative.
The rest of this paper refers to the presumptive modeled
architecture as the “model AP.”

Each model-AP Row has 8 input and 8 output connec-
tions to the global routing matrix. GoTs within a Row can
receive input from any of these input wires via the intra-
row interconnect matrix, and can send output to a single
output wire. GoTs can choose output from either internal
STE, or the OR of their output. VPR is unable to model the
GoT’s OR gate functionality, and so these structures must be
identified using VASim’s GoT identification pass (discussed in
Section IV-B) prior to VPR packing and placement. Final states
report activations via two reporting ports statically placed in
each row structure.

The model-AP Row routing switch block is 16 tracks wide,
suggesting a channel width of 16. Because channel width and



Fig. 6. Model-AP routing architecture configuration with channel width of
16, and Row architecture with 8 Groups-of-Two (GoT). Each GoT has two
inputs, but selects a single output between either STE or the OR or their
outputs as detailed in Figure 1.

wire segment length are co-designed and unknown for the real
AP hardware, we pick a segment length of one. We leave
refinement of these parameters for future work.

VI. PLACE-AND-ROUTE RESULTS

We use the ATR toolchain to place-and-route each AN-
MLZoo automata benchmark on our baseline representative
AP architecture. Three ANMLZoo benchmarks (ClamAV, En-
tityResolution, and Snort) were transformed using fan-in relax-
ation to have maximum fan-ins of 8. We measure and report the
number of rows required to successfully pack, place, and route
each benchmark. VPR was configured to prevent unrelated
clustering. Unrelated clustering allows automata states from
different disjoint subgraphs to be placed into the same tile.
While this generally allows for a denser packing, it can greatly
increase channel width requirements, and is turned off to
satisfy the model AP channel width requirements. Place-and-
route results are presented below.

A. Tile Resource Requirements

Figure 7 plots the tiles (AP Rows) required to place and
route each ANMLZoo automata benchmark. The first bar
represents the performance of ATR with VASim’s automata
prefix-merging optimizations turned off. The second bar rep-
resents the performance of ATR with VASim’s prefix-merging
optimizations turned on. VASim’s optimizations attempt to
simulate optimizations performed in Micron’s automata com-
piler, and are thus always considered for fair model com-
parison. The third bar represents performance of ATR with
optimizations and GoT grouping turned on. GoT grouping
only makes a difference if automata states benefit from the
internal OR gate functionality. Figure 7 also plots the number
of tiles the Micron AP compiler requires to place-and-route
each ANMLZoo benchmark.

Some model AP results closely match the results from
Micron’s compiler and architecture. For ClamAV, Dotstar,
Fermi, Protomata, RandomForest (RF), Snort, and BlockRings,
the number of model AP tiles are within 2.1% − 9.5% of
the real AP compiler stack and architecture. These particular
application results indicate that we are able to model the AP
architecture and compiler stack.

Some applications actually require fewer tile resources
than the AP when placed-and-routed in our model. For Brill,
EntityResolution (ER), Hamming, Levenshtein, and SPM, the
number of model AP tiles is considerably lower than the real
AP. This indicates that, for these applications, the model AP
architecture performs better than the real AP hardware and
compiler stack. We discuss possible reasons for improved per-
formance over the AP architecture and suggest improvements
to the AP to take advantage of these results in Section VII.

B. Routing Resource Requirements

VPR uses a binary search to identify the smallest number
of required tracks per channel to successfully route a circuit
in a reasonable amount of time. This metric can be used as a
proxy for how difficult the placed circuit was to route. A higher
minimum required channel width indicates a more difficult
routing problem, and suggests that the architecture requires
at least that many routing tracks to successfully implement
that circuit. Figure 8 shows the minimum channel width
requirements derived by VPR for each ANMLZoo benchmark
for the model AP.

Most benchmarks can be routed with 6 tracks per channel.
However, three applications required 14 tracks per channel. All
applications have a minimum channel width requirement less
than the model AP’s 16-wide channels.

VII. EVALUATING THE AP’S ROUTING MATRIX USING
ATR MODELLING

While the Automata Processor is capable of routing many
applications in ANMLZoo with the same efficiency as the
model AP, the previous section identified five benchmarks
(Brill, EntityResolution, Hamming, Levenshtein, and SPM)
where the model AP performs much better. In the case of
Levenshtein, the model AP is able to route all automaton
subgraphs while using 4.2x fewer tile resources.

We suspect the reason for this improvement is the dif-
ference in the routing matrix topology. The AP’s hierarchi-
cal routing matrix has four levels [15]. In contrast, VPR’s
underlying routing matrix assumes a 2D-mesh, island-style
architecture with only one layer. Because they lack a deep
hierarchy, 2D-mesh fabrics are much more flexible in the graph
size and graph topologies they can place-and-route efficiently.
To highlight this difference between tree-based routing fabrics
and mesh-based routing fabrics, we plot each ANMLZoo
benchmark as a function of its average automaton subgraph
size and the average node fan-out. These results are shown in
Figure 9.

The darker region encompassing in Figure 9 highlights
where automata are difficult to route using a hierarchical
routing matrix. Importantly, these automata have both high
connectivity, and large subgraph sizes.

Brill is a large tree structure with a single, very large
automaton subgraph. However, large automaton subgraphs are
not enough to cause poor performance in the AP’s routing
matrix. For instance, CoreRings and RandomForest both have
average automata subgraph sizes greater than Brill. The key
difference is that Brill has a large enough average fan-out
(1.49) that most likely causes congestion in the roots of the



Fig. 7. Compilation results from our AP model implemented in the ATR toolchain and compiled by Micron’s AP compiler for the first generation AP D480
chip. “opt” refers to automata graphs optimized using VASim’s prefix-merging optimization. “GoT” refers to graphs with pre-grouped GoTs using VASim’s GoT
grouping pass. ATR is capable of accurately modeling the resource usage of the AP in many cases. Large deviations are due to limitations of VPR’s support
for deep hierarchical routing matrices.

Fig. 8. Minimum channel-width requirements determined by VPR for each
ANMLZoo benchmark for the model AP. All benchmarks are able to be
placed-and-routed successfully using less than 16 routing tracks per channel,
the maximum channel width of the model AP routing matrix.

Fig. 9. Each ANMLZoo benchmark plotted as a function of the average
size of each disjoint automaton subgraph, and the average fan-out of each
node. The darker region highlights an area where automata are larger, with
larger fan-out. EntityResolution, Levenshtein, Hamming, Brill, and SPM are
all applications where 2D-mesh, spatial-automata processors perform much
better than the 4-layer hierarchical routing matrix of the AP.

AP’s hierarchical routing matrix. CoreRings and RandomFor-
est are essentially very large loops, that can be routed fairly
easily through the routing hierarchy, even though they are
larger than the Brill automaton.

However, some applications like Fermi have relatively
similar fan-out (1.48), but route efficiently in the AP. Fermi has

relatively complex connectivity, but each automaton subgraph
is so small that it is able to fit within just a few tiles. As long as
the connections between tiles are relatively few, the AP is able
fit these automaton into the leaves of the hiearchical routing
matrix without causing congestion in the roots.

EntityResolution and Levenshtein represent more challeng-
ing cases, where both the average automaton subgraph size
and fan-out are higher. EntityResolution and Levenshtein must
use 2.7x, and 4.2x more tiles respectively when routed using
the hierarchical routing matrix than the model AP’s 2D-mesh
routing fabric.

While the above applications are not easily routed using
the AP’s hierarchical routing matrix, most ANMLZoo ap-
plications, especially those that are regular-expression based,
perform very well. Because regular-expression processing is
such an important motivation for automata processing acceler-
ation, we conclude that the AP’s routing matrix architecture is
suitable for regular expression rule-set acceleration in most
cases. However, for some applications such as Levenshtein
edit-distance automata (an extremely important string compari-
son kernel for a wide variety of application domains), the AP’s
routing matrix is not an ideal design.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented the Automata-to-Routing (ATR)
toolchain. ATR is a full-stack, automata-processing toolchain
that enables research of spatial automata-processing architec-
tures. Prior to ATR, no research toolchain for spatial automata-
processing architecture research toolchain existed, preventing
exploration of this exciting new class of architectures. ATR
combines three different existing open-source software tools–
the ANMLZoo [11] benchmark suite, the VASim [19] open
finite automata simulator and optimization framework, and
VPR [20], a flexible reconfigurable array simulator and place-
and-route tool–into one toolchain that allows researchers to
experiment with spatial, automata architectures. ATR enables
evaluation of new and existing automata processing-tile orga-
nizations, and routing-matrix architectures.

We show that ATR is capable of modelling the logic tiles
of existing spatial, reconfigurable, automata-processing archi-
tectures such as Micron’s Automata Processor with sufficient
accuracy to enable research on new architectures for spatial
automata processing..



We present a study–enabled by ATR–comparing and con-
trasting performance of the AP’s hierarchical routing matrix
against a proposed 2D-mesh style routing matrix. We identify
four benchmarks where a 2D-mesh routing matrix performs
better, using up to 4.2x fewer logic tiles. We also characterize
two properties of automata graphs–average state fan-out and
average number of subgraph states–that correlate with poor
routability on the AP.

Future work is needed on further extensions to the ATR
tools, design-space exploration of spatial automata processing
tile microarchitectures, identifying improved tile microarchi-
tectures. Future work may also include area and power mod-
elling of spatial automata-processing architectures to identify
additional trade-offs between logic-tile and routing resources.

IX. ACKNOWLEDGEMENTS

This work was partly funded by C-FAR, one of six centers
of STARnet, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA, Achievement Rewards
for College Scientists (ARCS), Micron Technologies, and NSF
grant no. EF-1124931

REFERENCES

[1] M. Roesch, “Snort: Lightweight intrusion detection for
networks.,” in Proceedings of the USENIX Large Instal-
lation Systems Administration Conference (LISA), 1999.

[2] V. Paxson, “Bro: a System for Detecting Network Intrud-
ers in Real-Time,” Computer Networks, vol. 31, no. 23-
24, pp. 2435–2463, 1999.

[3] ClamAV, “ClamAV Rules.” Available at https://www.
clamav.net/.

[4] T. Tracy II, Y. Fu, I. Roy, E. Jonas, and P. Glendenning,
“Towards machine learning on the automata processor,”
in Proceedings of the International Conference on High
Performance Computing, Springer, 2016.

[5] T. Tracy II, M. Stan, N. Brunelle, J. Wadden, K. Wang,
K. Skadron, and G. Robins, “Nondeterministic Finite
Automata in Hardware—the Case of the Levenshtein
Automaton,” Proceedings of Architectures and Systems
for Big Data (ASBD), in conjunction with ISCA, 2015.

[6] K. Wang, E. Sadredini, and K. Skadron, “Sequential
pattern mining with the Micron Automata Processor,”
in Proceedings of the ACM International Conference on
Computing Frontiers (CF), 2016.

[7] C. Bo, K. Wang, J. J. Fox, and K. Skadron, “Entity Reso-
lution Acceleration using Micron’s Automata Processor,”
Proceedings of Architectures and Systems for Big Data
(ASBD), in conjunction with ISCA, 2015.

[8] K. Zhou, J. J. Fox, K. Wang, D. E. Brown, and
K. Skadron, “Brill tagging on the Micron Automata
Processor,” in Proceedings of the IEEE International
Conference on Semantic Computing (ICSC), pp. 236–
239, 2015.

[9] M. H. Wang, G. Cancelo, C. Green, D. Guo, K. Wang,
and T. Zmuda, “Using the Automata Processor for fast
pattern recognition in high energy physics experiments—
a proof of concept,” Nuclear Instruments and Methods in
Physics Research, 2016.

[10] J. Wadden, N. Brunelle, K. Wang, M. El-Hadedy,
G. Robins, M. Stan, and K. Skadron, “Generating ef-
ficient and high-quality pseudo-random behavior on Au-

tomata Processors,” in Proceedings of the 2016 IEEE 34th
International Conference on Computer Design (ICCD),
pp. 622–629, Oct 2016.

[11] J. Wadden, V. Dang, N. Brunelle, T. Tracy II, D. Guo,
E. Sadredini, K. Wang, C. Bo, G. Robins, M. Stan, and
K. Skadron, “ANMLZoo: A benchmark suite for explor-
ing bottlenecks in automata processing engines and archi-
tectures,” in Proceedings of the IEEE International Sym-
posium on Workload Characterization (IISWC), 2017.

[12] Y. H. E. Yang and V. K. Prasanna, “Space-time tradeoff
in regular expression matching with semi-deterministic
finite automata,” in Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM),
2011.

[13] X. Wang, “Techniques for efficient regular expression
matching across hardware architectures,” Master’s thesis,
University of Missouri-Columbia, 2014.

[14] M. Becchi, Data structures, algorithms and architectures
for efficient regular expression evaluation. PhD thesis,
Washington University in St. Louis, 2009.

[15] P. Dlugosch, D. Brown, P. Glendenning, M. Leven-
thal, and H. Noyes, “An efficient and scalable semi-
conductor architecture for parallel automata processing,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 12, pp. 3088–3098, 2014.

[16] Y. Fang, T. T. Hoang, M. Becchi, and A. A. Chien,
“Fast support for unstructured data processing: the uni-
fied automata processor,” in Proceedings of the ACM
International Symposium on Microarchitecture (MICRO),
pp. 533–545, 2015.

[17] K. Atasu, F. Doerfler, J. van Lunteren, and C. Hagleitner,
“Hardware-accelerated regular expression matching with
overlap handling on ibm poweren processor,” in Proceed-
ings of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 1254–1265, 2013.

[18] V. Gogte, A. Kolli, M. J. Cafarella, L. D’Antoni, and T. F.
Wenisch, “HARE: Hardware accelerator for regular ex-
pressions,” in Proceedings of the 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO),
pp. 1–12, Oct 2016.

[19] J. Wadden and K. Skadron, “VASim: An open virtual au-
tomata simulator for automata processing application and
architecture research,” Tech. Rep. CS2016-03, University
of Virginia, 2016.

[20] V. Betz and J. Rose, “VPR: A new packing, placement
and routing tool for FPGA research,” in Proceedings
of the International Workshop on Field Programmable
Logic and Applications, pp. 213–222, Springer, 1997.

[21] D. Brown, H. Noyes, I. Xu, and P. Glendenning, “Meth-
ods and systems for routing in a state machine,” Mar. 25
2014. US Patent 8,680,888.

[22] Micron Inc., “Designing for the Micron D480
Automata Processor.” http://www.micronautomata.
com/documentation/anml documentation/c D480
design notes.html.




