
1

things programs on portal shouldn’t do
read other user’s files

modify OS’s memory

read other user’s data in memory

hang the entire system

2

things programs on portal shouldn’t do
read other user’s files

modify OS’s memory

read other user’s data in memory

hang the entire system

3

privileged operation: problem
how can hardware (HW) plus operating system (OS) allow:

read your own files from hard drive

but disallow:
read others files from hard drive

4

some ideas
OS tells HW ‘okay’ parts of hard drive before running program
code

complex for hardware and for OS

OS verifies your program’s code can’t do bad hard drive access
no work for HW, but complex for OS
may require compiling differently to allow analysis

OS tells HW to only allow OS-written code to access hard drive
that code can enforce only ‘good’ accesses
requires program code to call OS routines to access hard drive
relatively simple for hardware

5

some ideas
OS tells HW ‘okay’ parts of hard drive before running program
code

complex for hardware and for OS

OS verifies your program’s code can’t do bad hard drive access
no work for HW, but complex for OS
may require compiling differently to allow analysis

OS tells HW to only allow OS-written code to access hard drive
that code can enforce only ‘good’ accesses
requires program code to call OS routines to access hard drive
relatively simple for hardware

5

some ideas
OS tells HW ‘okay’ parts of hard drive before running program
code

complex for hardware and for OS

OS verifies your program’s code can’t do bad hard drive access
no work for HW, but complex for OS
may require compiling differently to allow analysis

OS tells HW to only allow OS-written code to access hard drive
that code can enforce only ‘good’ accesses
requires program code to call OS routines to access hard drive
relatively simple for hardware

5

kernel mode
extra one-bit register: “are we in kernel mode”

other names: privileged mode, supervisor mode, …

not in kernel mode = user mode

certain operations only allowed in kernel mode
privileged instructions

example: talking to any I/O device

6

what runs in kernel mode?
system boots in kernel mode

OS switches to user mode to run program code

next topic: when does system switch back to kernel mode?
how does OS tell HW where the (trusted) OS code is?

7

hardware + system call interface
applications + libraries

system call interface
kernel part of OS that runs in kernel mode

hardware

user-mode
hardware
interface
(limited)

kernel-mode
hardware interface

(complete)

8

calling the OS?

OS code

program code

void readFromDiskInto(int diskLocation, char *dest) {
...
runPrivilegedInstruction(...);
...

}

void readFileSafely(const char *name, char *dest) {
if (canCurrentProgramCanAccessFile(name)) {

readFromDiskInto(lookupFile(name), dest)
}

}

how do we let this code run
readFromSafely in kernel mode
but not readFromDisk?

9

controlled entry to kernel mode (1)
special instruction: “make system call”

similar idea as call instruction — jump to function elsewhere
(and allow that function to return later)

runs OS code in kernel mode at location specified earlier

OS sets up at boot

location can’t be changed without privilieged instrution

10

controlled entry to kernel mode (2)
OS needs to make specified location:

figure out what operation the program wants
calling convention, similar to function arguments + return value

be “safe” — not allow the program to do ‘bad’ things
example: checks whether current program is allowed to read file before
reading it
requires exceptional care — program can try weird things

11

system call process
user mode kernel mode

program encodes
request for OS in regs

program runs special instruction
“system call”

start system call handler

read registers
to find out what
program wants
and maybe do it

12

system call process
user mode kernel mode

program encodes
request for OS in regs

program runs special instruction
“system call”

start system call handler

read registers
to find out what
program wants
and maybe do it

12

system call terminology
some inconsistency:

system call = event of entering kernel mode on request?

system call = whole porcess from beginning to end?

same issue as with ‘function call’
is it just starting the function, or the whole time the function runs?

13

Linux x86-64 system calls
special instruction: syscall

runs OS specified code in kernel mode

14

Linux syscall calling convention
before syscall:

%rax — system call number

%rdi, %rsi, %rdx, %r10, %r8, %r9 — args

after syscall:

%rax — return value

on error: %rax contains -1 times “error number”

almost the same as normal function calls
15

Linux x86-64 hello world
.globl _start
.data
hello_str: .asciz "Hello, World!\n"
.text
_start:

movq $1, %rax # 1 = "write"
movq $1, %rdi # file descriptor 1 = stdout
movq $hello_str, %rsi
movq $15, %rdx # 15 = strlen("Hello, World!\n")
syscall

movq $60, %rax # 60 = exit
movq $0, %rdi
syscall

16

approx. system call handler
sys_call_table:

.quad handle_read_syscall

.quad handle_write_syscall
// ...

handle_syscall:
... // save old PC, etc.
pushq %rcx // save registers
pushq %rdi
...
call *sys_call_table(,%rax,8)
...
popq %rdi
popq %rcx
return_from_exception 17

Linux system call examples
mmap, brk — allocate memory

fork — create new process

execve — run a program in the current process

_exit — terminate a process

open, read, write — access files

socket, accept, getpeername — socket-related

18

Linux system call examples
mmap, brk — allocate memory

fork — create new process

execve — run a program in the current process

_exit — terminate a process

open, read, write — access files

socket, accept, getpeername — socket-related

18

system call handled slowly?
user mode kernel mode

......

program encodes
request for OS in regs

example: “read keypress”

program runs special instruction
“system call”

start system call handler

maybe need to wait
for keypress to read

so do something else for a while

later, get back to program

nothing left to do in this program

so do something else

19

system call handled slowly?
user mode kernel mode

......

program encodes
request for OS in regs

example: “read keypress”

program runs special instruction
“system call”

start system call handler

maybe need to wait
for keypress to read

so do something else for a while

later, get back to program

nothing left to do in this program

so do something else

19

system call handled slowly?
user mode kernel mode

......

program encodes
request for OS in regs

example: “exit program”

program runs special instruction
“system call”

start system call handler

maybe need to wait
for keypress to read

so do something else for a while

later, get back to program

nothing left to do in this program

so do something else

19

system call handled slowly?
user mode kernel mode

......

program encodes
request for OS in regs

example: “exit program”

program runs special instruction
“system call”

start system call handler

maybe need to wait
for keypress to read

so do something else for a while

later, get back to program

nothing left to do in this program

so do something else

19

system call wrappers
library functions to not write assembly:
open:

movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret

has_error:
neg %rax
movq %rax, errno
movq $−1, %rax
ret

20

system call wrappers
library functions to not write assembly:
open:

movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret

has_error:
neg %rax
movq %rax, errno
movq $−1, %rax
ret

20

system call wrapper: usage
/* unistd.h contains definitions of:

O_RDONLY (integer constant), open() */
#include <unistd.h>
int main(void) {

int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {

printf("error: %s\n", strerror(errno));
exit(1);

}
...
result = read(file_descriptor, ...);
...

}
21

system call wrapper: usage
/* unistd.h contains definitions of:

O_RDONLY (integer constant), open() */
#include <unistd.h>
int main(void) {

int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {

printf("error: %s\n", strerror(errno));
exit(1);

}
...
result = read(file_descriptor, ...);
...

}
21

strace hello_world (1)
strace — Linux tool to trace system calls

run on assembly program we saw earlier:
$ strace -o trace.txt ./hello_world
$ cat trace.txt
execve("./hello_world", ["./hello_world"],

0x7ffeedafd0a0 /* 28 vars */) = 0
write(1, "Hello, World!\n\0", 14) = 14
exit(0) = ?
+++ exited with 0 +++

22

strace hello_world (2)
#include <stdio.h>
int main() { puts("Hello, World!"); }
when statically linked:
execve("./hello_world", ["./hello_world"], 0x7ffeb4127f70 /* 28 vars */)

= 0
brk(NULL) = 0x22f8000
brk(0x22f91c0) = 0x22f91c0
arch_prctl(ARCH_SET_FS, 0x22f8880) = 0
uname({sysname="Linux", nodename="reiss-t3620", ...}) = 0
readlink("/proc/self/exe", "/u/cr4bd/spring2023/cs3130/slide"..., 4096)

= 57
brk(0x231a1c0) = 0x231a1c0
brk(0x231b000) = 0x231b000
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or

directory)
fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 4), ...}) = 0
write(1, "Hello, World!\n", 14) = 14
exit_group(0) = ?
+++ exited with 0 +++

23

aside: what are those syscalls?
execve: run program
brk: allocate heap space
arch_prctl(ARCH_SET_FS, ...): thread local storage pointer

may make more sense when we cover concurrency/parallelism later

uname: get system information
readlink of /proc/self/exe: get name of this program
access: can we access this file [in this case, a config file]?
fstat: get information about open file
exit_group: variant of exit

24

strace hello_world (2)
#include <stdio.h>
int main() { puts("Hello, World!"); }
when dynamically linked:
execve("./hello_world", ["./hello_world"], 0x7ffcfe91d540 /* 28 vars */)

= 0
brk(NULL) = 0x55d6c351b000
...
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=196684, ...}) = 0
mmap(NULL, 196684, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f7a62dd3000
close(3) = 0
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0"..., 832) = 832
...
close(3) = 0
write(1, "Hello, World!\n", 14) = 14
exit_group(0) = ?
+++ exited with 0 +++ 25

hardware + system call interface
applications + libraries

system call interface
kernel part of OS that runs in kernel mode

hardware

user-mode
hardware
interface
(limited)

kernel-mode
hardware interface

(complete)

26

hardware + system call + library interface
application

library interface

system libraries
system call interface

kernel part of OS that runs in kernel mode

hardware

user-mode
hardware
interface
(limited)

kernel-mode
hardware interface

(complete)

27

things programs on portal shouldn’t do
read other user’s files

modify OS’s memory

read other user’s data in memory

hang the entire system

28

memory protection
modifying another program’s memory?
Program A Program B
0x10000: .long 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on …)
F. something else

29

memory protection
modifying another program’s memory?
Program A Program B
0x10000: .long 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax (in A) is …

A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on …)
F. something else 29

memory protection
modifying another program’s memory?
Program A Program B
0x10000: .long 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax (in A) is 42
(always with ‘normal’ multiuser OSes)

A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on …)
F. something else 30

shared memory
recall: dynamically linked libraries
would be nice not to duplicate code/data…
we can!

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

Shared code or data
OS data

real memory

31

memory protection
modifying another program’s memory?
Program A Program B
0x10000: .long 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax (in A) is 42 result: might crash
(always with ‘normal’ multiuser OSes)

A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on …)
F. something else 32

program crashing?
what happens on processor when program crashes?

other program informed of crash to display message

use processor to run some other program

how does hardware do this?

would be complicated to tell about other programs, etc.

instead: hardware runs designated OS routine

33

program crashing?
what happens on processor when program crashes?

other program informed of crash to display message

use processor to run some other program

how does hardware do this?

would be complicated to tell about other programs, etc.

instead: hardware runs designated OS routine

33

exceptions
recall: system calls — software asks OS for help

also cases where hardware asks OS for help

different triggers than system calls

but same mechanism as system calls:
switch to kernel mode (if not already)
call OS-designated function

34

exceptions
recall: system calls — software asks OS for help

also cases where hardware asks OS for help

different triggers than system calls

but same mechanism as system calls:
switch to kernel mode (if not already)
call OS-designated function

34

types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

(and more we’ll talk about later)

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

35

types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

(and more we’ll talk about later)

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

35

types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

(and more we’ll talk about later)

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

35

types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

(and more we’ll talk about later)

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

35

things programs on portal shouldn’t do
read other user’s files

modify OS’s memory

read other user’s data in memory

hang the entire system

36

types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

37

exceptions [Venn diagram]

exceptions

system
calls

faults
(example:
segfault)

interrupts
(example: I/O)

38

general exception process
user mode kernel mode

something triggers exception
maybe the program did
or maybe something else

start exception handler

OS handles
whatever happenedgo back to running

program code
possibly a different

program than before
exit exception handler

39

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

40

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

40

switching programs
OS starts running somehow

some sort of exception

saves old registers + program counter + address mapping
(optimization: could omit when program crashing/exiting)

sets new registers + address mapping, jumps to new program
counter

called context switch
saved information called context

41

contexts (A running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

42

contexts (B running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

43

threads
thread = illusion of own processor

own register values

own program counter value

actual implementation:
many threads sharing one processor

problem: where are register/program counter values
when thread not active on processor?

44

threads
thread = illusion of own processor

own register values

own program counter value

actual implementation:
many threads sharing one processor

problem: where are register/program counter values
when thread not active on processor?

44

types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

45

exception patterns with I/O (1)
input — available now:

exception: device says “I have input now”
handler: OS stores input for later
exception (syscall): program says “I want to read input”
handler: OS returns that input

input — not available now:
exception (syscall): program says “I want to read input”
handler: OS runs other things (context switch)
exception: device says “I have input now”
handler: OS retrieves input
handler: (possibly) OS switches back to program that wanted it

46

exception patterns with I/O (2)
output — ready now:

exception (syscall): program says “I want to output this’
handler: OS sends output to device

output — not ready now
exception (syscall): program says “I want to output”
handler: OS realizes device can’t accept output yet
(other things happen)
exception: device says “I’m ready for output now”
handler: OS sends output requested earlier

47

keyboard input timeline

read_input.exe read_input.exe

read system call

from keyboard

= operating system

48

review: definitions
exception: hardware calls OS specified routine

many possible reasons
system calls: type of exception

context switch: OS switches to another thread
by saving old register values + loading new ones
part of OS routine run by exception

49

which of these require exceptions? context
switches?
A. program calls a function in the standard library

B. program writes a file to disk

C. program A goes to sleep, letting program B run

D. program exits

E. program returns from one function to another function

F. program pops a value from the stack

50

which require exceptions [answers] (1)
A. program calls a function in the standard library

no (same as other functions in program; many standard library functions
make no system calls (and do not otherwise trigger exceptions — for
example strlen, pow; also if we consider the calling of a function just
the call instruction, then the library functions that do make system
calls won’t do so until later)

B. program writes a file to disk
yes (requires kernel mode only operations)

C. program A goes to sleep, letting program B run
yes (kernel mode usually required to change the address space to acess
program B’s memory)

51

which require exceptions [answer] (2)
D. program exits

yes (requires switching to another program, which requires accessing OS
data + other program’s memory)

E. program returns from one function to another function
no

F. program pops a value from the stack
no

52

which require context switches [answer]
no: A. program calls a function in the standard library

no: B. program writes a file to disk
(but might be done if program needs to wait for disk and other things
could be run while it does)

yes: C. program A goes to sleep, letting program B run

yes: D. program exits

no: E. program returns from one function to another function

no: F. program pops a value from the stack

53

terms for exceptions
terms for exceptions aren’t standardized

our readings use one set of terms
interrupts = externally-triggered
faults = error/event in program
trap = intentionally triggered

all these terms appear differently elsewhere

54

The Process
process = thread(s) + address space

illusion of dedicated machine:
thread = illusion of own CPU
(process could have multiple threads — with independent registers)
address space = illusion of own memory

55

backup slides

56

keeping permissions?
which of the following would still be secure?

A. performing authorization checks in the standard library in
addition to system call handlers

B. performing authorization checks in the standard library instead
of system call handlers

C. making the user ID a system call argument rather than storing it
persistently in the OS’s memory

57

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

58

address space
programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

59

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

60

address space
programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

61

address space mechanisms
topic after exceptions

called virtual memory

mapping called page tables

mapping part of what is changed in context switch

62

one way to set shared memory on Linux
/* regular file, OR: */
int fd = open("/tmp/somefile.dat", O_RDWR);
/* special in-memory file */
int fd = shm_open("/name", O_RDWR);
...
/* make file's data accessible as memory */
void *memory = mmap(NULL, size, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0);

mmap: “map” a file’s data into your memory

will discuss a bit more when we talk about virtual memory

part of how Linux loads dynamically linked libraries

63

an infinite loop
int main(void) {

while (1) {
/* waste CPU time */

}
}

If I run this on a shared department machine, can you still use it?
…if the machine only has one core?

64

timing nothing
long times[NUM_TIMINGS];
int main(void) {

for (int i = 0; i < N; ++i) {
long start, end;
start = get_time();
/* do nothing */
end = get_time();
times[i] = end − start;

}
output_timings(times);

}
same instructions — same difference each time? 65

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

66

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

67

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
loop: ...

...
jmp loop

loop: ...
...

million cycle delay
...
jmp loop

loop: ...
...

68

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
loop: ...

...
jmp loop

loop: ...
...

million cycle delay
...
jmp loop

loop: ...
...

68

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
loop: ...

...
jmp loop

loop: ...
...

million cycle delay
...
jmp loop

loop: ...
...

68

crash timeline timeline

segfault.exe

out of bounds memory acecss

= operating system

69

locating exception handlers (one strategy)

address pointer
base + 0x000
base + 0x008
base + 0x010
base + 0x018… …
base + 0x108… …
base + 0x400… …

exception table (in memory)

exception table
base register handle_divide_by_zero:

movq %rax, save_rax
movq %rbx, save_rbx
...

handle_system_call:
movq %rax, save_rax
movq %rbx, save_rbx
...

handle_keyboard_interrupt:
movq %rax, save_rax
movq %rbx, save_rbx
...

…
…
…

70

keyboard input timeline

read_input.exe read_input.exe

read system call

from keyboard

= operating system

71

exceptions in exceptions
handle_timer_interrupt:

save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

oops, overwrote saved values?

72

exceptions in exceptions
handle_timer_interrupt:

save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

oops, overwrote saved values?

72

exceptions in exceptions
handle_timer_interrupt:

save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

oops, overwrote saved values?

72

interrupt disabling
CPU supports disabling (most) interrupts

interrupts will wait until it is reenabled

CPU has extra state:
are interrupts enabled?
is keyboard interrupt pending?
is timer interrupt pending?

73

exceptions in exceptions
handle_timer_interrupt:

/* interrupts automatically disabled here */
movq %rsp, save_rsp
save_old_pc save_pc
/* key press here */
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_set_kernel_stack:
pushq save_rsp
pushq save_pc
enable_intterupts2
pushq %r15
...

/* interrupt happens here! */
...

handle_keyboard_interrupt:
movq %rsp, save_rsp
save_old_pc save_pc
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_exception_stack:
pushq save_rsp
pushq save_pc
enable_intterupts
pushq %r15
...

74

exceptions in exceptions
handle_timer_interrupt:

/* interrupts automatically disabled here */
movq %rsp, save_rsp
save_old_pc save_pc
/* key press here */
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_set_kernel_stack:
pushq save_rsp
pushq save_pc
enable_intterupts2
pushq %r15
...

/* interrupt happens here! */
...

handle_keyboard_interrupt:
movq %rsp, save_rsp
save_old_pc save_pc
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_exception_stack:
pushq save_rsp
pushq save_pc
enable_intterupts
pushq %r15
...

74

exceptions in exceptions
handle_timer_interrupt:

/* interrupts automatically disabled here */
movq %rsp, save_rsp
save_old_pc save_pc
/* key press here */
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_set_kernel_stack:
pushq save_rsp
pushq save_pc
enable_intterupts2
pushq %r15
...

/* interrupt happens here! */
...

handle_keyboard_interrupt:
movq %rsp, save_rsp
save_old_pc save_pc
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_exception_stack:
pushq save_rsp
pushq save_pc
enable_intterupts
pushq %r15
...

74

disabling interrupts
automatically disabled when exception handler starts

also can be done with privileged instruction:
change_keyboard_parameters:

disable_interrupts
...
/* change things used by

handle_keyboard_interrupt here */
...
enable_interrupts

75

exception implementation
detect condition (program error or external event)

save current value of PC somewhere

jump to exception handler (part of OS)
jump done without program instruction to do so

76

exception implementation: notes
I describe a simplified version

real x86/x86-64 is a bit more complicated
(mostly for historical reasons)

77

context
all registers values

%rax %rbx, …, %rsp, …

condition codes

program counter

address space (map from program to real addresses)

78

context switch pseudocode
context_switch(last, next):

copy_preexception_pc last−>pc
mov rax,last−>rax
mov rcx, last−>rcx
mov rdx, last−>rdx
...
mov next−>rdx, rdx
mov next−>rcx, rcx
mov next−>rax, rax
jmp next−>pc

79

the classic Unix design
applications

standard library functions / shell commands
standard libraries and
utility programs

system call interface

kernel

hardware interface

hardware

user-mode
hardware
interface
(limited)

kernel-mode hardware interface (complete)

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?
the OS?

80

the classic Unix design
applications

standard library functions / shell commands
standard libraries and
utility programs

system call interface

kernel

hardware

user-mode
hardware
interface
(limited)

kernel-mode hardware interface (complete)

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?
the OS?

80

the classic Unix design
applications

standard library functions / shell commands
standard libraries and
utility programs

system call interface

kernel

hardware

user-mode
hardware
interface
(limited)

kernel-mode hardware interface (complete)

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?
the OS?

80

the classic Unix design
applications

standard library functions / shell commands
standard libraries and
utility programs

system call interface

kernel

hardware

user-mode
hardware
interface
(limited)

kernel-mode hardware interface (complete)

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?

the OS?

80

the classic Unix design
applications

standard library functions / shell commands
standard libraries and
utility programs

system call interface

kernel

hardware

user-mode
hardware
interface
(limited)

kernel-mode hardware interface (complete)

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?

the OS?

80

aside: is the OS the kernel?
OS = stuff that runs in kernel mode?

OS = stuff that runs in kernel mode + libraries to use it?

OS = stuff that runs in kernel mode + libraries + utility programs
(e.g. shell, finder)?

OS = everything that comes with machine?

no consensus on where the line is

each piece can be replaced separately…

81

exception implementation
detect condition (program error or external event)

save current value of PC somewhere

jump to exception handler (part of OS)
jump done without program instruction to do so

82

exception implementation: notes
I describe a simplified version

real x86/x86-64 is a bit more complicated
(mostly for historical reasons)

83

running the exception handler
hardware saves the old program counter (and maybe more)

identifies location of exception handler via table

then jumps to that location

OS code can save anything else it wants to , etc.

84

	some malicious things we'd like to stop
	privileged instruction idea
	preview: unix design
	OS code in memory
	exception entry point
	system call idea
	aside: terminology
	system calls on Linux
	maybe not return?
	system call wrappers

	interlude: strace
	kernel + standard library
	memory protection
	exercise: expected behavior?
	preview: shared memory

	extending system calls: exception idea
	reasons for exceptions, generally

	infinite loop
	exception kinds, summarized
	exception handling generalized
	operating system runs
	context switches

	thread idea
	not just timers
	typical I/O pattern

	review: exception / context switch
	exercise
	aside: terms

	process
	backup slides
	exercise: why not check
	address spaces

	shared memory example code
	timing nothing

	time multiplexing
	crash timeline
	exception table
	key-in timeline
	nested exceptions?

	exception table + dispatch
	in the context
	context switch pseudocode
	Unix design [full]

	exception dispatch

