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1. Abstract

| have developed an interactive tool for the
simulation of a classical Von Neumann computer
architecture. The simulation takes place at the
register, bus, and gate level. The . simulated
system consists of 9 registers, 4 buses, 40 gates,
an adder, a memory, a micro-programmed control
subsystem, a 3-phase clock, a "scratch" register,
logical inverters, a bi-directional shift register,
several constant registers, and zero-detect logic.
A friendly user interface was also implemented,
featuring an assembler, a microcode interpreter,
and a terminal-independent full-screen display
facility. My simulator prototype could effectively
be used as an educational tool for the introduction
of novices to the fundamentals of computer
organization.  Alternatively, the construction of
such a simulator may in itself constitute a good
term project for an upper division hardware
course.

Keywords: Computer organization, simulation, learning
tools, computer hardware, educational aids, user training
systems.

2. Introduction

We have developed an interactive tool for the
simulation of a classical von Neumann computer
architecture. The simulation takes place at the
register, bus, and gate level. The components of
our system include 9 registers, 4 buses, 40 gates,
1 adder, a memory, a micro-programmed control
subsystem, a 3-phase clock, an extra "scratch”
register, logical inverters, a bi-directional shift
register, several constant registers, and zero-
detect logic. In addition, we have constructed a
friendly uder interface, featuring an assembler, a
microcode interpreter, and a terminal-independent
full-screen display facility.

There exists a distinct lack of software tools
to aid and enhance the teaching of computer science
at the undergraduate level. We believe that our
interactive simulator prototype constitutes an
extremely useful educational tool for the
introduction of novices to the fundamentals of
computer organization. The architecture we
consider is based on the one discussed in
[Tanenbaum]. '

3. Overview

This simulator requires 3 specification: the
micro-code, the assembly instruction set, and the
user program. When the simulator starts running,
it loads the micro-program into the micro-store;
next, it reads and assembles the user program into
machine language, according to the instruction set
specified (or else the default assembly instruction
set). The resulting machine program is loaded into
the main memory of the simulator. The simulator
then begins to execute the micro-program; the
micro-program, in turn, fetches, decodes, and
executes instructions of the machine-language
program.

By programming the simulator in micro-code,
the user may thus create new and novel
"instruction sets" for the "machine.” For example,
suppose the user wanted to add an assembly
instruction "sqrt" which takes the integer square-
root of the ACC register and leaves the result in
the ACC register. The user will then need to add a
new opcode called "sqrt” (and a corresponding
machine-instruction code) to the assembly
instruction set of the machine (by updating that
file), and next modify the micro-program to
perform the square root operation on the ACC
register whenever the new instruction s
encountered.




The organization of the rest of this paper is
as follows: section 4 describes the details of the
simulated hardware, section 5 describes the
assembler and the assembly language, section 6
describes the microcode interpreter and its
language, section 7 discusses the user interface,
and section 8 summarizes the implementation and
explains how to obtain the source cods.

4. The Hardware

The computer system we chose to simulate is
a simplified von Neumann-type single-processor
micro-program controlled machine. The schematic
organization of this system is given in Appendix il
A detailed description of the components and
topology of the system follows. Unless otherwise
specified, when two registers/buses with different
numbers of bits are connected, say m and n where
m > n, the connection consists of bits 0 through n-1
of the first register/bus being connected to bits 0
through n-1 of the second register/bus. The rest
of the m-n connections are connected to logical low

(0).

4.1. Registers

IC - a 10-bit used as the insiruction _counter for
the user's program.

1X - a 10-bit register used as the index_register by
user programs for array-type addressing.

SP - a 10-bit register used as a stack pointer for
call/return instructions as well as for arbitrary
push/pop operations.

X - an 18-bit register used as a gcratch register in
various micro-instructions, and is invisible to the
assembly -language program.

ACC - an 18-bit register which serves as an
"accumulator” in the user's program.

MAR - a 10-bit register used primarily to store
the address of where main memory is going to be
written into or read from. It may also be used as a
scratch register by the micro-program.

MBR - an 18-bit used to store the data involved in
all memory read/write operations.

QC - a 6-bit register used to store the gp-code of
the currently executed macro-instruction.

It - a 2-bit register used to store the
indexing/indirection flags of the currently
executing assembly instruction.

4.2. Buses

Data bus - an 18-bit bi-directional bus that is
connected to the various registers and to the adder

output lines. Most movement of data between
registers takes place via the data bus.

Address bug - a 10-bit bi-directional bus that is
connected to the MAR register and to the adder
output bus. This bus is used to supply the MAR
register with the address of memory locations in
read/write operations.

Left adder bus - an 18-bit bus that connects the
various registers and several constant registers
with the left input to the adder module.

BRight adder bus - an 18-bit bus that connects
the various registers and several constant
registers with the right input to the adder module.

4.3. Gates

There are 40 distinct gates, each, when open,
initiates a micro-operation. Any number of gates
may be open at the same time, but some
combinations of gates are mutually exclusive (ex:
left-shift and right-shift). The hardware diagram
in Appendix Il specifies which gates open what
hardware connections.

4.4. Memory

The main memory consists of 1024 words of
18 bits each. The memory locations have
addresses in the range 0 through 1023, inclusive.
Each word has its bits numbered O through 17,
inclusive, where bit 0 is considered 1o be the least
significant when numeric values are represented.

4.5. Inverters

There is a single logical inverter between
each of the adder left and right buses, and the
adder. These may invert none, one, or both
arguments to the adder, depending on whether
neither, one, or both are enabled.

4.6. Adder

There is an 18-bit adder whose inputs are the
outputs of the inverters. At each clock cycle, the
adder (which consists of solid-state combinatorial
logic) sums its inputs and outputs the answer to its
output.

4.7. Shifter

There is a single bi-directional shift register
between the adder output and the data and address
buses. It may shift the adder output by one bit to



either left or right, depending on whether it is
enabled.

4.8. Zero-detect logic

After each addition operation of the adder,
the zero-detect logic resets or presets a bit that
can be later tested for branching purposes. The
zero-detect logic is set to '1' if the last addition
resulted in a zero answer, and to '0' if the last
addition resulted in a non-zero answer.

4.9. The Control Subsystem

The micro-programmed control subsystem of
the machine is implemented by a control store
micro-memory, a CSAR (control store address
register) and CSBR (control store data register)
registers, and hard-wired micro control logic. This
entire subsystem is invisible to the assembly-
language user.

4.9.1. The Micro-memory

The micro-memory consists of 512 words of
storage, each of which contains 41 bits. The
micro-memory words are numbered O through 511,
inclusive, while the bits in each micro word are
numbered O through 40, inclusive.

4.9.2. Micro-registers

CSAR - this is a 9-bit register that is used to
address the micro-memory. It is similar in
function to the MAR register for the main memory.
CSAR is an acronym for "Control Store Address
Register”.

CSBR - this is a 41-bit register that contains the
current micro instruction being executed. This
register is directly in control of the hard-wired
control logic and supervises the opening and closing
of control gates (i.e., the generation of control
signals) by virtue of the values contained in its
bits. CSBR is an acronym for "Control Store Buffer
Register".

4.9.3. Control Logic

The control logic for the micro programmed
control subsystem is hard-wired (in this simulation
it is written in C). It supervises the toading of
instructions from the micro-memory, incrementing
the CSAR register, and generating the control
signals from the value of the CSBR and the clock

pulses.
4.9.4. Start Toggle

The start toggle is a single bit register that
allows the system to commence execution (when
high) or causes the entire operation of the system
to be suspended (when low). This is used to halt
execution of the simulation, so that the user may
inspect the contents of various registers/buses.

4.9.5. Clock

The operation of the control subsystem is
governed by a three-phase clock. The phases of the
clock are numbered PO, P1, and P2. The set of 40
system gates is partitioned into 3 distinct non-
empty disjoint subsets, each of which contains
gates that can be open ONLY during a unique clock
phase. These sets are:

phase 1 gates ={ 1,2, 3,4,5,6,7, 89, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19,

37, 38 }
phase 1 gates = { 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 39, 40 }
phase 3 gates = { 34, 35, 36 }

This partition exists in order to eliminate
certain nasty ambiguities that arise when several
inputs are allowed to to .enter into the same
register simultaneously, thereby rendering its
contents undefined.

4.9.6. Micro-Instruction Format

Each micro instruction has one of the two
formats specified in Appendix Ill. In the first
format, the only operations that can occur are
gates being opened according to which of bits 1
through 40 of the instruction are set high, during
the appropriate clock phases. In the second format,
a certain bit (specified by bits 10 through 14) of a
register (specified by bits 1 through 9) is examined
and compared with bit 15 of that instruction. |If the
comparison was successful (i.e., they were equal),
then micro-control is transferred to the micro-
location specified by bits 16 through 25 of the
instruction. Both the "bit num" and the "address”
fields are encoded in binary; the rest of the fields
are linearly encoded, and only one of the bits of all
of these fields must be set high (the rest being set
low) in order for the instruction to logically make
sense’

Having the system be micro-programmed



makes it very powerful with respect to non-micro-
programmed systems. This is because new user-
level assembly instruction sets can be easily
implemented, and only by changing the micro-
program, not having to touch the hardware at all.
In fact, users may write their own micro-
programs, thereby taking advantage of higher
machine efficiency to suit their particular
applications.

5. The Assembly Language

This section describes the assembler for the
machine. The purpose of the assembler is to
"compile” the user's assembly language into
machine language and to place the resulting object
code into the main memory so that it may be later
executed. The reason for having an assembler, is
to make the task of programming less tedious for
the user; otherwise, the user would have had to
program directly in the hardware's binary machine
language.

A reasonable instruction set has already been
written (and is the default instruction set) in order
to accommodate users who do not wish to go
through the tedium of writing their own micro-
programs. Sensible mnemonics were also assigned
to the various operations. it should be noted that
the assembler is written in a general manner. The
opcode mnemonics are read from an external file,
and thus subject to maodification by the user. The
rest of the functions of the assembler refain
unchanged from language to language. In fact, the
only difference between two assembly languages
here is between their two respective opcode
mnemonic sets. Appendix IV gives the the
mnemonics and their respective opcodes for the
default assembly instruction set.

5.1. Stack

As can be easily seen, this language has a
built-in stack facility for calling functions and for
pushing values onto a stack. This makes the
language posses substantial versatility. In the
micro-program, the stack is rooted at the top of
memory (location 1023) and grows toward smaller
memory locations.

5.2. Instruction Format

The instruction format for this language calls
for each irfstruction to be one word in length, in the
format specified in Appendix V.

5.3. Assembly Syntax

This assembler recognizes an assembly
language that is in a standard format, where each
line of code is composed of one to three fields:
label, opcode, and address. The address field may
be immediately preceded by the character '*' which
signified indirection, and succeeded by the two
characters ‘() which signify indexing. In addition
to the defauit opcodes described earlier, there are
three additional pseudo-opcode: the 'equ’' opcode,
which is used to associate a label with a
number/address, the ‘'con' pseudo-operator, which
is used to store data/constants into memory
locations during the assembly process, and the 'org'
pseudo-operator, used to assemble code into
several separate memory regions. A sample
assembly program is given in Appendix |.

6. The Microcode Interpreter
This section describes the microcode

interpreter. The function of the microcode
interpreter is to convert the microcode from the

. symbolic form it is written in, to the form that can

be placed into the micro-memory. Alternatively,
the microcode would have been coded in binary by
the user, which makes for a very tedious and
error-prone task.

6.1. Microcode Syntax

The micro-program in symbolic form is
composed of as many occurrences of the following
40 strings as desired: alu-right=ic, alu-left=ic,
alu-right=ix, alu-left=ix, alu-right=sp, alu-
left=sp, alu-right=x, alu-left=x, alu-right=acc,
alu-left=acc, alu-right=-1, alu-left=0, alu-
right=0, alu-right=1, alu-right=sign, mar=mbr,
oc=mbr, ii=mbr, alu-left=mbr, left-shift, right-
shift, data-bus=alu-output, address-bus=alu-
output, data-bus=mbr, sp=data-bus, x=data-bus,
x=18, acc=data-bus, mar=ic, ic=data-bus,
mar=address-bus, mbr=data-bus, ix=data-bus,
mbr=mem(mar), mem(mar)=mbr, start=off,
invert-left-alu, invert-right-alu, x=10, data-
bus=mar. '

Each set of micro-operations that are
specified on ONE input line, will be executed during
ONE clock cycle (but maybe in different clock
phases). The character ;' is used as a separator
and should follow each one of the strings. Labels
may be used, and comments are placed between
curly brackets. In addition to the micro operations



specified above, two more micro-instructions may
be specified: the 'if' and the 'gotg’. The ‘if' has the
following syntax:

if(reg,bit)=cmp then goto label;

where ‘reqg’' is one of the strings { ic, ix, sp, x,
acc, mbr, mar, oc, ii, zero-detect }, 'bit' is a
decimal number that represents the bit to be
tested, '¢cmp’' is either 0 or 1 (the value to be
tested against), and ‘'label’ is a valid label in the
micro-program to be branched to if the test is
successful (i.e. reg(bit)=cmp ). The ‘'goto' micro-
instruction is much simpler:

goto label;

This micro-instruction unconditionally transfers
micro-control to the micro-location specified by

|abel".
7. The User Interface

7.1. Screen format

The simulator updates the terminal display in
a screen-oriented fashion. Direct cursor control is
exercised through a library package which is
intelligent enough to lock up the terminai type in the
appropriate UNIX system file. The most current
values of the various registers and buses are
displayed on the screen at all times, unless the user
specified to the simulator to run in the 'quist' mode.
This display makes possible for the user to trace
only the specific system components of his/her
choice, while possibly ignoring the rest, with
minimal cognitive overhead. While the system is
running, the display appears as in Appendix VI.

7.2. The interaction With the User

All commands are one letter long, which in all
cases is the first letter of the word describing the
command. A short menu is present at the bottom of
the display at all times, summarizing the
commands. A help facility makes it possible to
review the functions of the commands at any given
time. Some commands generate a sub-menu, which
contains subcommands appropriate for the original
command only.

The various commands that are available at
the top-lewel are: Pause - pauses between clock
cycles (or phases), and wait for a new command,
Continue - negates the last pause command, Stop -

halts the machine, and creates a final memory
dump, Quiet - does all things silently without
updating the display, Trace - negates the 'quiet’
command, Bedraw - clears the screen and redraw
the display, Values - allows the user to change the
contents of registers and buses, Microcode - lists
the interpreted microcode, Qbject - lists the object
code of the assembled program, Examine - lists the
contents of the entire main memory, Help - print
this summary.

7.3. Error Handling

The microcode interpreter, as well as the
assembler, may produce various diagnostic
meassages during normal operation. This usually
occurs when the user fails to comply with the
syntax rules built into the simulator. All such
error messages are meant to be self-explanatory.
The line number on which the error occurred is
included in the error-message, when appropriate.
When the microccde contains errors, assembiy will
not be_ attempted. When the source program
contains errors, éxecution will not be attempted.

8. The Implementation

The hard-wired part of the control subsystem
is written directly in the C language (after all, the
simulation has to end somewhere). Execution of the
microcode is done here and here only. Execution of
the microcode commences at micro location 0 and
proceeds logically unless "goto" instructions alter
the logic flow. The Microcode is assumed to have
been assembled and placed into the micro-memory.
Execution of the microcode halts only after the
microcode instruction ‘'start=0ff' has been
executed. Each microcode instruction is fetched
from the micro-memory, placed into the CSBR
register, and combined with the clock pulses to
generate control signals that will open various
system gates.

As the microcode executes, it will fetch and
interpret individual assembly/machine instructions
from the wuser's program in main memory.
Appropriate gates will open and close, and the
desired effect will be achieved by having the
corresponding micro operations take place. The
types and effects of the various micro operations
are described in earlier sections. To obtain the
annotated C-sources cocnstituting the simulator,
please contact the author: Gabriel Robins, P.O. Box
8369, Van Nuys, California, 91409-8369, U.S.A.



9. Summary

| have developed an interactive tool for the
simulation of a classical Von Neumann computer
architecture. The simuiation takes place at the
register, bus, and gate level, and features a
friendly user interface, an assembler, a microcode
interpreter, and a terminal-independent full-screen
display facility.

There exists a distinct lack of software tools
to aid the teaching of computer science at the
undergraduate level. | believe that my interactive

11. Appendix |: Usage Examples

11.1. Sample Micro-program

simulator prototype, or other similar tools, will
prove to be useful educational tools for the
introduction of novices to the fundamentals of
computer organization. Indeed, the construction of
such a simulator will in itself constitute a good
term project for an upper division hardware
course.
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This is part of the default microcode for the simulated machine:

{ initialize the instruction counter and stack pointer to 0 }
alu-left=0 ; alu-right=0 ; data-bus=alu-output ; ic=data-bus; sp=data-bus:
{ fetch a macro-instruction from the main memory }

fetch: mar=ic¢; mbr=mem(mar):

{ transfer the opcode and the indexing and indirection flags and
increment the instruction counter }
oc=mbr; ii=mbr; mar=mbr; alu-left=ic; alu-right=1l; data-bus=alu-output: $

ic=data-bus;

{ the following section is a giant 'switch' construct, that decodes the 64
possible opcodes and branches to the appropriate place for the execution
of the corresponding machine instruction }

0-to-63: if bit(oc,5)=1 then goto 32-to-63:

0-to-31: if bit(oc,4)=1 then goto 1l6-to-31;

O0-to-15: if bit (oc,3)=1 then goto 8-to-15;

0-to-7: if bit(oc,2)=1 then goto 4-to-7;

0-to-3: if bit(oc,1)=1 then goto 2-to-3;

O0-to-1: if bit(oc,0)=1 then goto 1-to-1;

{ nop - no operation }

0-to-0: goto fetch;

{ ___________________________________

{ see if this instruction requires indexing }
1-to-1: if bit(ii,0)=0 then goto 1l-to-l-no-indexing;

{ preform the indexing }
data-bus=mar:; x=data-bus:;

alu-right=ix:; alu-left=x; address-bus=alu-output; mar=address-bus:
{ see if this instruction requires indirection }
1-to-1l-no-indexing: if bit(ii,1)=0 then goto l-to-l-no-indirection:;

{ perform the indirection }

mbr=mem (mar) ;
mar=mbr;

{ fetch the data from memory }
l1-to-1-no-indirection: mbr=mem(mar):

glu-left=mbr; alu-right=acc; data-bus=alu-output; acc=data-bus:

goto fetch;

2-to-3: if bit(oc¢,0)=1 then goto 3-to-3;



{ see if this instruction requires indexing }
2-to-2: if bit(ii,0)=0 then goto 2-to-2-no-indexing;
{ preform the indexing }
data-bus=mar; x=data-bus:
alu-right=ix; alu-left=x; address-bus=alu-output; mar=address-bus;
{ see if this instruction requires indirection }
2-to-2-no-indexing: if bit(ii,1l)=0 then goto 2-to-2-no-indirection;
{ perform the indirection }
mbr=mem (mar) ;
mar=mbr;
{ fetch the data from memory }
2-to-2-no-indirection: mbr=mem(mar):
alu-left=mbr; alu-right=0; invert-left-alu; data-bus=alu-output; x=data-bus;
alu-left=x; alu-right=1; data-bus=alu-output; x=data-bus;
alu-left=x; alu-right=acc; data-bus=alu-output; acc=data-bus:
goto fetch:
{ Most of the micro-program is omitted here for space considerations...}

63-to-63: start=off;
goto fetch;
end

11.2. Sample Assembly Program

{ This program generates the first 25 Fibonacci numbers and places them in an array
in memory locations 50 thru 74 }

number of Fibonacci numbers we want }

max equ 25 {
" array equ 50 { array begins at 50 }
acc equ 0 { defines the accumulator }
ix equ 2 { defines the index register }
call init { initialize }
fibo lda -2() { get the Nth-2 Fibonacci number }
add -1() { add to it the Nth-1 Fibonacci. number }
sta 0¢() { store the result into the array }
incr ix { increment the index }
ldai array {}
addai max {}{ see if we have enough Fibonacci nums }
subar ix {}
janz fibo { if not, go generate some more }
hlt { stop the machine }
org 100 { place the routine starting at loc 100 }
init ldai array { initialize the array index }
ldixr acc
ldai 1
sta 0() { set the 1st Fibonacci number manually }
incr 1x
sta 0() { set the 2nd Fibonacci number manually }
incr ix { set the array pointer to the 3rd element }
ret { return to the caller }
end { end of assembly }
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.3.

Main Memory Dump

Note the computed Fibonacci numbers beginning in memory location 50:

12. Appendix lI: The Hardware Diagram
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Location: 1022
Location: 1023

0000000000 Contents: 100000000001100100
0000000001 Contents: 000011011111111110
0000000010 Contents: 000001011111111111
0000000011 Contents: 000100010000000000
0000000100 Contents: 000101000000000010
0000000101 Contents: 100101000000110010
0000000110 Contents: 000111000000011001
0000000111 Contents: 001110000000000010
0000001000 Contents: 011101000000000001
0000001001 Contents: 111111000000000000
0000001010 Contents: 000000000000000000
locations have the same value)

0000110001 Contents: 000000000000000000
0000110010 Contents: 000000000000000001
0000110011 Contents: 000000000000000001
0000110100 Contents: 000000000000000010
0000110101 Contents: 000000000000000011
0000110110 Contents: 000000000000000101
0000110111 Contents: 000000000000001000
0000111000 Contents: 000000000000001101
0000111001 Contents: 000000000000010101
0000111010 Contents: 000000000000100010
0000111011 Contents: 000000000000110111
0000111100 Contents: 000000000001011001
0000111101 Contents: 000000000010010000
0000111110 Contents: 000000000011101001
0000111111 Contents: 000000000101111001
0001000000 Contents: 000000001001100010
0001000001 Contents: 000000001111011011
0001000010 Contents: 000000011000111101
0001000011 Contents: 000000101000011000
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0001000110 Contents: 000000000000000000
locations have the same value)

0001100011 Contents: 000000000000000000
0001100100 Contents: 100101000000110010
0001100101 Contents: 010010000000000000
0001100110 Contents: 100101000000000001
0001100111 Contents: 000100010000000000
0001101000 Contents: 000101000000000010
0001101001 Contents: 000100010000000000
0001101010 Contents: 000101000000000010
0001101011 Contents: 100001000000000000
0001101100 Contents: 000000000000000000
locations have the same value)

1111111110 Contents: 000000000000000000
1111111111 Contents: 000000000000000001

o
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28697
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135168
0

0
1
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13. Appendix Ili: The Microcode Instruction Format

(nH The GATE micro-instruction:

1 gates to be opened during current clock cycle

o 1 2 3 e ... 39 40
(1) The TEST micro-instruction:

O JICIIX]jSP| X]ACC|MBR|MAR| CC| Il | bit num|cmp| address | zd | unused

o 1t 2 3 4 5 6 7 8 9 10...14 15 16..25 26 27...40

14. Appendix IV: The Default Assembly Instruction Set

op num mnemonic binary code  effect of operation
0 nop 000000 no operation
1 add 000001 add memory to register acc
2 sub 000010 subtract memory from register acc
3 Ida 000011 load memory into register acc
4 sta 600100 store register acc into memory
5 incr 000101 increment register
6 decr 000110 decrement register
7 addai 000111 add to register acc immediate
8 subai 001000 subtract from register acc immediate
9 addixi 001001 add to ix immediate
10 subixi 001010 subtract from ix immediate
11 addspi 001011 add to sp immediate
12 subspi 001100 subtract from sp immediate
13 addar 001101 add register to acc
14 subar 001110 subtract register from acc
15 addixr 001111 add register to ix
16 subixr 010000 subtract register from ix
17 ldar 010001 load acc with register
18 idixr 010010 load ix with register
19 Idicr 010011 load ic with register
20 inva 010100 invert acc
21 invix 010101 invert ix
22 anda 010110 and acc with memory
23 ora 010111 or acc with memory
24 xora 011000 xor acc with memory
25 rsfta 011001 right shift acc
26 Isfta 011010 left shift acc
27 jmp 011011 jump
28 jaz 011100 jump if acc is zero
29 janz 011101 jump if acc is not zero
30 jixz 011110 jump if ix is zero
31 jixnz 011111 jump if ix is not zero
32 call 100000 call a subroutine
33 ret 100001 return to caller
34° pusha 100010 push register acc onto stack
35 popa 100011 pop acc from stack
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36 zeroa 100100 zero out the acc
37 Idai 100101 load acc immediate
63 hit 111111 halt the machine

15. Appendix V: The Assembly Instruction Format

operation code | indirection | indexing address of operand

17 ... 12 11 10 9 ... ... 0

Bit 11, when on, causes indirection to occur. Bit 10, when on, causes indexing to occur via the
register. Indexing takes precedence over indirection.

16. Appendix Vi: The Main Display

ACC=000100010100101111=17711 DATAR-BUS=000000000000000006=0

MBR=000 1800 10000086000= 17408 ADDRESS-BUS=0000000000=0

MAR=0000600000=0 ALU-LEFT-BUS=00000000080000686 1 1=3
I C=0000000011=3 ALU-RIGHT-BUS=0000000800608000000 1=1

open gates: 2 14 16 17 18

micro-ops: alu-left=ic¢; alu-right=1; mar=mbr; oc=mbr; ii=mbr;
CLOCK~-PHRSE=9
0C=000189=4 1 1=61=1 Micro Program
Control Logic START=off pausing

CSAR=0000000011=3 -
SP=0006000000=0

CSBR=10 100000000000 10 1 1 1000 10000060 100000EBVRE
| X=000 1068 111=71
X=000088081111111111=1823 type=GATER i

-Pause-Continue-Stop-Quiet-Trace-Redraw-Ualues-Hicrocode-0bject-Examine-Help-—-
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