
Reducing Exit Stub Memory Consumption
in Code Caches

Apala Guha, Kim Hazelwood, and Mary Lou Soffa

Department of Computer Science
University of Virginia

Abstract. The interest in translation-based virtual execution environ-
ments (VEEs) is growing with the recognition of their importance in a
variety of applications. However, due to constrained memory and energy
resources, developing a VEE for an embedded system presents a number
of challenges. In this paper we focus on the VEE’s memory overhead,
and in particular, the code cache. Both code traces and exit stubs are
stored in a code cache. Exit stubs keep track of the branches off a trace,
and we show they consume up to 66.7% of the code cache. We present
four techniques for reducing the space occupied by exit stubs, two of
which assume unbounded code caches and the absence of code cache in-
validations, and two without these restrictions. These techniques reduce
space by 43.5% and also improve performance by 1.5%. After applying
our techniques, the percentage of space consumed by exit stubs in the
resulting code cache was reduced to 41.4%.

1 Introduction

Translation-based VEEs are increasingly being used to host application soft-
ware because of their power and flexibility. The uses of VEEs include binary
retranslation [1,2], program shepherding [3,4], power management [5] and many
others. Although VEEs have been used in PC environments, they have not been
thoroughly explored in the embedded world.

Embedded systems are widely used today. Personal mobile devices, sensor net-
works, and consumer electronics are fields that make extensive use of embedded
technology. VEEs can have the same benefits in the embedded world as they do
in the general-purpose world. For example, there are many different embedded
instruction-set architectures, and as a result, little reuse of embedded software.
Binary retranslation VEEs can address this issue. Security is important on em-
bedded devices such as PDAs which often download third-party software, and
program shepherding VEEs are important in this respect. In some situations,
VEEs may be more important for embedded devices than general-purpose de-
vices. For example, power management VEEs are arguably more important to
battery-powered embedded devices than general-purpose machines.

VEEs introduce an extra software layer between the application and the hard-
ware and use machine resources in addition to the guest application. For instance,

K. De Bosschere et al. (Eds.): HiPEAC 2007, LNCS 4367, pp. 87–101, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



88 A. Guha, K. Hazelwood, and M.L. Soffa

Strata [3,6] has an average slowdown of 16% for the x86 architecture. Meanwhile,
DynamoRIO has been shown to have a 500% memory overhead [7].

A code cache is used in most VEEs to store both application code and exit
stubs. If the next instruction to be executed is not in the code cache, exit stubs (or
trampolines) are used to return control to the VEE to fetch the next instruction
stream. It is beneficial to reduce the space demands of a code cache. First, a
small code cache reduces the pressure on the memory subsystem. Second, it
improves instruction cache locality because the code is confined to a smaller
area within memory, and is therefore more likely to fit within a hardware cache.
Third, it reduces the number of cache allocations and evictions. Solutions for
managing the size of code caches (using eviction techniques) have been proposed
elsewhere [7], yet those studies focused on code traces. To our knowledge, this is
the first body of work that focuses specifically on the memory demands of exit
stubs. Furthermore, this is the first code cache investigation that focuses on an
embedded implementation.

Exit stubs typically have a fairly standard functionality. They are duplicated
many times in the code cache and are often not used after the target code region
is inserted into the code cache, providing ample opportunity for optimization.

In this paper, we explore the memory overhead of stubs in a translation-
based VEE and examine techniques for minimizing that space. We present four
techniques that work for both single-threaded and multi-threaded programs. The
first two techniques delete stubs that are no longer needed but assume unlimited
code caches and the absence of flushing. They remove stubs in their entirety
when these stubs are guaranteed not to be needed anymore. Although there are
many such applications which do not violate these assumptions and still have a
reasonable code cache size, it is also important to be able to handle situations
where flushing occurs. The last two techniques, therefore, lift these restrictions
and identify stub characteristics that can reduce space requirements.

The specific contributions of this paper are:

– A demonstration of the overhead of exit stubs in a code cache.
– The presentation of two schemes that use a deletion approach to reduce the

space occupied by stubs in an application independent and partially VEE-
independent manner.

– The presentation of two schemes which identify characteristics of stubs which
can be further optimized to minimize their space requirements.

– Experimental results that demonstrate these schemes not only save space
but also improve performance.

In Sect. 2, we provide an overview of the internal workings of a VEE, including
the translation engine, the code cache, and an overview of exit stubs. In Sect. 3,
we describe the four techniques developed for reducing the size of the code cache
by optimizing the exit stubs. The experimental evaluation of our techniques
is presented in Sect. 4. We describe related work in Sect. 5 and conclude in
Sect. 6.



Reducing Exit Stub Memory Consumption in Code Caches 89

OS + Hardware

Application

Translation
Engine

Code Cache

Application Code
Request for Translation

Translated Code Region

Executable Code

Fig. 1. Block diagram of a typical translation-based VEE

2 Background

A VEE hosts and controls the execution of a given application. It can dynam-
ically modify the application code to achieve functionality that is not present
in the original application. Fig. 1 is a simplified diagram of a translation-based
VEE. The VEE is shown to consist of two components – a translation engine and
a software code cache. The software code cache is a memory area managed by
the translator, which contains code from the guest application. The translation
engine is responsible for generating code and inserting it into the code cache
dynamically. This code executes natively on the underlying layers. While the
VEE may appear below the OS layer or may be co-designed with the hardware,
the software architecture still corresponds to Fig. 1.

2.1 Translation Engine

The translation engine dynamically translates and inserts code into the code
cache. As the cached code executes, it may be necessary to insert new code into
the code cache. Requests to execute target code are generated on the fly and
sent to the translation engine. After generating and inserting the desired code,
the translation engine may patch the requesting branch to point to the newly
inserted code. If the requesting branch is a direct branch or call, patching is
always done to link the branch to its target. However, in the case of indirect
branches, linking does not occur because the branch target may change.

2.2 Code Cache

The code cache is a memory area allocated to store the guest application code.
It may be allocated as a single contiguous area of memory or in regions (called
cache blocks), which may appear at arbitrary memory locations. If composed of
several blocks, these blocks may be allocated at one time or on demand.

The code cache consists of application code and exit stubs. Application code
is fetched from the guest application (and may or may not appear in the same
physical order as in the original application). Some extra code may be interleaved
with the original code to achieve the VEE’s goal. For example, Pin [8] interleaves
instrumentation code with the guest application code. The application code can



90 A. Guha, K. Hazelwood, and M.L. Soffa

(a) Traces and stubs filled from opposite
ends of code cache

(b) Traces and stubs contiguous in
code cache

Fig. 2. Two typical arrangements of traces and exit stubs in code cache

be cached at several different granularities, e.g., traces (single-entry, multiple-
exit code units), basic blocks (single-entry, single-exit code units), or pages. For
every branch instruction in the application code, there exists an exit stub in the
code cache.

Fig. 2 shows two typical arrangements of application code and exit stubs in
the code cache. In Fig. 2, the code is inserted into the code cache as traces (which
is common). A trace has several trace exits. There is a stub for each trace exit,
and the stubs for a particular trace form a chain. Each block marked Exit in
Fig. 2 symbolizes a chain of stubs for a given trace. As shown in Fig. 2(a), a code
cache may be filled by inserting traces and stubs in different portions (opposite
ends, for example) of the code cache, or a trace and its corresponding stubs can
be contiguous in the code cache as shown in Fig. 2(b).

If a point is reached when there is not enough free space for insertion of a
code unit into the code cache, new cache blocks are allocated. If the code cache
is limited and the limit is reached, or allocation is not allowed, then some cached
code must be deleted to make room for the new code. Deletions may occur at
several granularities: (1) the entire code cache may be flushed, (2) selected cache
blocks may be flushed, (3) selected traces may be flushed. Whenever a code unit
is marked for flushing, all branch instructions that point to it must be redirected
to their stubs, so that control may return to the translator in a timely manner.
When all the incoming links for the code unit are removed, it can be flushed.
Flushing may occur all at once, or in a phased manner. For example, for multi-
threaded host applications, code caches are not flushed until all threads have
exited the corresponding code cache area.

2.3 Exit Stubs

An exit stub is used to return control to the translator and communicate the
next instruction to translate, if it is not available in the code cache. Some code
and data are needed to transfer control to the translator. The code will typically
consist of saving the guest application’s context, constructing arguments to be
passed or loading the address of previously stored arguments and branching into



Reducing Exit Stub Memory Consumption in Code Caches 91

1 sub sp, sp, 80h
2 stm sp, [mask = 0xff]
3 ld r0, [addr of args]
4 ld pc, [addr of handler]

(a) Pin’s exit stub code for ARM

1 mov eax, [predef memory location]
2 mov [addr of stub data], eax
3 jmp [addr of translator handler]

(b) DynamoRIO’s exit stub code for x86

1 pusha
2 pushf
3 push [target PC]
4 push [fragment addr]
5 push reenter code cache
6 jmp [addr of fragment builder]

(c) Strata’s exit stub code for x86

Fig. 3. Examples of exit stub code from different VEEs

the translator handler. The data typically consists of arguments to be passed,
such as the target address for translation.

Fig. 3 shows the exit stub code for three different VEEs – Pin, DynamoRIO,
and Strata. In line 1 of Fig. 3(a), the application stack pointer is shifted to
make space for saving the context. In line 2, the application context is saved
using the store multiple register (stm) command. The mask 0xff specifies
that all 16 registers have to be saved. In line 3, register r0 is loaded with the
address of translator arguments. In line 4, the program counter is loaded with
the translator handler’s address, which is essentially a branch instruction.

Fig. 3(b) shows DynamoRIO’s exit stub code. The eax register is saved in a
pre-defined memory location in line 1. In line 2, eax is loaded with the address
of exit stub data and line 3 transfers control to the translator handler.

Fig. 3(c) shows a Strata exit stub. The context is saved and arguments are
passed to the translator. The address for reentering the code cache is saved for
tail call optimization. The last instruction transfers control to the translator.

Exit stubs have associated data blocks that are arguments passed to the trans-
lator. The exact arguments depends on the particular VEE. In Pin, the target
address for the branch instruction corresponding to the stub is stored. The exit
stub can correspond to direct or indirect branches or calls to emulate code and
each branch is serviced differently. So, the exit stub stores the type of branch
it services, and other data, such as a hash code corresponding to the region of
code requested.

Fig. 4 shows two possible layouts of stubs for a given trace. In Fig. 4, stubs 1
and 2 are constituents of the Exit block in Fig. 2. The code and data for each
stub may appear together as shown in Fig. 4(a), or they may be arranged so
that all the code in the chain of stubs appear separately from all the data in the
chain of stubs, as shown in Fig. 4(b). As we show in Sect. 3.3, the first layout
conserves more space.



92 A. Guha, K. Hazelwood, and M.L. Soffa

Stub #1 Code
Stub #1 Data
Stub #2 Code
Stub #2 Data

(a) Intermixed stub code and data

Stub #1 Code
Stub #2 Code
Stub #1 Data
Stub #2 Data

(b) Separated stub code and data

Fig. 4. Two arrangements of stubs for a given trace in the code cache

Initially, all branches are linked to their corresponding exit stubs. However,
when a branch gets linked to its target, these exit stubs become unreachable.

Table 1. Percentage of code cache consisting of exit stubs

VEE Exit Stub Percentage
Pin 66.67%
Strata 62.59%
DynamoRIO 62.78%

Table 1 shows the space occupied by exit stubs in Pin, Strata and Dy-
namoRIO [9]. As the numbers demonstrate, the large amount of space occupied
by stubs show that a lot of memory is being used by code that does not cor-
respond to the hosted application. The data for Pin and Strata were obtained
using log files generated by the two VEEs. The data for DynamoRIO[9] was
calculated from space savings achieved when exit stubs are moved to a separate
area of memory.

3 Methodology

In this section, we describe our approaches for improving the memory efficiency of
VEEs by reducing the space occupied by stubs. We describe four techniques, all
of which are applicable to both single-threaded and multi-threaded applications.
The first set of solutions eliminate stubs, while the latter set reduces the space
occupied by stubs. However, the first two approaches are restricted to the case
of unbounded code caches where no invalidations of cached code occur. The last
two approaches are free of these restrictions.

3.1 Deletion of Stubs (D)

In the deletion of stubs (D) scheme, we consider deleting those stubs that become
unreachable when their corresponding branch instructions are linked to their
targets. We delete only those exit stubs that border on free space within the
code cache. For example, assume the code cache is filled as in Fig. 2(a) and the
stubs are laid out as in Fig. 4(a). If the branch corresponding to stub 1 is linked



Reducing Exit Stub Memory Consumption in Code Caches 93

1 if (branch corresponding to an exit stub is linked to a trace)
2 if (end of exit stub coincides with free space pointer)
3 move free space pointer to start of exit stub

Fig. 5. Algorithm for deletion of stubs

and stub 1 is at the top of the stack of exit stubs, stub 1 can be deleted. We
chose not to delete stubs that are in the middle of the stack of exit stubs, as this
will create fragmentation which complicates the code cache management. (We
would have to maintain a free space list which uses additional memory. In fact,
each node on the free space list will be comparable to the size of the exit stub.)
Deletions are carried out only in those areas of the code cache where insertions
can still occur. For example, if the code cache is allocated as a set of memory
blocks, deletions are only carried out in the last block.

Fig. 5 shows our stub deletion algorithm. A code cache has a pointer to the
beginning of free space (as shown in Fig. 2) to determine where the next insertion
should occur. If the condition in line 1 of Fig. 5 is found to be true, the free space
pointer and the exposed end of the stub are compared in line 2. If the addresses
are equal, then the stub can be deleted by moving the free space pointer to the
other end of the stub and thereby adding the stub area to free space, as shown
in line 3.

The limitation of this scheme is that the trace exits whose stubs have been
deleted may need to be unlinked from their targets and reconnected to their
stubs during evictions or invalidations. So, this scheme can work only when
no invalidations occur in the code cache (because we would need to relink all
incoming branches back to their exit stubs prior to invalidating the trace). It
can work with a bounded code cache only if the entire code cache is flushed at
once, which is only possible for single-threaded applications.

We did not explore other techniques such as compaction and regeneration
of stubs for this paper. We believe that a compaction technique is complicated
to apply on-the-fly and needs further investigation before its performance and
space requirements can be optimized enough for it to be useful. Regeneration
of stubs on the other hand, creates a sudden demand for free code cache space.
This is not desirable because regeneration of stubs will be needed when cache
eviction occurs and cache eviction usually means that there is a shortage of space.
Creating space by removal of traces relates to the same problem of requiring the
stubs for branches which link to these traces.

3.2 Avoiding Stub Compilation (ASC)

In Scheme D, many stubs whose corresponding trace exits were linked to their
targets could not be deleted because the stubs were not at the edge of free
space in the code cache. To alleviate this problem, we observed that among such
stubs there are many that never get used. The reason is that the trace exits
corresponding to them get linked before the trace is ever executed. This linking
occurs if the targets are already in the code cache. In these situations, it is not



94 A. Guha, K. Hazelwood, and M.L. Soffa

1 for every trace exit
2 targetaddr = address of trace exit
3 targetfound = false
4 for every entry in a code cache directory
5 if (application address of entry == targetaddr)
6 patch trace exit to point to code cache address of entry
7 targetfound = true
8 break
9 if (targetfound == false)
10 generate stub

Fig. 6. Algorithm for avoiding compilation of traces

necessary to compile the stub because it will never be used. This strategy saves
not only space but also time.

Fig. 6 displays the algorithm for the avoiding stub compilation (ASC) scheme.
For every trace exit, the target address is noted in line 2. A flag is reset in line 3 to
indicate that the target of the trace exit does not exist in the code cache. Line 4
iterates over all entries in the code cache directory. The application address of
each directory entry and the target address are compared in line 5. If a match
is found, the trace exit is immediately patched to the target in line 6. After the
code cache directory is searched, if the target has not been found, the stub for
the trace exit is generated in line 10.

For this scheme, it is always possible for a translator to find target traces that
exist already in the code cache and hence avoid compilation. Thus this scheme is in-
dependent of the particular VEE’s architecture. However, it suffers from the same
limitation as Scheme D in that individual deletions may not be allowed. The next
schemes overcome these limitations and result in greater savings of time and space.

3.3 Exit Stub Size Reduction (R)

There are some circumstances when exit stubs are necessary, such as during a
multi-threaded code cache flush, or a single trace invalidation. In these cases,
traces must be unlinked from their target, and relinked to their exit stub.
Schemes D and ASC are not adequate for applications that exhibit this behavior.
We now present a scheme to minimize the size of a stub and still maintain its
functionality.

In the exit stub size reduction (R) scheme, some space is saved by identifying
the common code in all stubs. We use a common routine for saving the context
and remove corresponding instructions from the stubs. However, the program
counter has to be saved before entering the common routine in order to remember
the stub location. Fig. 7 shows the code in the stub after this optimization. Saving
the context may take several instructions, depending on the architecture. Here,
only one register, the program counter is being saved. Factoring of common code
is a simple technique that has been implemented in some form in systems (e.g.,
DynamoRIO), already.



Reducing Exit Stub Memory Consumption in Code Caches 95

Save Program Counter
Branch to translator Handler

Target Address
Translator Handler Address

Fig. 7. Structure of stub after optimization using reduction in stub size

We handle only the case of direct branches and calls as they are the only
branches that are actually linked to their targets. As a result, we know the kind
of service being requested and hence can avoid storing the type of service in the
stub data area. A specialized translator handler handles these stubs.

We also avoid storing any derivable data within the stub. We reconstruct
the derivable arguments to the translator before entering the translator handler.
The code for reconstructing the derivable arguments is put in a common bridge
routine between the stubs and the translator handler. Thus, we save space by
avoiding the storing of all the arguments to the translator and avoid storing
code to construct these arguments in the stub. This gives rise to a trade-off with
performance but since stubs are not heavily accessed, such reconstruction is not
a large time penalty. The stub in Fig. 7 stores only the target address which
is not derivable. Storage of derivable data such as a hash of the target address
which may enable a faster search of the code cache directory is avoided.

We adhere to the layout in Fig. 4(a) to avoid storing or loading the address
of stub data, since the stub data appears at a fixed offset from the start of the
stub. (This is not possible for the configuration in Fig. 4(b).) The stub’s start
address is known from the program counter saved in the context.

This scheme is applied to all exit stubs corresponding to direct branches and
calls. Phased flushing and invalidations can be handled by Scheme R as we have
modified only the stub structure. Our mechanism is independent of the flushing
strategy and the number of threads being executed by the program.

3.4 Target Address Specific Stubs (TAS)

The main task of a stub is to provide the translator with the address of code
to be translated next. Yet more than one source location often targets the same
address, but uses a different exit stub. For our final scheme, target address
specific stub generation (TAS), we ensure that trace exits requesting the same
target address use the same exit stub.

Fig. 8 shows the algorithm used in this scheme. The target address of each
trace exit is examined. The stub corresponding to the target address of each
trace exit is searched in line 3. If the required exit stub exists, it is designated
as the exit stub for the trace exit in line 4. Otherwise a new stub is generated
and this stub’s location is recorded in lines 6-7.

Reuse of exit stubs can occur at several different granularities. For example,
stubs may be reused across the entire code cache. Or the code cache may be parti-
tioned and stubsmaybe reused only inside these partitions. In our implementation,



96 A. Guha, K. Hazelwood, and M.L. Soffa

1 for each trace exit
2 targetaddr = target address of trace exit
3 if there exists a stub for targetaddr in this block
4 designate this stub as the exit stub for this trace exit
5 else
6 generate an exit stub for this trace exit
7 store address of exit stub for targetaddr

Fig. 8. Algorithm for using target address specific stubs

we reused stubs only at the partition level. These partitions are the blocks in line 3
of Fig. 8. The granularity of reuse is important because flushing cannot be carried
out at a granularity finer than that of reuse. If flushing is carried out at a finer
granularity then there is the danger of not having the required stubs within the
code cache portion being flushed. We used the medium granularity as that provides
good performance as shown elsewhere [7].

The challenge in applying this technique is that it is not known beforehand
whether the trace being compiled will fit into the current block and will be able
to reuse the stubs from the current block. We optimistically assume that the
trace being compiled will fit into the current block. If it does not ultimately fit,
we simply copy the stubs into the new block. However, the case in which the
current block gets evicted, copying cannot be carried out. To safeguard against
such a situation, we stop reusing stubs when a certain percentage of the code
cache size limit has been used, such that the remaining unused portion is larger
than any trace size in the system.

All the techniques mentioned above are complementary and can be combined
together. If all four techniques are combined, then there is the limitation of
cache flushing. However if only the R and TAS techniques are combined, then
this limitation does not exist. However, flushing has to be carried out at an equal
or coarser granularity than that of stub reuse in TAS.

4 Experimental Results

We evaluated the memory efficiency and performance of our proposed techniques.
As a baseline, we used Pin [8] running on an ARM architecture. We implemented
our solutions by directly modifying the Pin source code. Before starting the eval-
uation, we improved indirect branch handling in Pin to predict branch targets
without returning to the translator (which was not implemented in the ARM
version). This makes Pin faster and the process of experimentation easier. This
optimization was included in both the baseline and our modified versions of Pin.

For the experiments, we ran the SPEC2000 integer suite1 on a iPAQ Pock-
etPC H3835 machine running Intimate Linux kernel 2.4.19. It has a 200 MHz
StrongARM-1110 processor with 64 MB RAM, 16 KB instruction cache and
a 8 KB data cache. The benchmarks were run on test inputs, since there was
1 We omitted SPECfp because our iPAQ does not have a floating-point unit.



Reducing Exit Stub Memory Consumption in Code Caches 97

0

1000

2000

3000

4000

5000

bzip2 crafty eon gap gcc gzip parser perlbmk twolf vortex vpr

C
o

d
e 

C
ac

h
e 

U
se

d
 (

K
B

)

baseline

deletion(D)

deletion + avoiding compilation(D + ASC)

reduction in size(R)

target address specific stubs(TAS)

reduction + target specific(R + TAS)

all methods combined(A)

Fig. 9. Memory usage (reported in kilobytes) of Pin baseline (leftmost bar) and after
incorporating our optimizations (rightmost bars)

not enough memory on the embedded device to execute larger inputs (even
natively). Among the SPEC2000 benchmarks, we did not use mcf because there
was not enough memory for it to execute natively, regardless of input set. We
chose SPEC2000 rather than embedded applications in order to test the limits
of our approach under memory pressure.

Pin allocates the code cache as 64 KB cache blocks on demand. Pin fills the
code cache as shown in Fig. 2(a) and lays out stubs as shown in Fig. 4(b).

4.1 Memory Efficiency

The first set of experiments focused on the memory improvement of our ap-
proaches. Fig. 9 shows the memory used in the code cache in each version of Pin
as kilobytes allocated. The category original is the number of KBs allocated in
the baseline version.

For Scheme D, the average memory savings is 7.9%. The benefits are higher
for the larger benchmarks. For example, it offers little savings in bzip2 and
gzip, which have the two smallest code cache sizes. But in gcc which has the
largest code cache size, it eliminates 9% of the code cache space. This shows that
this scheme is more useful for applications with large code cache sizes, which is
precisely what we are targeting in this research.

The next scheme combines ASC and D. Here, the average memory savings
increase to 17.8%. Similar to Scheme D, it is more beneficial for applications
with larger code cache sizes and less so for those with smaller code caches.

In Scheme R, the memory efficiency is considerably improved from the previous
schemes. The average savings in memory in this scheme is 37.4%. The increase
is due to the fact that memory is saved from all stubs corresponding to direct
branches and calls, which are the dominant form of control instructions (they form
90% of the control instructions in the code cache for the SPEC benchmarks).

Scheme TAS shows a memory efficiency improvement of 24.3%. Furthermore,
it is complementary to Scheme R. The combination of schemes TAS and R result
in a 41.9% improvement in memory utilization.



98 A. Guha, K. Hazelwood, and M.L. Soffa

Table 2. Percentage of code cache occupied by exit stubs after applying our techniques

Scheme Exit Stub Percentage
Baseline 66.67%
Deletion (D) 63.92%
Avoiding compilation + Deletion (ASC + D) 59.68%
Reduction in Stub Size (R) 51.24%
Target address specific stubs (TAS) 55.76%
Reduction in size + Target specific stubs (R + TAS) 43.37%
All schemes combined (A) 41.40%

The four schemes combined together achieve memory savings of 43.6%. There-
fore, we see that the bulk of the benefit comes from schemes TAS and R which
do not carry flushing restrictions.

Table 2 shows the percentage of code cache occupied by stubs (with respect
to the code cache size after every optimization) before and after each of our
solutions. We were able to reduce stub occupancy from 66.7% to 41.4%.

4.2 Performance Evaluation

In this section, we evaluate the performance of our approaches. Fig. 10 shows
the normalized performance of our schemes with respect to the baseline version.
Scheme D has almost the same performance as the original version. Extra work is
being done in Scheme D to delete stubs. At the same time, more traces inserted
into a cache block resulted in improved instruction cache locality. Code cache
management time is reduced due to less cache block allocations.

In Scheme ASC + D, some extra time is spent searching the code cache
directory for each branch instruction to determine whether an exit stub needs to
be compiled. At the same time, the amount of compilation is reduced. Combining
these factors with Scheme D yields an improvement in performance.

Scheme R performs as well as ASC + D. Here performance suffers from the
fact that derivable arguments are constructed on each entry into the trans-
lator due to a direct branch or call instruction. As before, better instruction
cache locality and reduced compilation and code cache management time con-
tribute positively to performance. Using TAS also yields about the same
improvement.

Using a combination of techniques yields overall performance improvement
of about 1.5%, which is especially encouraging given that our main focus was
memory optimization. It is important to note here is that the techniques per-
form better for benchmarks with larger code cache sizes. For example gcc yields
15-20% improvement when combination techniques are applied to it. Smaller
benchmarks such as bzip2 and gzip do not reap great benefits in comparison.
Benchmarks that use a lot of indirect branches such as eon also do not show con-
siderable improvement. This is due to the fact that the indirect branch handling
methods in the XScale version of Pin could benefit from further refinement.



Reducing Exit Stub Memory Consumption in Code Caches 99

0%

20%

40%

60%

80%

100%

120%

bzip2 crafty eon gap gcc gzip parser perlbmk twolf vortex vpr averageN
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

 w
rt

 B
as

el
in

e 
P

in

deletion(D) deletion + avoiding compilation(D + ASC)
reduction in stub size(R) target address specific stubs(TAS)
reduction + target specific(R + TAS) all methods combined(A)

Fig. 10. Performance of proposed solutions as normalized percentages. (100%) repre-
sents the baseline version of Pin and smaller percentages indicate speedups.

4.3 Performance Under Cache Pressure

In our next set of experiments, we measure the performance of our approaches in
the case of a limited code cache. We evaluated the R and TAS approaches in the
presence of cache pressure. We set the cache limit at 20 cache blocks (1280 KB)
as this is a reasonable code cache size on our given system. We did not include
gcc because the ARM version of Pin fails with this code cache limit for gcc,
even without any of our modifications.

Our approaches performed 5-6% better on average. The performance improve-
ment is due to a smaller code cache and a reduced number of code cache flushes.
In the limited cache situation, Scheme R performs better than the Scheme TAS
(the case was opposite in the unlimited code caches). This is because Scheme R
needs fewer cache flushes. The combined Scheme R + TAS performs best in all
cases except perlbmk.

5 Related Work

Several VEEs have been developed for general-purpose machines. Among them
are Dynamo [10], DynamoRIO [11] and Strata [6]. These VEEs provide features
such as optimization and security. In the embedded world, there are relatively
few VEEs, with most being Java virtual machines. Standards such as Java card,
J2ME/CLDC and J2ME/CDC have been built for embedded JVMs. JEPES [12]
and Armed E-Bunny [13] are examples of research on embedded JVMs. Pin [8]
is a VEE which supports the XScale platform, but is not a JVM.

There have been many research efforts to reduce the memory footprint of
embedded applications [12,14,15]. Management of code cache sizes has been ex-
plored [7]. Hiser et al. [16], explore the performance effects of putting fragments
and trampolines in separate code cache areas and eliding conditional transfer
instructions. However, to the best of our knowledge, reducing memory footprint
of VEEs by reducing the size of exit stubs has not been explored before.



100 A. Guha, K. Hazelwood, and M.L. Soffa

75 %

80 %

85 %

90 %

95 %

100 %

bzip2 crafty eon gap gzip parser perlbmk twolf vortex vpr

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

reduction in stub size(R) target address specific stubs(TAS) reduction + target specific(R + TAS)

Fig. 11. Performance of exit stub reduction and target address specific stub
generation with cache limit of 20 blocks (1280 KB)

6 Conclusions

Memory usage by VEEs needs to be optimized before they can be used more
extensively in the embedded world. In this paper, we explore memory optimiza-
tion opportunities presented by exit stubs in code caches. We identify reasons
that cause stubs to occupy more space than they require and solve the challenge
by developing schemes that eliminate a major portion of the space consumed
by exit stubs. We show that memory consumption by the code cache can be
reduced up to 43% with even some improvement in performance. We also show
that performance improvement is even better for limited size code caches which
are used when the constraints on memory are even more severe.

References

1. Dehnert, J., Grant, B., Banning, J., Johnson, R., Kistler, T., Klaiber, A., Mattson,
J.: The transmeta code morphing software. In: 1st Int’l Symposium on Code
Generation and Optimization. (2003) 15–24

2. Ebcioglu, K., Altman, E.R.: DAISY: Dynamic compilation for 100% architectural
compatibility. In: 24th Int’l Symposium on Computer Architecture. (1997)

3. Hu, W., Hiser, J., Williams, D., Filipi, A., Davidson, J.W., Evans, D., Knight,
J.C., Nguyen-Tuong, A., Rowanhill, J.: Secure and practical defense against code-
injection attacks using software dynamic translation. In: Conference on Virtual
Execution Environments, Ottawa, Canada (2006)

4. Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure execution via program shep-
herding. In: 11th USENIX Security Symposium. (2002)

5. Wu, Q., Martonosi, M., Clark, D.W., Reddi, V.J., Connors, D., Wu, Y., Lee, J.,
Brooks, D.: A dynamic compilation framework for controlling microprocessor en-
ergy and performance. In: 38th Int’l Symposium on Microarchitecture. (2005)

6. Scott, K., Kumar, N., Velusamy, S., Childers, B., Davidson, J., Soffa, M.L.: Recon-
figurable and retargetable software dynamic translation. In: 1st Int’l Symposium
on Code Generation and Optimization. (2003) 36–47



Reducing Exit Stub Memory Consumption in Code Caches 101

7. Hazelwood, K., Smith, M.D.: Managing bounded code caches in dynamic binary
optimization systems. Transactions on Code Generation and Optimization (TACO)
3 (2006) 263–294

8. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Janapareddi, V., Hazelwood, K.: Pin: Building customized program analysis tools
with dynamic instrumentation. In: Conference on Programming Language Design
and Implementation, Chicago, IL (2005)

9. Bruening, D.L.: Efficient, Transparent and Comprehensive Runtime Code Ma-
nipulation. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA
(2004)

10. Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: A transparent dynamic optimiza-
tion system. In: Conference on Programming Language Design and Implementa-
tion. (2000) 1–12

11. Bruening, D., Garnett, T., Amarasinghe, S.: An infrastructure for adaptive dy-
namic optimization. In: 1st Int’l Symposium on Code Generation and Optimiza-
tion. (2003) 265–275

12. Schultz, U.P., Burgaard, K., Christensen, F.G., Knudsen, J.L.: Compiling java for
low-end embedded systems. In: Conference on Languages, Compilers, and Tools
for Embedded Systems, San Diego, CA (2003)

13. Debbabi, M., Mourad, A., Tawbi, N.: Armed e-bunny: a selective dynamic compiler
for embedded java virtual machine targeting arm processors. In: Symposium on
Applied Computing, Santa Fe, NM (2005)

14. Bacon, D.F., Cheng, P., Grove, D.: Garbage collection for embedded systems. In:
EMSOFT ’04: Proceedings of the 4th ACM international conference on Embedded
software, New York, NY, ACM Press (2004)

15. Zhou, S., Childers, B.R., Soffa, M.L.: Planning for code buffer management in
distributed virtual execution environments. In: Conference on Virtual Execution
Environments, New York, NY, ACM Press (2005)

16. Hiser, J.D., Williams, D., Filipi, A., Davidson, J.W., Childers, B.R.: Evaluating
fragment construction policies for sdt systems. In: Conference on Virtual Execution
Environments, New York, NY, ACM Press (2006)


	Introduction
	Background
	Translation Engine
	Code Cache
	Exit Stubs

	Methodology
	Deletion of Stubs (D)
	Avoiding Stub Compilation (ASC)
	Exit Stub Size Reduction (R)
	Target Address Specific Stubs (TAS)

	Experimental Results
	Memory Efficiency
	Performance Evaluation
	Performance Under Cache Pressure

	Related Work
	Conclusions

