
Integrated Instruction Scheduling and Register

Allocation Techniques�

David A. Berson1, Rajiv Gupta2, and Mary Lou Soffa2

1 Intel Corporation, Microcomputer Research Lab
2200 Mission College Blvd., Santa Clara, CA 95052, USA

2 Dept. of Computer Science, University of Pittsburgh
Pittsburgh, PA 15260, USA

Abstract. An algorithm for integrating instruction scheduling and reg-
ister allocation must support mechanisms for detecting excessive reg-
ister and functional unit demands and applying reductions for lessen-
ing these demands. The excessive demands for functional units can be
detected by identifying the instructions that can execute in parallel, and
can be reduced by scheduling some of these instructions sequentially. The
excessive demands for registers can be detected on-the-fly while schedul-
ing by maintaining register pressure values or may be detected prior to
scheduling using an appropriate representation such as parallel inter-
ference graphs or register reuse dags. Reductions in excessive register
demands can be achieved by live range spilling or live range splitting.
However, existing integrated algorithms that are based upon mechanisms
other than register reuse dags do not employ live range splitting. In this
paper, we demonstrate that for integrated algorithms, register reuse dags
are more effective than either on-the-fly computation of register pressure
or interference graphs and that live range splitting is more effective than
live range spilling. Moreover the choice of mechanisms greatly impacts
on the performance of an integrated algorithm.

1 Introduction

The interaction of instruction scheduling and register allocation is an important
issue for VLIW and superscalar architectures that exploit significant degrees of
instruction level parallelism (ILP). Register allocation and instruction scheduling
have somewhat conflicting goals. In order to keep the functional units busy, an
instruction scheduler exploits ILP and thus requires that a large number of
operand values be available in registers. On the other hand, a register allocator
attempts to keep the register pressure low by maintaining fewer values in registers
so as to minimize the need for generating spill code.
If register allocation is performed first, it limits the amount of ILP available

by introducing additional dependences between the instructions based on the
temporal sharing of registers. If instruction scheduling is performed first, it can
� Supported in part by NSF Grants CCR-9402226 and CCR-9808590 to the Univ. of
Pittsburgh.

S. Chatterjee (Ed.): LCPC’98, LNCS 1656, pp. 247–262, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



248 David A. Berson et al.

create a schedule demanding more registers than are available, causing more
work for the register allocator. In addition, the spill code subsequently generated
must be placed in the schedule by a post-pass cleanup scheduler, degrading the
performance of the schedule. Thus, an effective solution should integrate register
allocation and instruction scheduling.
An integrated approach must provide mechanisms for detecting excess de-

mands for both functional unit and register resources and for reducing the re-
source demands to the level supported by the architecture. Excessive demands
for functional units due to a high degree of ILP are reduced by the instruction
scheduler by scheduling the execution of independent, and thus potentially par-
allel, instructions sequentially. Excessive demands for registers cannot always be
reduced through sequentialization alone and may further require the saving of
register values in memory through live range spilling or live range splitting.
In this paper we demonstrate that the performance of an integrated algorithm

is greatly impacted by the mechanism it uses to determine excessive register
demands and the manner in which it reduces the register demands. Excessive
register demands can be determined by maintaining register pressure during
scheduling, constructing a parallel interference graph, or by constructing reg-
ister reuse dags. Reduction can be achieved through live range spilling or live
range splitting. Our results show that excessive register demands can be best
determined using register reuse dags and reduction is best achieved through live
range splitting. However, none of the existing integrated algorithms are based
upon these mechanisms. We implemented newly developed integrated algorithms
as well as existing algorithms to obtain the above results as follows.

– The on-the-fly approach (IPS) developed by Goodman and Hsu [11] per-
forms local register allocation within extended basic blocks during instruc-
tion scheduling. It tracks register pressure to detect excessive register de-
mands and uses live range spilling to reduce register pressure. We extended
this technique to incorporate live range splitting (ILS). Based upon the per-
formances of the original and extended versions of the algorithm we conclude
that live range splitting is far superior to live range spilling when developing
an integrated resource allocator.

– The parallel interference graph approach developed by Norris and Pollock [14]
uses an extended interference graph to detect excessive register demands and
guide schedule sensitive register allocation (PIR). The reduction in register
demands is achieved through live range spilling. We modified this technique
to incorporate the use of the register reuse dag in place of the interference
graphs for detecting excessive register demands (RRD). Variations of priority
functions for selecting candidate live ranges for spilling are also considered.
By comparing the performances of the above algorithms we conclude that
register reuse dags are superior to interference graphs.

– The unified resource allocation (URSA) approach developed by us is based
upon the measure-and-reduce paradigm for both registers and functional
units [4]. Using the reuse dags, this approach identifies excessive sets that
represent groups of instructions whose parallel scheduling requires more re-



Integrated Instruction Scheduling and Register Allocation Techniques 249

sources than are available [1]. The excessive sets are then used to drive re-
ductions of the excessive demands for resources. Live range splitting is used
to reduce register demands. This algorithm performs better than the algo-
rithms based upon the on-the-fly approach and interference graphs and also
has the lowest compilation times.

The table given below summarizes the integrated algorithms implemented in
this work.

Register Pressure Computation Live Range Spilling Live Range Splitting

On-the-fly IPS ILS

Parallel Interference Graph PIR -

Register Reuse DAG RRD URSA

The significance of integration is greatly increased in programs where the
register pressure is high. Thus when compiling programs for VLIW architectures,
or other types of multiple issue architectures, the need for integration is the
greatest. In comparing the above algorithms, we experimentally evaluated the
integrated algorithms using a 6 issue architecture. Previous studies have been
limited to single issue pipelined machines and therefore do not reveal the true
significance of integration. In our algorithms, both instruction scheduling and
register allocation are performed hierarchically over the program dependence
graph (PDG) [10]; that is, each algorithm traverses the control dependence graph
in a bottom-up fashion, performing integrated instruction scheduling and register
allocation in each region and then using the results at the next higher control
dependence level.
In section 2 we provide an overview of important issues that an integrated

algorithm for instruction scheduling and register allocation must address. In
section 3 we describe algorithms that perform on-the-fly register allocation and
study the effect of live range spilling and splitting on performance. In section
4 we evaluate an algorithm based upon a parallel interference graph approach
and compare it with one that uses register reuse dags. In section 5 we describe
algorithms based upon the unified resource allocation approach which employs
both register reuse dags and live range splitting. We conclude by summarizing
the main results of this work in section 6.

2 Issues in Integrating Register Allocation with
Instruction Scheduling

Each of the integrated instruction scheduling and register allocation algorithms
must support mechanisms for detecting excess requirements for functional units
and registers as well as techniques for reducing these requirements to the levels
supported by the architecture. In addition, the order in which reductions for
functional units versus registers are applied may differ from one technique to
another. We first discuss a variety of detection and reduction methods that



250 David A. Berson et al.

have been proposed and then we briefly describe the specific choices made by
algorithms implemented in this study.
Excessive requirements for functional units arise when the degree of paral-

lelism identified in a program segment is found to be greater than the number
of functional units available. The excess parallelism may be identified either on-
the-fly while the schedule is being generated or precomputed prior to the start
of instruction scheduling. An example of the former approach is a list scheduler
which can, at any point in time during scheduling, identify excess parallelism
by simply examining the ready list for the number of operations that are ready
for scheduling. An example of the latter approach is one in which an acyclic
data dependence graph is constructed for a code segment prior to scheduling
and examined to identify the maximum degree of parallelism.
Reductions of functional unit resources are performed by sequentially schedul-

ing some of the operations that are able to execute in parallel. Reductions can be
performed either on-the-fly or prior to scheduling. A priority based list scheduler
faced with excess parallelism may first on-the-fly choose the nodes with higher
priority for scheduling while delaying the scheduling of other ready nodes. Reduc-
tions can also be performed prior to scheduling by introducing sequentialization
edges in an acyclic data dependence graph to reduce the maximum degree of
parallelism in the graph.
Excessive requirements for registers arise when the number of values that

are live exceed the number of registers available. Similar to functional units,
the excess register requirements for registers can be detected on-the-fly during
scheduling or precomputed prior to scheduling. A list scheduler will identify excess
register requirements when it tries to schedule an instruction and finds that no
register is free to hold the result of the instruction. Excess register requirements
can be precomputed using two different methods. The first method, used by
register allocators based on graph coloring, identifies excessive register demands
by finding uncolorable components in the parallel interference graph. Another
method constructs a directed acyclic graph, called the register reuse dag, in
which an edge is drawn from one instruction to another if the latter is able
to reuse the register freed by the former. By finding the maximum number of
independent instructions in the register reuse dag, the excessive register demands
are identified. A set of instructions identified to require more registers than are
available is said to form an excessive set.
There are a number of register reduction techniques available. The first is se-

quentialization which orders instructions that can be executed in parallel so that
the instructions can use the same register. This reduction technique is not al-
ways applicable due to other dependences in the program. The second reduction
technique is live range spilling, where a store instruction is inserted immediately
after the definition of the value. A load instruction is then inserted before every
use of the value. This approach results in a large number of loads from memory;
however, it can always be performed and removes many interferences. The third
reduction technique is live range splitting, which tries to reduce the number of
load instructions by having several close uses of the value share a single load.



Integrated Instruction Scheduling and Register Allocation Techniques 251

In determining the uses that should share a register, the register allocator must
ensure that the register pressure does not exceed the limit imposed by the ar-
chitecture. In the case where the instructions have not been scheduled yet, it
is difficult for the register allocator to know how “close” several uses are, or
if by sharing a load, they will result in competing with other live ranges. To
our knowledge, none of the previously developed integrated techniques use live
range splitting. Finally by combining the introduction of sequential dependences
with live range splitting, a special form of live range splitting can be performed
in cases where neither sequentialization nor live range splitting alone would be
feasible or result in a reduction of register pressure.
In developing an algorithm that integrates instruction scheduling and register

allocation, the selected register allocation and scheduling techniques to detect
and reduce the requirements must cooperate in some way. No integration means
that the heuristics for register allocation and scheduling are performed inde-
pendently of one another in separate phases. One approach to integration is to
allocate register allocation and functional units simultaneously in one phase, re-
sulting in a fully integrated system. Another approach is to allocate the resources
separately, but use information about the allocation of the other resource. There
are various strategies that can be used to order the allocation phases. One strat-
egy is to allocate all of resources of one type in one phase and then allocate the
other resource in a subsequent phase, passing information from one phase to the
other. Another ordering would be to interleave the allocation heuristics. Thus,
some resources of one type are allocated and then some of the other type are
allocated. The important component of either approach is the information about
one resource that is used during the allocation of the other resource.

3 Live Range Spilling vs Live Range Splitting

Typically a list scheduler uses the heights of instructions in the dependence
DAG to prioritize the scheduling. In this technique, to reduce excessive register
demands, register pressure is continuously tracked during instruction scheduling
and used in conjunction with instruction heights to guide scheduling. Thus, the
excessive demands for both resources are reduced by the scheduler in the process
of selecting instructions for scheduling. If register pressure exceeds the maximum
number of registers available, register spilling is required.
The two algorithms based upon this approach that were implemented differ in

their treatment of excessive register requirements. The IPS algorithm proposed
by Goodman and Hsu [11] addresses the excessive requirements for registers
through live range spilling which is carried out during a separate pass following
the scheduling prepass using extended basic blocks. The ILS algorithm developed
by us extends IPS by performing register allocation hierarchically on a PDG and
eliminating a need for separate spilling pass by performing live range splitting
during instruction scheduling. Next we describe the two algorithms in greater
detail.



252 David A. Berson et al.

In IPS the list scheduler alternates between two states. In the first state, reg-
ister pressure is low and the scheduler selects instructions to exploit ILP based
upon their heights. When the register pressure crosses a threshold, the sched-
uler switches to a second state that gives preference to instructions that reduce
register pressure, possibly sacrificing opportunities to exploit ILP in the process.
Additionally, no spilling of values is performed. When register pressure falls back
below the threshold, the first state is reentered. In this manner scheduling and al-
location are integrated. IPS attempts to sequence live ranges to reduce live range
interferences. This reduction is accomplished by giving preference to scheduling
instructions that kill live ranges prior to ones that only start new ones when reg-
ister pressure reaches a specified threshold. If the scheduler is unable to select
instructions in a manner that keeps the register pressure below the maximum
allowed by the architecture, then live range spilling is unavoidable. A postpass
register allocation via coloring is performed to handle any register allocation
problems that the scheduler is unable to address. This register allocator uses a
traditional priority based coloring approach to select candidate live ranges for
spilling [8].

The ILS algorithm eliminates the need for the spilling postpass by using live
range splitting during instruction scheduling to ensure that the register pressure
never exceeds the maximum allowable value. This approach requires that ILS
be applied hierarchically in a bottom-up fashion so that the live ranges that
extend across child regions are also considered in computing the register pressure.
ILS maintains a list of all values that are alive in the cycle currently being
scheduled. When ILS detects that register pressure is high, and there are no
ready instructions that reduce the number of currently active live ranges, it
selects a live range for splitting. ILS injects a store instruction into the ready list
and a load instruction dependent on the store into the not-ready list. ILS then
moves the dependencies of all unscheduled uses of the value from the original
definition to the injected load. In this manner ILS essentially performs live range
splitting. The priority function used for selecting a live range for splitting gives
preference to the live range whose earliest subsequent use is farthest from the
current instruction cycle being scheduled. To avoid useless loads of values the
priority functions are designed to not schedule injected load instructions unless it
can be guaranteed that at least one of the dependent uses can also be scheduled.
The incorporation of live range splitting into ILS creates a powerful and complete
single pass allocation algorithm for both registers and functional units.

Next we present results of experiments that compare the performances of ILS
and IPS algorithms. Performances of all algorithms are presented in terms of the
speedups they achieve for a 6 issue machine in comparison to a base algorithm
for a single issue machine. The base algorithm was chosen to be the interference
graph based algorithm since it performed the worst of all the algorithms. Since
the objective of the experiments is to see how well various algorithms perform
under high register pressure, the algorithms were executed for a machine with
varying number of registers. In computing the speedups achieved by any algo-
rithm over the base algorithm, the same number of registers were provided to



Integrated Instruction Scheduling and Register Allocation Techniques 253

both algorithms. By doing so the results that are obtained demonstrate the im-
pact of integration capability of an algorithm on the effectiveness with which
parallelism is exploited.

1

1.5

2

2.5

3

3.5

4

8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

ILS
IPS

Fig. 1. Comparison of IPS and ILS for a 6 issue architecture.

The performances of IPS and ILS are shown in Figure 1. As we can see, our
ILS algorithm performs much better than the IPS approach. After analyzing the
code generated by the two algorithms we observed that this difference in perfor-
mance was attributable to significantly greater amounts of spill code introduced
by IPS. Thus, we conclude that an algorithm such as ILS that incorporates live
range splitting performs better than an algorithm such as IPS that is based
only on spilling. This result is not entirely unexpected as spilling can be viewed
as a special case of splitting. The results also show that the difference in the
performance of ILS and IPS decreases as greater numbers of registers are made
available. This trend indicates that the effectiveness of integration strategy has
a greater impact on performance for higher register pressures.

4 Parallel Interference Graphs vs Register Reuse Dags

A more sophisticated approach for global register allocation is based upon the
coloring of interference graphs [9,8]. This approach was extended to make the
process of register allocation schedule sensitive through the construction of a
parallel interference graph [14,15]. The algorithm (PIR) we implemented is based
on a parallel interference graph proposed by Norris and Pollock [14] and uses
a Chaitin [8] style register allocator which relies upon live range spilling. The
parallel interference graph represents all interferences that can occur in legal
schedules.



254 David A. Berson et al.

The interference graph is constructed by adding interference edges between
nodes representing live ranges that may overlap in the current region or in the
child regions of the current region. The interference graph is simplified by re-
moving all nodes that are incident on fewer edges than the number of registers
available. The remaining nodes are then processed to reduce the register require-
ments. Reductions are achieved using both sequentialization and spilling. While
live range splitting has been incorporated into traditional coloring based register
allocators [9], it has not been incorporated in schedule sensitive allocators based
upon parallel interference graphs due to the lack of a complete ordering of the
instructions. Without a complete ordering, it cannot be guaranteed that a par-
ticular splitting of a live range will reduce the number of interferences. Therefore
the splitting reduction is not used by existing algorithms.
The order in which nodes are considered for reduction is based upon cost

functions that prioritize the nodes. After applying a reduction, the interference
graph is recomputed and the process is repeated until no more reductions are
required. At this point, all nodes can be successfully colored; that is, register allo-
cation is now complete. In the process of coloring, the instructions are partially
scheduled through the application of sequentialization reductions. A postpass
list scheduler is run as a last step to produce the final code schedule. In our
implementation of PIR, the ILS scheduler (with register allocation turned off)
was used for this purpose.
The cost functions that prioritize the nodes compute the cost for both spilling

the value and for sequentializing the live range after all uses of another live
range. The costs are computed in terms of the effect of the transformations on
the critical path length. The minimum of these two costs is used as the priority
and the corresponding reduction method is recorded in case the node is selected
for reduction.
Sequentialization of a live value defined by D1 is performed by finding a

second value D2 which interferes with D1 and then introducing temporal de-
pendences from all uses of D2 to definition D1. The cost of sequentialization
reduction is computed using the following formula:

Costseq =
maxu∈Uses(D2)(u.EST +D1.LST )� cpl

NumInterferences

where u.EST is the earliest start time of the use instruction u, D1.LST is the
latest start time of definition D1, cpl is the critical path length of the region
containing D1, Uses(D2) is the set of uses of D2, and the symbol � represents
floored subtraction function (a � b = if a > b then a − b else 0).
Two different functions were used to compute the cost of spilling, measured

by the effect on the critical path lengths. The first cost function considers the
increase in critical path length for a given region as the number of loads and
stores that are required in the region. The total increase in critical path length
was computed by summing together the product of the increase in length and the
execution count of all relevant regions. The second priority function considers
the slack time in scheduling spill code in computing the increase in critical path



Integrated Instruction Scheduling and Register Allocation Techniques 255

length. The slack time of an instruction is the difference between the earliest time
and the latest time at which the instruction can be scheduled. The motivation
behind this cost function is that high slack times reduce the likelihood of an
increase in critical path length. The formulas for computing the spill costs based
upon the above approaches are given below:

Costspill =
StoreCost×def.ExecCnt+

∑

u∈uses

LoadCost×u.ExecCnt

NumInterferences

SCostspill =
(StoreCost�def.Slack)×def.ExecCnt+

∑

u∈uses

LoadCost×(u.ExecCnt�u.Slack)

NumInterferences

where StoreCost/LoadCost is the cost in cycles to execute a store/load instruc-
tion, i.ExecCnt is the execution count for the region containing instruction i,
i.Slack is the slack time of instruction i, the symbol � represents the floored
subtraction function, and NumInterferences is the number of other live ranges
with which the spilled value interferes.
We evaluated the register coloring approach using both of the above cost

functions. The algorithm PIR uses the first spill cost function and the algorithm
SPIR uses the second spill cost function that incorporates slack times. The
results of these evaluations are shown in Figure 2.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

RRD
PIR

SPIR

Fig. 2. Comparison of PIR and SPIR with RRD for a 6 issue architecture.

The results show that PIR performs consistently better than SPIR. We were
surprised to find that the priority function that considers slack times tended to
degrade performance rather than improve performance. Examination of several
cases revealed that more spill code was generated because either some values
were spilled prior to attempts to sequentialize live ranges, or values were selected
that had less of an impact on reducing the size of the excessive requirements.



256 David A. Berson et al.

The consideration of slack time tended to negate the effects of considering the
number of interferences in the cost function.
PIR and SPIR identify excessive sets using a simplified interference graph.

The excessive sets computed by register reuse dags are conceptually similar to
those computed by PIR/SPIR. In both cases the sets represent the instructions
that the respective heuristics believe will interfere and cause excessive demands.
Thus, it is possible to substitute excessive sets for the simplified interference
graphs used by PIR and then proceed using coloring’s priority function and spill
code generation.

A: load a
B: b = 2 * a
C: c = a + 1
D: d = a - 3
E: e = c * d
F: f = c - d
G: g = e / f
H: h = g + 5
I: i = h * 2
J: j = h + 4
K: k = i / j
L: l = b + k

(a) 3 address
code

(b) Data Depen-
dence DAG

(c) Register
Reuse DAG

Fig. 3. Example code and corresponding Reuse DAGs

In Figure 3(a) we show the 3 address code for a basic block, the data depen-
dence dag using statement labels for the code in Figure 3(b), and the register
reuse dag in Figure 3(c). The register reuse dag is used to determine the excessive
sets of registers. The reuse dag chains those values that are not simultaneously
live and can thus share a register under all schedules allowed for parallel exe-
cution. In the example, the values computed by statements A, C, D and E can
all be alive at the same time and thus cannot share registers. Likewise, the val-
ues computed by B G and J cannot share registers since they are on separate
chains. If the architecture does not have 4 registers, then the set A, C, D, E is
an excessive set.
To compare the performance of excessive sets with the PDG-interference

graph we implemented the above modification resulting in the register reuse



Integrated Instruction Scheduling and Register Allocation Techniques 257

dag (RRD) algorithm. The comparison of RRD and PIR determines the benefit
of excessive sets over interference graphs. The results that were obtained show
that the amount of spill code generated in RRD was significantly less than the
amount generated in PIR (see Figure 2). We examined numerous cases to verify
the results and found a common occurrence mentioned in Briggs’ dissertation
[5]. Although all nodes in the reduced interference graph interfere with at least
K other values, those K values may not need all K colors. Excessive set mea-
surement computations realize when such a situation occurs and count fewer
interferences. The result of fewer interferences is that either a smaller excessive
interference set is generated in comparison to the interference graph reduction,
or no excessive interference set is generated while interference graph reduction
does generate one. The better performance of RRD in comparison to PIR is
directly due to this effect.
By comparing the results of PIR with the results in the previous section we

observed that although PIR sometimes performs marginally better than IPS, in
many situations IPS performs significantly better than PIR. Furthermore, PIR
consistently performs significantly worse than ILS. This is because ILS makes
use of live range splitting while PIR does not. In summary our experimentation
shows that the overall performance of the on-the-fly approach is better than the
interference graph approach. We also note that the difference in the performance
of various algorithms is greater for higher register pressures. Once enough reg-
isters are available, the difference in the performances of the various algorithms
is relatively small indicating that integration becomes less important.

5 Unified Resource Allocation Using Reuse Dags and
Splitting

Finally we present an algorithm that uses register reuse dags and live range
splitting. This algorithm is based upon an approach that provides a uniform
view of instruction scheduling and register allocation by treating both of them
as resource allocation problems. Instruction scheduling is viewed as the allocation
of functional units in this approach. Integration is achieved by simultaneously
allocating both functional unit and register resources to an instruction. Due to
its unified treatment of resources, this approach is referred to as the unified
resource allocation approach or URSA [1,3,2,4]. Algorithms that use the URSA
approach are based upon the measure-and-reduce paradigm. In this approach
the areas of the program with excessive resource requirements are located and
reductions are performed by transforming the intermediate representation of the
program. The selection of a reduction is based upon its effect on the critical path
length.
The URSA framework provides a set of techniques to compute resource re-

quirements. When compiling a program to exploit ILP, the dependencies in an
acyclic segment of the program are used to represent the set of all semanti-
cally correct ways of scheduling the segment. Different schedules may result in
different resource requirements. The approach taken in the measure-and-reduce



258 David A. Berson et al.

paradigm is to remove from consideration all schedules that result in excessive
resource demands using the reduction techniques. Any schedule selected from
the remaining set of schedules is feasible with respect to the available resources.
Thus, the measurement technique must consider the worst case schedule for each
resource to compute the maximum resource requirements.
In addition to computing the maximum number of resources required, the

measurement techniques must identify the locations in a programwhere there are
excessive resource demands and the locations where a resource is underutilized
and available for additional allocations. The areas of overutilization are referred
to excessive sets and the areas of underutilization are called resource holes. The
GURRR intermediate representation has been developed to explicitly incorpo-
rate maximum resource requirements, excessive sets and resource holes [2]. This
representation used in URSA combines information about a program’s require-
ments for both registers and functional units with scheduling information in a
single DAG-based representation. In this manner, GURRR facilitates the deter-
mination of the impact of all scheduling and allocation decisions on the critical
path length of the code affected. GURRR extends the instruction level PDG by
the addition of resource hole nodes and reuse edges, which connect nodes that
can temporally share an instance of a resource.
The URSA framework supports a set of techniques to perform the allocation

of resources to instructions. The techniques utilize the resource holes in GURRR
during this process. These techniques are referred to as resource spackling tech-
niques because they perform allocations by trying to fill the resource holes with
instructions [3]. Register holes represent the cases where a register can be as-
signed to hold a value. There are two such cases: when the register is unoccupied
and when the register is occupied but the value in it is not currently being ref-
erenced, and so, the live range can be split. The spackling of an instruction may
require live range splitting corresponding to one value in the former type of hole
and of two values in the latter.
Instructions belonging to excessive sets are spackled to eliminate excessive

resource requirements. The selection of nodes for spackling from excessive sets
is based upon priority functions. We considered two different priority functions:
the first, URSA-1, selects nodes with the most amount of slack first while the
second, URSA-2, selects the same nodes as URSA-1 but spackles them in re-
verse order. Since instructions with greater slack time have a higher flexibility
in their scheduling times, we expected the second priority function to perform
better. Different options for spackling an instruction are evaluated by comparing
the increases in estimated execution times that are expected as a result. This
estimate is obtained as the product of increase in critical path and the execution
count of the control dependence region under consideration.
First let us compare the performance of the URSA algorithms with ILS and

IPS. As indicated by the results in Figure 4, URSA performs better than ILS
on our architecture. Since the difference in the performance of URSA and ILS
was lower than we expected, we decided to further investigate the behavior of
URSA’s reduction techniques. We examined the code generated by URSA for



Integrated Instruction Scheduling and Register Allocation Techniques 259

some of the benchmarks to determine if further improvements could be achieved.
We found that through handcoding we were able to reduce the amount of spill
code significantly. As shown in Table 1, the critical path length (CPL) and
the number of instructions for loop2 and loop10 can be greatly used through
handcoding.

1

1.5

2

2.5

3

3.5

4

4.5

8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

URSA-1
URSA-2

ILS
IPS

Fig. 4. Comparison of URSA with ILS and IPS for a 6 issue architecture.

CPL CPL Insts. Insts.
Benchmark URSA-2 Handcoding URSA-2 Handcoding

loop2 95 22 79 40
loop10 181 42 150 71

Table 1. URSA-2 vs Handcoding

Further examination of the above benchmarks revealed the reason for URSA’s
inability to discover solutions with less spill code. In situations with high degree
of ILP, it is beneficial to apply sequentialization reduction to groups of related
instructions rather than applying reductions to individual instructions. In par-
ticular, if the dependence graph contains two relatively independent subdags
which are parts of excessive sets, sequentialization of the entire subdags with re-
spect to each other can greatly lower resource requirements without introducing
spill code. On the other hand when URSA selected instructions for sequential-
ization one at a time, it tended to interleave the execution of the two subdags
thus requiring spill code. The above observation clearly indicates that URSA’s
reductions can be enhanced to further improve performance. However, the same
cannot be said for ILS since list scheduling uses a greedy approach rather than
the measure-and-reduce paradigm.



260 David A. Berson et al.

We also found that the priority function which considers instructions with
most slack time first (i.e., URSA-1) does consistently better than the one that
considers instructions with least slack time first (i.e., URSA-2). This result was
a bit unexpected due to the fact that Goodman and Hsu [11] recommend the
scheduling of instructions with the least amount of slack time first. This experi-
ment suggests that scheduling the instructions with the most slack first achieves
better performance because these instructions are most likely to be moved be-
yond the range of the excessive set. Thus fewer reduction transformations are
typically required.

The performance of RRD is worse in comparison to URSA because RRD
uses live range spilling while URSA employs live range splitting (see Figure 5).
Again the difference in the performance of various algorithms diminishes as larger
number of registers are made available.

1

1.5

2

2.5

3

3.5

4

4.5

8 16 32

S
pe

ed
up

Registers

Testsuite Speedup

URSA-1
URSA-2

RRD
PIR

Fig. 5. Comparison of URSA with RRD and PIR for a 6 issue architecture.

Finally we compared the compile-time costs of the various approaches. As
shown by the results in Figure 6, URSA based algorithms required the lowest
compilation times and the ILS algorithm was the next best performer. The
IPS algorithm is slower because it required a register coloring phase following
the scheduling to carry out spilling. Finally, RRD ran slower than PIR due to
the excessive set computations required by RRD. The interesting aspect of the
results is that the algorithms that generated higher quality code also exhibited
lower compile-time costs. It should be noted that heuristics implemented were
prototypes and there are known areas of improvement for each.



Integrated Instruction Scheduling and Register Allocation Techniques 261

0

1000

2000

3000

4000

5000

6000

8 16 32

C
om

pi
la

tio
n 

T
im

e 
(s

ec
)

Registers

Testsuite Compilation Time

RRD
IPS
PIR
ILS

URSA-1
URSA-2

Fig. 6. Compile-time costs of various approaches.

6 Conclusion

In this paper, we presented various versions of algorithms that implement the
integration of register allocation and instruction scheduling. From the experi-
ments we conclude that URSA has the overall best performance in integrating
register allocation and instruction scheduling. URSA exploits excessive sets that
are more accurate than interference graphs in determining the excessive register
demands. It also uses live range splitting that performs better than live range
spilling. Furthermore, URSA is also efficient in terms of its compilation time
costs.
Our results indicate that the on-the-fly register allocation scheme when used

with live range splitting always performed better than the interference graph
approach. When only considering on-the-fly register allocation with scheduling
technique, we show that the ILS technique proposed by us that uses live range
splitting performs much better than Goodman and Hsu’s IPS technique [11] that
uses live range spilling.
Finally a general trend was observed in all the experiments. The difference

in the performances of different heuristics grew smaller as greater numbers of
registers were made available. This is because the higher the register pressure
the greater is need for effective integration of register allocation and instruction
scheduling.
Results of two additional studies that have considered the interaction between

instruction scheduling and register allocation were reported by Bradlee et al. [6]
and Norris et al. [13]. In contrast to these studies, our study shows a greater
degree of variation in the performance of different algorithms and thus indicating
a greater significance of the impact of integration on performance. We believe
this is due to the fact that our study is the only one that consider an architecture



262 David A. Berson et al.

with a high degree of ILP. Both of the earlier studies were performed in context
of single issue pipelined machines capable of exploiting only low degrees of ILP.

References

1. David A. Berson, Unification of register allocation and instruction scheduling in
compilers for fine grain architectures. Ph.D. Thesis, Dept. of Computer Science,
University of Pittsburgh, Pittsburgh, PA, November 1996. 249, 257

2. David A. Berson, Rajiv Gupta, and Mary Lou Soffa. GURRR: A global unified
resource requirements representation. In Proc. of ACM Workshop on Intermediate
Representations, Sigplan Notices, vol. 30, pages 23–34, April 1995. 257, 258

3. David A. Berson, Rajiv Gupta, and Mary Lou Soffa. Resource Spackling: A frame-
work for integrating register allocation in local and global schedulers. In Proc. of
IFIP WG 10.3 Working Conference on Parallel Architectures and Compilation
Techniques, pages 135–146, 1994. 257, 258

4. David A. Berson, Rajiv Gupta, and Mary Lou Soffa. URSA: A Unified ReSource
Allocator for registers and functional units in VLIW architectures. In Proc. of
IFIP WG 10.3 Working Conference on Architectures and Compilation Techniques
for Fine and Medium Grain Parallelism, pages 243–254, 1993. 248, 257

5. Preston Briggs. Register allocation via graph coloring. Ph.D. Thesis, Dept. of
Computer Science, Rice University, Houston, TX, April 1992. 257

6. David Bradlee, Susan Eggers, and Robert Henry. Integrating register allocation
and instruction scheduling for riscs. In Proceedings of ASPLOS, April 1991. 261

7. Claude-Nicholas Fiechter, PDG C Compiler. Technical Report, Dept. of Computer
Science, University of Pittsburgh, Pittsburgh, PA, 1993.

8. G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and
P. W. Markstein. Register allocation via coloring. Computer Languages, 6(1):47–
58, 1981. 252, 253

9. F. Chow and J. Hennessy. Register allocation by priority-based coloring. ACM
Trans. Prog. Lang. and Systems, 12(4):501–536, 1990. 253, 254

10. Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Trans. Prog. Lang. and Systems, 9(3):319–
349, 1987. 249

11. James R. Goodman and Wie-Chung Hsu. Code scheduling and register allocation
in large basic blocks. In Proc. of ACM Supercomputing Conf., pages 442–452, 1988.
248, 251, 260, 261

12. Cindy Norris and Lori L. Pollock. Register allocation over the program depen-
dence graph. In Proc. of Sigplan ’94 Conf. on Programming Language Design and
Implementation, pages 266–277, 1994.

13. Cindy Norris and Lori L. Pollock. An experimental study of several cooperative
register allocation and instruction scheduling strategies. Proceedings of MICRO-28,
Nov. 1995. 261

14. Cindy Norris and Lori L. Pollock. A scheduler-sensitive global register allocator.
Proceedings of Supercomputing’93, pages 804-813, Portland, Oregon, 1993. 248,
253

15. Shlomit S. Pinter. Register allocation with instruction scheduling: A new approach.
In Proc. of Sigplan ’93 Conf. on Programming Language Design and Implementa-
tion, pages 248–257, 1993. 253


	Integrated Instruction Scheduling and Register Allocation Techniques
	Introduction
	Issues in Integrating Register Allocation with Instruction Scheduling
	Live Range Spilling vs Live Range Splitting
	Parallel Interference Graphs vs Register Reuse Dags
	Unified Resource Allocation Using Reuse Dags and Splitting
	Conclusion


