
An Interactive Gate-Level Simulator
of a Classical Von Neumann Architecture,

as an Educational Aid for Introducing Novices
to the Fundamentals of Computer Organization

Gabriel Robins

Computer Science Department
University of California, Los Angeles

Los Angeles, California 90025

1 . Abstract

I have developed an interactive tool for the
simulation of a classical Von Neumann computer
architecture. The simulation takes place at the
register, bus, and gate level. The simulated
system consists of 9 registers, 4 buses, 40 gates,
an adder, a memory, a micro-programmed control
subsystem, a 3-phase clock, a "scratch" register,
logical inverters, a bi-directional shift register,
several constant registers, and zero-detect logic.
A friendly user interface was also implemented,
featuring an assembler, a microcode interpreter,
and a terminal-independent full-screen display
facility. My simulator prototype could effectively
be used as an educational tool for the introduction
of novices to the fundamentals of computer
organization. Alternatively, the construction of
such a simulator may in itself constitute a good
term project for an upper division hardware
course.

Keywords: Computer organization, simulation, learning
tools, computer hardware, educational aids, user training
systems.

2. Introduction

We have developed an interactive tool for the
simulation of a classical von Neumann computer
architecture. The simulation takes place at the
register, bus, and gate level. The components of
our system include 9 registers, 4 buses, 40 gates,
1 adder, a memory, a micro-programmed control
subsystem, a 3-phase clock, an extra "scratch"
register, logical inverters, a bi-directional shift
register, several constant registers, and zero-
detect logic. In addition, we have constructed a
friendly u•fer interface, featuring an assembler, a
microcode interpreter, and a terminal-independent
full-screen display facility.

There exists a distinct lack of software tools
to aid and enhance the teaching of computer science
at the undergraduate level. We believe that our
interactive simulator prototype constitutes an
extremely useful educational tool for the
introduction of novices to the fundamentals of
computer organization. The architecture we
consider is based on the one discussed in
[Tanenbaum].

3. Overview

This simulator requires 3 specification: the
micro-code, the assembly instruction set, and the
user program. When the simulator starts running,
it loads the micro-program into the micro-store;
next, it reads and assembles the user program into
machine language, according to the instruction set
specified (or else the default assembly instruction
set). The resulting machine program is loaded into
the main memory of the simulator. The simulator
then begins to execute the micro-program; the
micro-program, in turn, fetches, decodes, and
executes instructions of the machine-language
program.

By programming the simulator in micro-code,
the user may thus create new and novel
"instruction sets" for the "machine." For example,
suppose the user wanted to add an assembly
instruction "sqrt" which takes the integer square-
root of the ACC register and leaves the result in
the ACC register. The user will then need to add a
new opcode called "sqrt" (and a corresponding
machine-instruction code) to the assembly
instruction set of the machine (by updating that

file), and next modify the micro-program to
perform the square root operation on the ACC
register whenever the new instruction is
encountered.

1

The organization of the rest of this paper is
as follows: section 4 describes the details of the
simulated hardware, section 5 describes the
assembler and the assembly language, section 6
describes the microcode interpreter and its
language, section 7 discusses the user interface,
and section 8 summarizes the implementation and
explains how to obtain the source code.

4. The Hardware

The computer system we chose to simulate is
a simplified von Neumann-type single-processor
micro-program controlled machine. The schematic
organization of this system is given in Appendix II.
A detailed description of the components and
topology of the system follows. Unless otherwise
specified, when two registers/buses with different
numbers of bits are connected, say m and n where
m > n, the connection consists of bits 0 through n-1
of the first register/bus being connected to bits 0
through n-1 of the second register/bus. The rest
of the m-n connections are connected to logical low
(0).

4.1. Registers

IC - a 10-bit used as the instruction counter for

the user's program.
IX - a 10-bit register used as the index register by
user programs for array-type addressing.
SP - a 10-bit register used as a stack oointer for
call/return instructions as well as for arbitrary
push/pop operations.
X - an 18-bit register used as a scratch register in
various micro-instructions, and is invisible to the
assembly -language program.
ACC - an 18-bit register which serves as an
". accumulator in the users program.

MAR - a 10-bit register used primarily to store

the address of where main memory is going to be
written into or read from. It may also be used as a
scratch register by the micro-program.

MBR - an 18-bit used to store the data involved in
all memory read/write operations.
OQC - a 6-bit register used to store the 0D-code of
the currently executed macro-instruction.

LL - a 2-bit register used to store the
indexing/indirection flags of the currently
executing assembly instruction.

4.2. Buses

Data bus - an 18-bit bi-directional bus that is
connected to the various registers and to the adder

output lines. Most movement of data between
registers takes place via the data bus.
,Address bua - a 10-bit bi-directional bus that is
connected to the MAR register and to the adder
output bus. This bus is used to supply the MAR
register with the address of memory locations in
read/write operations.
Left adder bus - an 18-bit bus that connects the
various registers and several constant registers
with the left input to the adder module.
Right adder bus - an 18-bit bus that connects
the various registers and several constant
registers with the right input to the adder module.

4.3. Gates

There are 40 distinct gates, each, when open,
initiates a micro-operation. Any number of gates
may be open at the same time, but some
combinations of gates are mutually exclusive (ex:
left-shift and right-shift). The hardware diagram
in Appendix II specifies which gates open what
hardware connections.

4.4. Memory

The main memory consists of 1024 words of
18 bits each. The memory locations have
addresses in the range 0 through 1023, inclusive.
Each word has its bits numbered 0 through 17,
inclusive, where bit 0 is considered to be the least
significant when numeric values are represented.

4.5. Inverters

There is a single logical inverter between
each of the adder left and right buses, and the
adder. These may invert none, one, or both
arguments to the adder, depending on whether
neither, one, or both are enabled.

4.6. Adder

There is an 18-bit adder whose inputs are the
outputs of the inverters. At each clock cycle, the
adder (which consists of solid-state combinatorial
logic) sums its inputs and outputs the answer to its
output.

4.7. Shifter

There is a single bi-directional shift register
between the adder output and the data and address
buses. It may shift the adder output by one bit to

2

either left or right, depending on whether it is
enabled.

4.8. Zero-detect logic

After each addition operation of the adder,
the zero-detect logic resets or presets a bit that
can be later tested for branching purposes. The
zero-detect logic is set to '1' if the last addition
resulted in a zero answer, and to '0' if the last
addition resulted in a non-zero answer.

4.9. The Control Subsystem

The micro-programmed control subsystem of
the machine is implemented by a control store
micro-memory, a CSAR (control store address
register) and CSBR (control store data register)
registers, and hard-wired micro control logic. This
entire subsystem is invisible to the assembly-
language user.

4.9.1. The Micro-memory

The micro-memory consists of 512 words of
storage, each of which contains 41 bits. The
micro-memory words are numbered 0 through 511,
inclusive, while the bits in each micro word are
numbered 0 through 40, inclusive.

4.9.2. Micro-registers

CSAR - this is a 9-bit register that is used to
address the micro-memory. It is similar in
function to the MAR register for the main memory.
CSAR is an acronym for "Control Store Address
Register".

CSBR - this is a 41-bit register that contains the
current micro instruction being executed. This
register is directly in control of the hard-wired
control logic and supervises the opening and closing
of control gates (i.e., the generation of control
signals) by virtue of the values contained in its
bits. CSBR is an acronym for "Control Store Buffer
Register".

4.9.3. Control Logic

The control logic for the micro programmed
control subsystem is hard-wired (in this simulation
it is written in C). It supervises the loading of
instructions from the micro-memory, incrementing
the CSAFt' register, and generating the control
signals from the value of the CSBR and the clock

pulses.

4.9.4. Start Toggle

The start toggle is a single bit register that
allows the system to commence execution (when
high) or causes the entire operation of the system
to be suspended (when low). This is used to halt
execution of the simulation, so that the user may
inspect the contents of various registers/buses.

4.9.5. Clock

The operation of the control subsystem is
governed by a three-phase clock. The phases of the
clock are numbered P0, P1, and P2. The set of 40
system gates is partitioned into 3 distinct non-
empty disjoint subsets, each of which contains
gates that can be open ONLY during a unique clock
phase. These sets are:

phase 1 cates = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19,
37, 38)

phase 1 gates = { 20, 21, 22, 23, 24, 25, 26, 27,

28, 29, 30, 31, 32, 33, 39, 40
2hase 3 gates = { 34, 35, 36)

This partition exists in order to eliminate
certain nasty ambiguities that arise when several
inputs are allowed to to enter into the same
register simultaneously, thereby rendering its
contents undefined.

4.9.6. Micro-Instruction Format

Each micro instruction has one of the two
formats specified in Appendix Ill. In the first
format, the only operations that can occur are
gates being opened according to which of bits 1
through 40 of the instruction are set high, during
the appropriate clock phases. In the second format,
a certain bit (specified by bits 10 through 14) of a
register (specified by bits 1 through 9) is examined
and compared with bit 15 of that instruction. If the
comparison was successful (i.e., they were equal),
then micro-control is transferred to the micro-
location specified by bits 16 through 25 of the
instruction. Both the "bit num" and the "address"
fields are encoded in binary; the rest of the fields
are linearly encoded, and only one of the bits of all
of these fields must be set high (the rest being set
low) in order for the instruction to logically make
sense.

Having the system be micro-programmed

3

makes it very powerful with respect to non-micro-
programmed systems. This is because new user-
level assembly instruction sets can be easily
implemented, and only by changing the micro-
program, not having to touch the hardware at all.

In fact, users may write their own micro-
programs, thereby taking advantage of higher
machine efficiency to suit their particular
applications.

5. The Assembly Language

This section describes the assembler for the
machine. The purpose of the assembler is to
"compile" the user's assembly language into

machine language and to place the resulting object
code into the main memory so that it may be later
executed. The reason for having an assembler, is
to make the task of programming less tedious for
the user; otherwise, the user would have had to
program directly in the hardware's binary machine
language.

A reasonable instruction set has already been
written (and is the default instruction set) in order
to accommodate users who do not wish to go
through the tedium of writing their own micro-
programs. Sensible mnemonics were also assigned
to the various operations. It should be noted that
the assembler is written in a general manner. The
opcode mnemonics are read from an external file,
and thus subject to modification by the user. The
rest of the functions of the assembler rdi'fain
unchanged from language to language. In fact, the
only difference between two assembly languages
here is between their two respective opcode
mnemonic sets. Appendix IV gives the the
mnemonics and their respective opcodes for the
default assembly instruction set.

5.1. Stack

As can be easily seen, this language has a
built-in stack facility for calling functions and for
pushing values onto a stack. This makes the
language posses substantial versatility. In the
micro-program, the stack is rooted at the top of
memory (location 1023) and grows toward smaller
memory locations.

5.2. Instruction Format

The instruction format for this language calls
for each irfstruction to be one word in length, in the
format specified in Appendix V.

5.3. Assembly Syntax

This assembler recognizes an assembly
language that is in a standard format, where each
line of code is composed of one to three fields:
label, opcode, and address. The address field may
be immediately preceded by the character ' which
signified indirection, and succeeded by the two
characters '()' which signify indexing. In addition
to the default opcodes described earlier, there are
three additional pseudo-opcode: the 'e.".' opcode,
which is used to associate a label with a
number/address, the 'con' pseudo-operator, which
is used to store data/constants into memory
locations during the assembly process, and the '.r.'
pseudo-operator, used to assemble code into
several separate memory regions. A sample
assembly program is given in Appendix I.

6. The Microcode Interpreter

This section describes the microcode
interpreter. The function of the microcode
interpreter is to convert the microcode from the
symbolic form it is written in, to the form that can
be placed into the micro-memory. Alternatively,
the microcode would have been coded in binary by
the user, which makes for a very tedious and
error-prone task.

6.1. Microcode Syntax

The micro-program in symbolic form is
composed of as many occurrences of the following
40 strings as desired: alu-right=ic, alu-left=ic,
alu-right=ix, alu-left=ix, alu-right=sp, alu-
left=sp, alu-right=x, alu-left=x, alu-right=acc,
alu-left=acc, alu-right=-l, alu-left=0, alu-
right=O, alu-right=l, alu-right=sign, mar=mbr,
oc=mbr, ii=mbr, alu-left=mbr, left-shift, right-
shift, data-bus=alu-output, address-bus=alu-
output, data-bus=mbr, sp=data-bus, x=data-bus,
x=18, acc=data-bus, mar=ic, ic=data-bus,
mar=address-bus, mbr=data-bus, ix=data-bus,
mbr=mem(mar), mem(mar)=mbr, start=off,
invert-left-alu, invert-right-alu, x=10, data-
bus=mar.

Each set of micro-operations that are
specified on ONE input line, will be executed during
ONE clock cycle (but maybe in different clock
phases). The character ';' is used as a separator
and should follow each one of the strings. Labels
may be used, and comments are placed between
curly brackets. In addition to the micro operations

4

specified above, two more micro-instructions may
be specified: the 'if' and the '.g.Q.. The 'if' has the
following syntax:

if(r.Lng.,blt)=crn. then goto Iakbel;

where '.. .' is one of the strings { ic, ix, sp, x,

acc, mbr, mar, oc, ii, zero-detect), 'bit' is a
decimal number that represents the bit to be
tested, '.E is either 0 or 1 (the value to be

tested against), and 'label' is a valid label in the
micro-program to be branched to if the test is

successful (i.e. reg(bit)=cmp). The 'goto' micro-
instruction is much simpler:

goto label;

This micro-instruction unconditionally transfers
micro-control to the micro-location specified by
'Iabe1'.

7. The User Interface

7. 1. Screen format

The simulator updates the terminal display in
a screen-oriented fashion. Direct cursor control is
exercised through a library package which is
intelligent enough to look up the terminal type in the
appropriate UNIX system file. The most current
values of the various registers and buses are
displayed on the screen at all times, unless the user
specified to the simulator to run in the 'quiet' mode.
This display makes possible for the user to trace
only the specific system components of his/her
choice, while possibly ignoring the rest, with
minimal cognitive overhead. While the system is
running, the display appears as in Appendix VI.

7.2. The interaction With the User

All commands are one letter long, which in all
cases is the first letter of the word describing the
command. A short menu is present at the bottom of
the display at all times, summarizing the
commands. A help facility makes it possible to
review the functions of the commands at any given
time. Some commands generate a sub-menu, which
contains subcommands appropriate for the original

command only.

The various commands that are available at
the top-levAel are: Pause - pauses between clock

cycles (or phases), and wait for a new command,
Continue - negates the last pause command, Stop -

halts the machine, and creates a final memory
dump, Quiet - does all things silently without

updating the display, Trace - negates the 'quiet'
command, Redraw - clears the screen and redraw

the display, Values - allows the user to change the

contents of registers and buses, Microcode - lists
the interpreted microcode, Obiect - lists the object

code of the assembled program, Examine - lists the
contents of the entire main memory, H - print

this summary.

7.3. Error Handling

The microcode interpreter, as well as the
assembler, may produce various diagnostic
messages during normal operation. This usually
occurs when the user fails to comply with the
syntax rules built into the simulator. All such
error messages are meant to be self-explanatory.
The line number on which the error occurred is
included in the error-message, when appropriate.
When the microcode contains errors, assembly will
not be attempted. When the source program
contains errors, execution will not be attempted.

8. The Implementation

The hard-wired part of the control subsystem
is written directly in the C language (after all, the
simulation has to end somewhere). Execution of the
microcode is done here and here only. Execution of
the microcode commences at micro location 0 and
proceeds logically unless "goto" instructions alter
the logic flow. The Microcode is assumed to have
been assembled and placed into the micro-memory.
Execution of the microcode halts only after the
microcode instruction 'start=off' has been
executed. Each microcode instruction is fetched
from the micro-memory, placed into the CSBR
register, and combined with the clock pulses to
generate control signals that will open various
system gates.

As the microcode executes, it will fetch and
interpret individual assembly/machine instructions
from the user's program in main memory.
Appropriate gates will open and close, and the
desired effect will be achieved by having the
corresponding micro operations take place. The

types and effects of the various micro operations

are described in earlier sections. To obtain the
annotated C-sources constituting the simulator,

please contact the author: Gabriel Robins, P.O. Box
8369, Van Nuys, California, 91409-8369, U.S.A.

5

simulator prototype, or other similar tools, will
9. Summary prove to be useful educational tools for the

introduction of novices to the fundamentals of
I have developed an interactive tool for the computer organization. Indeed, the construction of

simulation of a classical Von Neumann computer such a simulator will in itself constitute a good
architecture. The simulation takes place at the term project for an upper division hardware
register, bus, and gate level, and features a course.
friendly user interface, an assembler, a microcode
interpreter, and a terminal-independent full-screen 1 0. Bibliography
display facility.

Tanenbaum, S., Structured Computer Organization
There exists a distinct lack of software tools Englewood Cliffs, New Jersey, Prentice Hall, 1976.

to aid the teaching of computer science at the
undergraduate level. I believe that my interactive

1 1. Appendix I: Usage Examples

11.1. Sample Micro-program

This is part of the default microcode for the simulated machine:

{ initialize the instruction counter and stack pointer to 0 }
alu-left=O ; alu-right=O ; data-bus=alu-output ; ic=data-bus; sp=data-bus;

{ fetch a macro-instruction from the main memory I
fetch: mar=ic; mbr=mem(mar);

{ transfer the opcode and the indexing and indirection flags and
increment the instruction counter I

oc=mbr; ii--nmbr; mar=mbr; alu-left=ic; alu-right=l; data-bus=alu-output; $
ic=data-bus;

{ the following section is a giant 'switch' construct, that decodes the 64
possible opcodes and branches to the appropriate place for the execution
of the corresponding machine instruction I
0-to-63: if bit(oc,5)=l then goto 32-to-63;
0-to-31: if bit(oc,4)=l then goto 16-to-31;
O-to-15: if bit(oc,3)=l then goto 8-to-15;
0-to-7: if bit(oc,2)=i then goto 4-to-7;
0-to-3: if bit(oc,l)=l then goto 2-to-3;
0-to-i: if bit(oc,O)=l then goto 1-to-i;

{nop - no operation I
0-to-0: goto fetch;

{ add - add memory to register }

see if this instruction requires indexing }
i-to-I: if bit(ii,O)=0 then goto 1-to-l-no-indexing;

I preform the indexing I
data-bus--mar; x=data-bus;
alu-right=ix; alu-left=x; address-bus=alu-output; mar=address-bus;
{ see if this instruction requires indirection I

1-to-l-no-indexing: if bit(ii,l)=O then goto 1-to-l-no-indirection;
I perform the indirection I
mbr=memn(mar);
mar=mnbr;
f fetch the data from memory

1-to-l-no-indirection: mbr=mem(mar);
qlu-left=mbr; alu-right=acc; data-bus=alu-output; acc=data-bus;

goto fetch;
2-to-3: if bit(oc,O)-1 then goto 3-to-3;

6

{ -
{ sub - subtract memory from register I

{---
I see if this instruction requires indexing)

2-to-2: if bit(ii,0)=0 then goto 2-to-2-no-indexing;
{ preform the indexing I
data-bus--mar; x=data-bus;
alu-right=ix; alu-left=x; address-bus=alu-output; mar=address-bus;
I see if this instruction requires indirection }

2-to-2-no-indexing: if bit(ii,l)=0 then goto 2-to-2-no-indirection;
{ perform the indirection I
mbr--mem(mar);
mar=mbr;
{ fetch the data from memory }

2-to-2-no-indirection: mbr=mem(mar);
alu-left=mbr; alu-right=O; invert-left-alu; data-bus=alu-output; x=data-bus;

alu-left=x; alu-right=l; data-bus=alu-output; x=data-bus;
alu-left=x; alu-right=acc; data-bus=alu-output; acc=data-bus;
goto fetch;

f Most of the micro-program is omitted here for space considerations... I

{ hlt - halt the machine }

63-to-63: start=off;
goto fetch;

end

Sample Assembly Program

{ This program generates the first 25 Fibonacci numbers and places them in an array
in memory locations 50 thru 74 1

equ 25
equ 50
equ 0
equ 2
call init
ida -2 ()
add -1()
sta 0 ()
incr ix
ldai array
addai max
subar ix
janz fibo
hlt
org 100
ldai array
ldixr acc
ldai 1
sta 0()
incr ix
sta 0()
incr ix
ret
end

I number of Fibonacci numbers we want }
{ array begins at 50 }
{ defines the accumulator }
{ defines the index register I
{ initialize I
{ get the Nth-2 Fibonacci number }
{ add to it the Nth-l Fibonacci.number I
{ store the result into the array }
{ increment the index I
{}
{}{ see if we have enough Fibonacci nums
{}

if not, go generate some more I
{ stop the machine I
{ place the routine starting at loc 100

initialize the array index I

f set the 1st Fibonacci number manually I

{
set the 2nd Fibonacci number manually I
set the array pointer to the 3rd element
return to the caller I
end of assembly I

7

11.2.

max
array
acc
ix

fibo

init

}

I

I

11.3. Main Memory Dump

Note the computed Fibonacci numbers beginning in memory location 50:

Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:

0
1
2
3
4
5
6
7
8
9

10
(intermediate

Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

(intermediate
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:
Location:

99
100
101
102
103
104
105
106
107
108

(intermediate
Location: 1022 =
Location: 1023 =

0000000000
0000000001
0000000010
0000000011
0000000100
0000000101
0000000110
0000000111
0000001000
0000001001
0000001010
locations have
0000110001
0000110010
0000110011
0000110100
0000110101
0000110110
0000110111
0000111000
0000111001
0000111010
0000111011
0000111100
0000111101
0000111110
0000111111
0001000000
0001000001
0001000010
0001000011
0001000100
0001000101
0001000110
locations have
0001100011
0001100100
0001100101
0001100110
0001100111
0001101000
0001101001
0001101010
0001101011
0001101100
locations have
1111111110
1111111111

Contents:
Contents:
Contents:
Contents:
Contents:
Contents:
Contents:
Contents:
Contents:
Contents:
Contents:

100000000001100100
000011011111111110
000001011111111111
000100010000000000
000101000000000010
100101000000110010
000111000000011001
001110000000000010
011101000000000001
111111000000000000
000000000000000000

6:

2(
21

5.
1:
2!
0

the same value)
Contents: 000000000000000000 = 0
Contents: 000000000000000001 = 1
Contents: 000000000000000001 = 1
Contents: 000000000000000010 = 2
Contents: 000000000000000011 = 3
Contents: 000000000000000101 = 5
Contents: 000000000000001000 = 8
Contents: 000000000000001101 = 1
Contents: 000000000000010101 = 2
Contents: 000000000000100010 = 3
Contents: 000000000000110111 = 5'
Contents: 000000000001011001 = 8
Contents: 000000000010010000 = 1
Contents: 000000000011101001 = 2
Contents: 000000000101111001 = 3
Contents: 000000001001100010 = 6:
Contents: 000000001111011011 = 9
Contents: 000000011000111101 = 1i
Contents: 000000101000011000 = 2.
Contents: 000001000001010101 = 4
Contents: 000001101001101101 = 6
Contents: 000000000000000000 = 0

the same value)
Contents: 000000000000000000 = 0
Contents: 100101000000110010 = 1I
Contents: 010010000000000000 = 7.
Contents: 100101000000000001 = 1
Contents: 000100010000000000 = 1
Contents: 000101000000000010 = 2'
Contents: 000100010000000000 = 1
Contents: 000101000000000010 = 2'
Contents: 100001000000000000 = 1I
Contents: 000000000000000000 = 0

the same value)
Contents: 000000000000000000 = 0
Contents: 000000000000000001 = 1

31172
4334
143
7408
0482
51602
8697
7346
18785
58048

3
1
4
5
9
44
33
77
10
87
597
584
181
765

51602
3728
51553
7408
0482
7408
0482
35168

1 2. Appendix II: The Hardware Diagram

8

Control Signal Generator Subsystem

Main Memory

1024 Words
x

18 bits each

10

Right
Shift

ALU Bus (left)

G9

Gate Legend (by clock phase)

0- Phase 0 gates

0- Phase 1 gates

(- Phase 3 gates

1 3. Appendix II: The Microcode Instruction Format

(I) The GATE micro-instruction:

1l gates to be opened during current clock cycle

0 1 2 3 39 40

(tl) The TEST micro-instruction:

0 IC IX I SP I X IACCI MBR MAR CC II bit num cmp address Izd unused

0 1 2 3 4 5 6 7 8 9 10...14 15 16...25 26 27...40

1 4. Appendix IV: The Default Assembly Instruction Set

op num mnemonic binary code effect of operation

0 nop 000000 no operation
1 acd 000001 add memory to register acc
2 sub 000010 subtract memory from register acc
3 Ida 000011 load memory into register acc
4 sta 000100 store register acc into memory
5 incr 000101 increment register
6 decr 000110 decrement register
7 addai 000111 add to register acc immediate
8 subai 001000 subtract from register acc immediate
9 addixi 001 001 add to ix immediate
1 0 subixi 001010 subtract from ix immediate
1 1 addspi 001011 add to sp immediate
1 2 subspi 001100 subtract from sp immediate
1 3 addar 001101 add register to acc
1 4 subar 001110 subtract register from acc
1 5 addixr 001111 add register to ix
1 6 subixr 010000 subtract register from ix
1 7 Idar 010001 load acc with register
1 8 Idixr 010010 load ix with register
1 9 Idicr 010011 load ic with register
20 inva 010100 invert acc
21 invix 010101 invert ix
22 anda 010110 and acc with memory
23 ora 010111 or acc with memory
24 xora 011000 xor acc with memory
25 rsfta 011001 right shift acc
26 Isfta 011010 left shift acc
27 jmp 011011 jump
28 jaz 011100 jump if acc is zero
2 9 janz 011101 jump if acc is not zero
30 jixz 011110 jump if ix is zero
3 1 jixnz 011111 jump if ix is not zero
32 call 100000 call a subroutine
33 ret 100001 return to caller
349 pusha 100010 push register acc onto stack
35 popa 100011 pop acc from stack

10

36 zeroa 100100 zero out the acc
37 Idai 100101 load acc immediate
63 hIt 1 1 1 1 11 halt the machine

1 5. Appendix V: The Assembly Instruction Format

operation code I indirection I indexingI address of operand

17 ... 12 11 10 9 ... 0

Bit 11, when on, causes indirection to occur. Bit 10, when on, causes indexing to occur via the IX
register. Indexing takes precedence over indirection.

1 6. Appendix VI: The Main Display

---- Computer-Si mu I at i on-by--Gabr i el-Rob i ns--vers i on-3-of-7/26/88--------

ACC=000100010100101111=17711 DATA-BUS=000000000000000000=0

MBR=000100010000000000=17408 RDDRESS-BUS=0000000000=O

MAR=0000000000=O ALU-LEFT-BUS=000000000000000011=3

IC=0000000011=3 ALU-RIGHT-BUS=000000000000000001=1

open gates:.2 14 16 1? 18

micro-ops: alu-left=ic; alu-right=l; mar=mbr; oc=mbr; ii=mbr;

OC=000100=4 11=01=1 Micro Program
Control Logic

CSRR=0000000011=3

CSBR=10100000000000101110001000000010000000000

X=000000001111111111=1023 type=GRTEM

-Pause-Cont i nue-Stop-Qu i et-Trace-Redraw-Va I ues-M

CLOCK-PHASE=O

START=off pausing

SP=0000000000=0

IX=0001000111=71

crocode-Object-Examine-Help--

11

17. Table of Contents

1 Abstract ... 1
2 Introduction .. 1
3 Overview .. 1
4 The Hardware .. 2

4.1 Registers ... 2
4.2 Buses .. 2
4.3 Gates ... 2
4.4 M emory ... 2
4.5 Inverters ... 2
4.6 Adder ... 2
4.7 Shifter .. 2
4.8 Zero-detect logic .. 3
4.9 The Control Subsystem ... 3

4.9.1 The M icro-memory ... 3
4.9.2 M icro-registers .. 3
4.9.3 Control Logic ... 3
4.9.4 Start Toggle ... 3
4.9.5 Clock ... 3
4.9.6 Micro-Instruction Format .. 3

5 The Assembly Language ... 4
5.1 Stack .. 4
5.2 Instruction Format ... 4
5.3 Assembly Syntax .. 4

6 The M icrocode Interpreter ... 4
6.1 Microcode Syntax .. 4

7 The User Interface .. 5
7.1 Screen format .. 5
7.2 The interaction W ith the User ... 5
7.3 Error Handling .. 5

8 The Implementation .. 5
9 Sum m ary .. 6
10 Bibliography .. 6
11 Appendix 1: Usage Examples ... 6

11.1 Sam ple M icro-program ... 6
11.2 Sample Assembly Program ... 7
11.3 Main Memory Dump ... 8

12 Appendix I1: The Hardware Diagram ... 8
13 Appendix III: The M icrocode Instruction Format ... 10
14 Appendix IV: The Default Assembly Instruction Set ... 1 0
15 Appendix V: The Assembly Instruction Format ... 1 1
16 Appendix VI: The Main Display ... 1 1
17 Table of Contents ... 1 2

12

