

Cell Broadband Engine Architecture Processor

> Ryan Layer Ben Kreuter Michelle McDaniel Carrie Ruppar

Cell Processor Architecture

Cell SPE Architecture

Each SPE is an independent vector CPU capable of 32 GFLOPs or 32 GOPs (32 bit @ 4GHz.)

Element Interconnect Bus (EIB)

- Communication bus connecting the on-chip elements including an arbitration unit (traffic light)
- Circular ring of four 16B wide unidirectional channels
 - Counter-rotate in pairs
 - Each channel can handle up to 3 transactions concurrently
 - Each participant on bus has a 16B read port and 16B write port

Flexibility of Cell's Resources

- Job Queue
 - PPE maintains job queue, schedules jobs in SPEs, monitors progress
 - SPE runs "mini kernel" to fetch and execute job and synch with PPE
- Self-multitasking of SPEs
 - Kernel and scheduling distributed across SPEs
 - Task synchronization done via mutexes or semaphores
- Stream Processing
 - Each SPE runs a distinct program

Memory Hierarchy: PPE

- PPE Power Processor Element
- Caches:
 - Instruction Cache: 32K; 2-way set associative
 - L1 Cache: 32K; 4-way set associative
 - L2 Cache: 512K; 8-way set associative
- Contains Memory Management Units for accessing memory

Memory Hierarchy: SPE

Cell SPE Architecture

Each SPE is an independent vector CPU capable of 32 GFLOPs or 32 GOPs (32 bit @ 4GHz.)

- SPE Synergistic
 Processor Element
- Vector CPU
- Local Store: 256K, each,
- Contain Memory Management Units, rather than coherency mechanism

Memory Hierarchy: XDR Interface

- Cell's DRAM interface
- Dual channel Rambus XIO macro which interfaces to Rambus XDR memory
- Each channel is 36-bits wide
- Cell's XDR memory bus runs at 400MHz
- 3.2GHz data signaling rates => memory bandwidth of 25.6GB/s

PPE Microarchitecture

- Out of order execution
- Dynamic branch prediction
 - Specialized "branch processor" exposes control of branching and branch prediction to the software
- 32k L1 D\$, 32k L1 I\$, 512k L2
- VMX unit SIMD floating point (not part of the SPE!)

SPE Microarchitecture

- Static branch prediction
- Dual issue one compute, one memory instruction per cycle
- No cache not really needed
- 128 registers

Synergistic Processor Unit (SPU) ISA

- SPU ISA != PPE ISA (VMX)
- Vector instructions
- $\frac{1}{2}$ the power, $\frac{1}{2}$ the area, same performance
 - no cache: local store
 - no branch prediction: hint-for-branch

Questions?

References

Cell Architecture Explained, Version 2:

http://www.blachford.info/computer/Cell/Cell0_v2.html

Wikipedia:

http://en.wikipedia.org/wiki/Cell_(microprocessor)

SPU Instruction Set Architecture:

https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/76CA6C7304210F398725706000 6F2C44

Cell software development:

http://en.wikipedia.org/wiki/Cell_software_development

The Cell project at IBM Research:

http://www.research.ibm.com/cell/SPU.html