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Abstract. Segmentation of vessels in biomedical images is important as
it can provide insight into analysis of vascular morphology, topology and
is required for kinetic analysis of flow velocity and vessel permeability.
Intravital microscopy is a powerful tool as it enables in vivo imaging of
both vasculature and circulating cells. However, the analysis of vascula-
ture in those images is difficult due to the presence of cells and their image
gradient. In this paper, we provide a novel method of segmenting vessels
with a high level of cells related clutters. A set of virtual point pairs
(“vessel probes”) are moved reacting to forces including Vessel Vector
Flow (VVF) and Vessel Boundary Vector Flow (VBVF) force. Incorpo-
rating the cell detection, the VVF force attracts the probes to toward
the vessel, while the VBVF force attracts the virtual points of probes to
localize the vessel boundary without being distracted by the image fea-
tures of the cells. The vessel probes are moved according to Newtonian
Physics reacting to the net of forces applied on them. We demonstrate
the results on a set of five real in vivo images of liver vasculature clut-
tered by white blood cells. When compared against the ground truth
prepared by the technician, the Root Mean Squared Error (RMSE) of
segmentation with VVF and VBVF was 55% lower than method without
VVF and VBVF.

1 Introduction

The segmentation of vasculature in biomedical images can provide insight into
analysis of vascular morphology, topology and is required for kinetic analysis of
flow velocity and vessel permeability. The measuresments of diameter, tortuosity,
and bifurications are often manually measured for further analysis. When the
number of vessels to be analyzed is large, the automation facilitates analysis
of large datasets (liver lobules can have extensive microvascular network) and
decreases technician related bias.

A number of vessel segmentation algorithm has been proposed and are mostly
in the domain of retina images. In this work, we developed a vessel segemntation
algorithm for the images captured by an intravital microscopy (IVM). The IVM
is an in vivo imaging method that can capture both vasculature and flowing,
rolling and stationary cells inside them. Unlike the retina images, the vessels
from IVM can be highly cluttered by cells (Figure 1). These clutters result in



(a) intravital microscopy image (b) magnitude of gradient

Fig. 1. Vessels captured in intravital microscopy. (a) Dark area corresponds to vessels
and bright, roughly circular regions inside vessels are white blood cells. Note the high
level of clutter due to the traveling, rolling, and stationary cells causing a challenge in
automated segmentation as the gradient magnitude is very high near cell (b).

high gradient around the boundary of cells (Figure 1) and its gradient vector
flow (GVF) of pixels inside vessel to point toward a cell rather than the vessel
boundary (Figure 2.c).

In order to robustly guide segmentation toward the boundary of vessel even in
the presence of a high level of cell clutter, we segment vessels with a set of virtual
point pairs called “vessel probes” by applying forces including Vessel Vector
Flow (VVF) which moves the vessel probes toward the vessel area while Vessel
Boundary Vector Flow (VBVF) moves the probes to localize the boundary of
vessels. The probes are moved according to Newtonian physics. By incorporating
cell detection, the VVF and VBVF forces are computed to minimize the effect
of gradient caused by the cells. Once the probes stabilize, they are connected
to delineate the vessel boundary (Figure 2.f). Our method can segment vessels
even when the cells [Anonymous] and vessels [1] are static making the temporal
processing ineffective. The vessel probes are randomly initialized thus the method
does not require initialization. We tested the method on a set of challenging real
in vivo images of vessels in liver of mice cluttered with white blood cells and the
result is encouraging.

2 Previous Works

A number of vessel segementation algorithms has been published over the years.
Kirbas and Quek [2] provide a thorough survey of the vessel segmentation meth-
ods. Majority of the work involve segmentation in retina images. The segmenta-
tion in presence of clutter and pathological diseases can be problematic. Shu et
al. [3] segments retina vessels in disease conditions by discarding centerlines with
gradient vector fields that were inconsistent with vessels. In our work, the clutter
is inside vessels frequently touching vessel boundary causing noise in gradient
vector flow along vessel boundaries (Figure 1).
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Fig. 2. Note how the intensity vector flow (which should point toward the higher
intensity is corrupted by the presence of cell (a) while the vessel vector flow points
toward the center of vessels. The gradient vector flow (c) is not a reliable for pointing
toward the vessel boundary. The improvement in VVF (b) and VBVF (d) directing
toward the center and boundary of vessel while avoiding the noise induced by cell
clutter is achieved. The final segmentation are shown in (e) and (f) and demonstrates
that our method can reliably segment vessels even with a presence of cells.

Intravital microscopy (IVM) can capture both vessels and cells resulting in
new challenges. An active contour based method was used to segment the bound-
ary of the one large blood vessel of a cremaster muscle in a video sequence [1].
A sequential frame difference forms the initialization of the snake. A multiscale
approach was used to speed up the snake optimization, and gradient vector flow
was used as external energy to be less resistant to noise. Also, multiple ribbon
snakes [4] were used by [anonymous] to segment the vasculature of the liver



in IVM images after removing the moving cells using temporal median filter-
ing. In our images, the vessel movement is minimal and a number of stationary
cells is significant making the frame differencing ineffective for vessel localization
initialization nor the removal of cells.

The 3-D vessel crawler by McIntosh and Hamarneh [5] uses a physics based
model for segmenting 3-D vessels in MRA images. Points connected by springs
crawl along the vessel. The crawler detects when it reaches a vessel junction and
then spawns a new vessel crawler toward one of the uncrawled paths. Again,
cells were not present in the vessels of images that was segmented.

Fig. 3. Vessel Probe (left) and the visualization of their Movement (right). Left: all
forces are shown in black while the net force is draw in red. All forces are shown only
for the right probe. Right: the iterations of the probes are shown. Probes are shown in
red for initial orientation, blue at convergence, and white for all iterations in between.

3 Method

3.1 Vessel Probe

A vessel probe (p) is constructed by two virtual points, pl and pr, with an
identical mass of mp (Figure 3.a). The probes are moved so that center of p
is inside vessel and pl and pr converges at the boundary of vessel. They are
connected by a spring with a spring constant of Ks and the equilibrium length
L which is the length of the spring at which the spring force is zero.

Initially, the virtual points of vessel probes are randomly positioned at sl and
sr. As the same equation applies to the motion of either points, we will describe
for one point and let s be a location of a virtual point. The point’s velocity v
and acceleration a are initialized to be zero vectors. Each virtual point responds
to the net force (Fnet) according to the Newtonian Physics. Fnet is a sum
of all forces applied on the probe. Forces are summarized on Table 3.1. Each
virtual point is moved responding to Fnet exerted for T seconds. To simplify the



Name Task

Vessel Vector Flow (VVF) moves the probe toward the vessel

Vessel Boundary Vector Flow moves the virtual points to
(VBVF) localize on the vessel boundary

Spring keeps two virtual points connected
within a reasonable length

Repel spreads the probes to cover the vessel
with a smaller number of probes

Drag slows down the probes to converge at vessel

Table 1. Forces applied on Vessel Probes. Fnet is the sum of all forces for each virtual
point.

implementation, we make two assumptions. First, the change in the forces during
T seconds due to the movement of points is not significant. Second, the direction
and magnitude of force within a pixel is constant. We move each probe for T
seconds by breaking T into smaller δt where Fnet is constant (within a pixel).
Note that position is calculated at a sub-pixel accuracy and the “pixel” refers to
the area unit rather than a distance. The acceleration due to the force is anet =
Fnet/mp. At constant acceleration, the velocity after δt would be v′ = v+anetδt.

We compute the δt using a quadratic formula, δt = −2v±
√

(2v)2+8a(ŝ−s)

2a where ŝ
is the intersection between the pixel boundary of s and the vector from s moved
along v. The probe is moved to s′ = s + 1

2 (v′ + v)δt. Each probe is moved until
the aggregate of δt is T . A vessel probe convergence is found the movement is
minimal.

3.2 Vessel Vector Flow force

The cells inside vessels cause significant noise in both the gradient magnitude
(Figure 1.b) and the gradient vector flow (Figure 2.c). Note that the image gra-
dient around cell boundary is significant and often stronger rather than around
vessel. Even after a median filtering (with a kernel size of 15x15), the gradient
magnitude around a vessel is still relatively weak. The most of gradient vector
flow [6] points toward cells rather than a vessel boundary which will make the
segmentation based on gradient vector flow difficult. We propose Vessel Vector
Flow (VVF) force that will robustly attract the center of vessel probes to the
center of vessel while avoiding the distraction caused by cells cluttering vessel
(Figure 1).

First, we detect cells by classifying each pixel as either cell or non-cell based
on the radial mean difference. For each pixel, we compute the means of intensity
of pixels within radius ranges of [0, 7] pixels (µ1), [8, 13] pixels (µ2) and [13,
21] pixels (µ3). µ1, µ2, and µ3 are nomralized so that their sum = 1. A pixel is
classified as a cell when µ1 > Tr.

Second, we compute the direction of the vessel vector flow (qdir) as a vector
that will guide toward the center of vessel while avoiding the clutters caused by



cells. Note that we are using the term “vector flow” as finding the vector of flow
toward the higher value of a function similar to the method that computes the
vector flow of gradient [6]. Given f to be the intensity of an image, we create an
inverse of an image g so that the flow direction will guide toward a vessel area
which is often darker than tissue. Then we compute the vector flow of g while
minimizing the effect of cells by setting ∇g(x, y) = 0 for the locations at (x, y)
that has been classified as a cell pixel. To avoid the gradient near the boundary
of cell, ∇g(x, y) for the locations within 5 pixels of cell pixels are also assigned
the values of zero. The vector flow qdir = (u(x, y), v(x, y)) is that minimizes

ξ =
∫ ∫

µ(u2
x + u2

y + v2
x + v2

y) + |∇|2 |qdir −∇g|2 dxdy

The normalized vector of qdir ( ˆqdir) is used as the direction component of
the VVF force (Figure 2.b). Note that they mostly point toward the center of
vessel right through the cells.

Third, we compute the magnitude of VVF. We use the gravitational model
to formulate the forces that attracts the probes toward the vessel while repelling
from each other. In that model, the magnitude of force should be at the max-
imum near the convergence. The magnitude of qdir is highest near the vessel
boundary. We noted that the qdir often converges near the center of vessels.
The convergence index [7] measures the level of convergences of vectors within
a window. We computed Cqdir

, the convergence of qdir. Then, the magnitude of
vector flow of Cqdir

is computed as the magnitude of VVF force. The VVF force
is computed by combining the magnitude and direction ( ˆqdir). The VVF force
is visualized in Figure 2.d. Note that magnitude is generally higher near vessel
center.

3.3 Vessel Boundary Vector Flow Force

The VVF atracts probes toward the vessel. We now derive Vessel Boundary
Vector Flow (VBVF) force which will attract the points of vessel probes to the
vessel boundaries. Because of the strong gradient around cell boundary, the GVF
inside a vessel often points toward cell boundaries rather than vessel boundaries
(Figure 2.c). We noted the magnitude of qdir is stronger near vessel boundaries.
So, the vector flow of ||qdir|| is computed as the Vessel Boundary Vector Flow
(b) (Figure 2.d).

3.4 Other forces: Spring, Repel and Drag

First, the spring force is used to keep points on the vessel probe from drifting
too far from each other when the gradient is weak. The spring force is computed
as Fs = Ksds where ds is the displacement vector from a virtual point to
the equilibrium location of spring. Second, to cover the vessel boundary with a
minimum number of points, a repel force is designed to push the vessel probes
from each other based on distance and orientation. The repel force exerted by



probe pi to pj at distance d is mp·mp

d2 g where g is a normalized vector from pi to
pj . The repel force on pi is computed as the sum of forces from all other probes.
Third, for the vessel probes to converge, a drag force is applied to each point on
the vessel probe. It is computed as −Kdv where Kd is the coefficient of drag.

3.5 Post processing for forming continuous vessel boundary

After the vessel probes have converged, they are connected to form boundaries of
the vessel. The probes’ virtual points are connected if their orientation is nearly
parallel and they are within a small distance. Then the locations along conection
is fine-tuned to the greatest magnitude of Vessel Boundary Vector Flow within
a small window.

4 Results

4.1 Dataset

Rats for all experimental groups were surgically prepared for intravital mi-
croscopy imaging as described in []. REF TO THAT PAPER : M. Clemens and
J. Zhang. Regulation of sinusoidal perfusion: in vivo methodology and control
by endothelins. Semin. Liver Dis, 19(4):383396, 1999. The liver is exposed and
setup on an inverted fluorescence Olympus microscope. Images were captured
by a DAGE-MTI SIT 66 camera at a rate of 30 frames per sec. The white blood
cells were visualized using rhodamine.

image 1 image 2 image 3 image 4 image 5

Fig. 4. Segmentation results on five real images . Top row includes results without
using VVF or VBVF (using intensity vector flow and GVF instead) and the bottom
row is our final results.



4.2 Evaluation

The algorithm was tested on five real images of vessels with cell clutters. The
results with and without VVF and VBVF are compared (Figure 4. For the cases
without those forces, we have used intensity vector flow and GVF instead. First,
the segmentation is closer to the vessel boundary and are less effected by the
cells. In image 3, the gradient of the bottom left side of is just too weak.

To quantitatively assess the performance, the ground truth of the vessel
boundary of those images was prepared by a biology technician. Note that the
boundary is often very weak on gradient making the absolute pixel-level accu-
rate ground truthing difficult. For each vessel boundary pixel segmented by the
algorithm, the distance to the nearest vessel boundary marked in ground truth is
computed. The root mean squared error (RMSE) of the distance for all machine
segmented points are computed. On average, the RMSE of our method was 55%
less than the method without VVF and VBVF.

5 Conclusion

We developed a vessel segmentation algorithm that is able to segment bound-
aries of vessels with a significant level of clutter due to presence of cells. These
cells often divert the gradient vector flow toward the cells rather than the vessel
boundary. Also, a number of cells are static making the temporal differenc-
ing ineffective. We computed two forces, Vessel Vector Flow (VVF) and Vessel
Boundary Vector Flow (VBVF), that guided the vessel probes minimizing the
distraction caused by cells. A set of vesel probes were randomly deployed and
moved according to the net of forces. The random deployment of probes elim-
inated the need for initialization. Comparing against the ground truth on five
real in vivo images, the RMSE was 55% lower with addition of VVF and VBVF.
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