This page does not represent the most current semester of this course; it is present merely as an archive.
Assume the following definitions:
notation | meaning |
---|---|
\mathbb{Z} | The integers |
\mathbb{Z}^{+} | The positive integers; i.e., \big\{ x \; \big| \; x \in \mathbb{Z} \land x > 0 \big\} |
\mathbb{N} | The natural numbers; i.e., \big\{ x \; \big| \; x \in \mathbb{Z} \land x \geq 0 \big\} |
\mathbb{Z}^{-} | The negative integers; i.e., \big\{ x \; \big| \; x \in \mathbb{Z} \land x < 0 \big\} |
\mathbb{R} | The real numbers |
\mathbb{Q} | The rational numbers; i.e., \Big\{ \frac{x}{y} \; \Big| \; x \in \mathbb{Z} \land y \in \mathbb{Z}^{+} \Big\} |
\pi | The ratio of the circumference of a circle to its diameter; 3.1415926535… |
Assume that \mathbb Q^{+}, \mathbb Q^{-}, \mathbb R^{+}, and \mathbb R^{-} are defined similarly to \mathbb Z^{+} and \mathbb Z^{-}.
Each of the following is either true or false; which one?
3 \in \mathbb Z1
3.5 \in \mathbb Z2
\pi \in \mathbb Z3
3 \in \mathbb Q4
3.5 \in \mathbb Q5
\pi \in \mathbb Q6
3 \in \mathbb R7
3.5 \in \mathbb R8
\pi \in \mathbb R9
3 \in \big\{x + y \;\big|\; x,y \in \mathbb{Z}^{+} \land x > y \big\}10
3.5 \in \big\{x + y \;\big|\; x \in \mathbb{Z}^{+} \land y \in \mathbb{R}^{+} \big\}11
0 \in \big\{x + y \;\big|\; x,y \in \mathbb{Z}^{+} \land x > y \big\}12
0 \in \big\{x - y \;\big|\; x,y \in \mathbb{R} \land x > y \big\}13
3 \in \{\{1\}, \{2, 3\}, \{4, 5, 6\}\}14
\{3\} \in \{\{1\}, \{2, 3\}, \{4, 5, 6\}\}15
\{2, 3\} \in \{\{1\}, \{2, 3\}, \{4, 5, 6\}\}16
\{2, 3\} \in \mathcal{P}\big(\{2, 3\}\big)17
|\{2, 3\}| \in \{2, 3\}18
|\{2, 3\}| \in \mathcal{P}\big(\{2, 3\}\big)19
\infty \in \mathbb R20
Each of the following is either true or false; which one?
A set is said to be closed over an operation if applying that operation to members of the set always results in another member of that set.
For each of the following, fill in the blank with the first element of the following list that applies:
disjointif the intersection of the two is \emptyset; otherwise
Set 1 | Set 2 | |
---|---|---|
\mathbb R | 76 | \mathbb Q |
\mathbb N | 77 | \mathbb Z^{+} |
even numbers | 78 | odd numbers |
prime numbers | 79 | odd numbers |
\{1, 3, 5\} | 80 | \{\{1\}, \{3\}, \{5\}\} |
\{1, 3, 5\} | 81 | \{5, 3, 1\} |
\{1, 3, 5\} | 82 | \{5, 3\} |
\{0, 1\} | 83 | \big\{ x \;\big|\; x \in \mathbb{R} \land x^2 = x\big\} |
\mathbb{N} | 84 | \Big\{ x \;\Big|\; x \in \mathbb{R}^{+} \land \big(x - \lfloor x \rfloor = 0\big)\Big\} |
even numbers | 85 | \big\{x \;\big|\; \exists y \in \mathbb Z \;.\; 2y = x\big\} |
\mathbb R \setminus \mathbb Z | 86 | \Big\{ x \;\Big|\; (x \in \mathbb R) \land \big(\forall y \in \mathbb Z \;.\; x \neq y\big) \Big\} |
\mathbb R \setminus \mathbb Z | 87 | \mathbb R \setminus \mathbb Q |
\mathbb Q \setminus \mathbb Z | 88 | \{1, 2, 4\} |
\emptyset | 89 | \mathcal{P}(\emptyset) |
\{1\} | 90 | \mathcal{P}(\{1\}) |
R^{+} \cup \{0\} | 91 | \big\{ x \;\big|\; x \in \mathbb R \land \sqrt{x^2} = x \big\} |
For each of the following, list the members of the set:
true↩︎
false↩︎
false↩︎
true↩︎
true↩︎
false↩︎
true↩︎
true↩︎
true↩︎
true↩︎
true↩︎
false↩︎
false↩︎
false↩︎
false↩︎
true↩︎
true↩︎
true↩︎
false↩︎
false↩︎
false↩︎
true↩︎
true↩︎
false (consider 0.00001)↩︎
true↩︎
true↩︎
true↩︎
true↩︎
false↩︎
true↩︎
true↩︎
true↩︎
true↩︎
true↩︎
false↩︎
true↩︎
false↩︎
true↩︎
true↩︎
true↩︎
true↩︎
true↩︎
false↩︎
mostly true, except for 0 divisors↩︎
false↩︎
true↩︎
false↩︎
true↩︎
false↩︎
mostly true, except for 0 divisors↩︎
false↩︎
true↩︎
false↩︎
false↩︎
false↩︎
false↩︎
false↩︎
true↩︎
true↩︎
true↩︎
mostly true, except for 0 divisors↩︎
mostly true, except for 0 divisors↩︎
false↩︎
false↩︎
false↩︎
true↩︎
true↩︎
false↩︎
false↩︎
true↩︎
true↩︎
true↩︎
mostly true, except for 0 divisors↩︎
mostly true, except for 0 divisors↩︎
false because \mathbb R contains negative numbers↩︎
\supset↩︎
\supset↩︎
disjoint↩︎
\neq↩︎
disjoint↩︎
=↩︎
\supset↩︎
=↩︎
\supset (would be = if \mathbb Z^{+} instead of \mathbb N↩︎
=↩︎
=↩︎
\supset↩︎
disjoint↩︎
\subset↩︎
disjoint↩︎
=↩︎
\big\{0, \frac{1}{4}, \frac{1}{2}, 1, 2\big\}↩︎
\Big\{ \{\}, \big\{\{\}\big\} \Big\}↩︎
\bigg\{ \{\}, \big\{\{\}\big\}, \Big\{\big\{\{\}\big\}\Big\}, \Big\{\{\}, \big\{\{\}\big\}\Big\} \bigg\}↩︎
\{5,7,8,9,10,12\}↩︎
{1, 4, 7}↩︎
\big\{25, 0, 1, \emptyset, \{25\}, \{0\}, \{1\}, \{25,0\}, \{25,1\}, \{0,1\}, \{25,0,1\}\big\}↩︎
2^{90} which is 1,237,940,039,285,380,274,899,124,224↩︎
0↩︎
2^{90}+90 which is 1,237,940,039,285,380,274,899,124,314↩︎