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Abstract Mining complex patterns with hierarchical structures becomes more
and more important to understand the underlying information in large and un-
structured databases. When compared with a set-mining problem or a string-
mining problem, the computation complexity to recognize a pattern with hi-
erarchical structure, and the large associated search space, make hierarchical
pattern mining (HPM) extremely expensive on conventional processor archi-
tectures. We propose a flexible, hardware-accelerated framework for mining
hierarchical patterns with Apriori-based algorithms, which leads to multi-pass
pruning strategies but exposes massive parallelism. Under this framework,
we implemented two widely used HPM techniques, sequential pattern mining
(SPM) and disjunctive rule mining (DRM) on the Automata Processor (AP),
a hardware implementation of non-deterministic finite automata (NFAs).

Two automaton-design strategies for matching and counting different types
of hierarchical patterns, called linear design and reduction design, are proposed
in this paper. To generalize automaton structure for SPM, the linear design
strategy is proposed by flattening sequential patterns to plain strings to pro-
duce automaton design space and to minimize the overhead of reconfiguration.
Up to 90X and 29X speedups are achieved by the AP-accelerated algorithm
on six real-world datasets, when compared with the optimized multicore CPU
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and GPU GSP implementations, respectively. The proposed CPU-AP solution
also outperforms the state-of-the-art PrefixSpan and SPADE algorithms on a
multicore CPU by up to 452X and 49X speedups. The AP advantage grows
further with larger datasets.

For DRM, the reduction design strategy is adopted by applying reduc-
tion operation of AND, with on-chip Boolean units, on several parallel sub-
structures for recognizing disjunctive items. This strategy allows implicit OR
reduction on alternative items within a disjunctive item by utilizing bit-wise
parallelism feature of the on-chip state units. The experiments show up to
614X speedups of the proposed CPU-AP DRM solution over a sequential CPU
algorithm on two real-world datasets. The experiments also show significant
increase of CPU matching-and-counting time when increasing d-rule size or
the number of alternative items. However, in practical cases, the AP solution
runs hundreds of times faster in matching and counting than the CPU solu-
tion, and keeps constant processing time despite the increasing complexity of
disjunctive rules.

Keywords data mining · Automata Processor · sequential pattern mining ·
disjunctive rule mining · finite automaton

1 Introduction

Pattern mining, a subfield of data mining, is a process of analyzing data from
different perspectives to identify strong and interesting relations among vari-
ables in datasets. The traditional pattern-mining techniques based on simple
pattern structures, such as itemset mining and sub-string mining, are not ca-
pable of capturing hidden relations among variables in the datasets. Mining
patterns with complicated structures becomes more and more important in
the ’Big Data’ era. Two mining techniques for hierarchical patterns, sequen-
tial pattern mining (SPM) and disjunctive rule mining (DRM) have attracted
a lot of attention in the field of data mining.

Sequential Pattern Mining (SPM) is a data-mining technique which iden-
tifies strong and interesting sequential relations among variables in structured
datasets. SPM has become an important data mining technique with broad
application domains, such as customer purchase patterning analysis, correla-
tion analysis of storage systems, web log analysis, software bug tracking, and
software API usage tracking [3]. For example, a college student at the Uni-
versity of Virginia (UVA) buys textbooks according to his classes during his
college years. Since every class has pre-requisite classes, a student normally
follows the prerequisite order to buy and study textbooks accordingly. The
UVA bookstore could study the frequent sequential patterns from the records
of book purchases and give every student good recommendations for his/her
next step of learning. SPM is the right technique to mine sequential relations
from the records of transactions. To be precise, a sequential pattern refers to a
hierarchical pattern consisting of a sequence of frequent transactions (itemsets)
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with a particular ordering among these itemsets. In addition to frequent item-
set mining (FIM), SPM needs to capture permutations among the frequent
itemsets. This dramatically increases the number of patterns to be considered
and hence the computational cost relative to simple set mining or string min-
ing operations. In addition, as the sizes of interesting datasets keeps growing,
higher performance becomes critical to make SPM practical.

Many algorithms have been developed to improve the performance of se-
quential pattern mining. The three most competitive algorithms today are
Generalized Sequential Pattern (GSP) [21], Sequential PAttern Discovery us-
ing Equivalence classes (SPADE ) [27] and PrefixSpan [17]. SPADE and Pre-
fixSpan are generally favored today, and perform better than GSP on conven-
tional single-core CPUs in average cases. However the GSP is based on Apriori
algorithm, which exposes massive parallelism and may be a better candidate
for highly parallel architectures. Several parallel algorithms have been pro-
posed to accelerate SPM on distributed-memory systems, e.g., [8, 12, 20, 26].
Increasing throughput per node via hardware acceleration is desirable for
throughput as well as energy efficiency, but even though hardware accelerators
have been widely used in frequent set mining and string matching applications,
e.g. [10, 28, 29], we are not aware of any previous hardware-accelerated solution
for SPM.

Disjunctive rule mining is derived from frequent itemset mining, but al-
lows “alternatives” for each item. For example, let’s continue the bookstore
story mentioned earlier. Each class recommends several reference books. Each
student tends to select one or two reference books to buy together with the
textbook for each class. Since the reference books are labeled as separate items,
the strong relation between the textbook and one specific reference book may
not be captured by traditional frequent itemset mining, but could be recog-
nized by disjunctive rule mining when considering possible alternatives. The
UVA bookstore could calculate the disjunctive rules from the records of book
purchases and give every student good recommendations of reference books
for each class. Several CPU algorithms [7, 15, 19] were proposed to mine dis-
junctive rules effectively. However, no hardware-accelerated disjunctive rule
mining method has been proposed yet.

The new Automata Processor (AP) [9] offers an appealing accelerator ar-
chitecture for hierarchical pattern mining. The AP architecture exploits the
very high and natural level of parallelism found in DRAM to achieve native-
hardware implementation of non-deterministic finite automata (NFAs). The
use of DRAM to implement the NFA states provides a high capacity: the
first-generation boards, with 32 chips, provide approximately 1.5M automaton
states. All of these states can process an input symbol and activate successor
states in a single clock cycle, providing extraordinary parallelism for pattern
matching. The AP’s hierarchical, configurable routing mechanism allows rich
fan-in and fan-out among states. These capabilities allow the AP to perform
complex symbolic pattern matching and test input streams against a large
number of candidate patterns in parallel. The AP has already been success-
fully applied to several applications, including regular expression matching [9],
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DNA motif searching [18], and frequent set mining [6, 22, 24]. In our previ-
ous work on SPM [23], we showed that the AP can also achieve impressive
speedups for mining hierarchical patterns. This paper extends that prior work
with additional capabilities and analysis.

Specifically, we describe CPU-AP heterogeneous computing solutions to ac-
celerate both SPM and DRM under the Apriori -based algorithm framework,
whose multipass algorithms to build up successively larger candidate hierar-
chical patterns are best suited to the AP’s highly parallel pattern-matching
architecture, which can check a large number of candidate patterns in parallel.
This paper extends the prior AP-SPM work [23] with disjunctive capabilities
and describes a flexible framework for mining hierarchical patterns such as se-
quential patterns and disjunctive rules with hardware accelerators. Designing
compact NFAs is a critical step to achieve good performance of AP-accelerated
SPM and DRM. The key idea of designing an NFA for SPM is to flatten se-
quential patterns to strings by adding an itemset delimiter and a sequence
delimiter. This strategy greatly reduces the automaton design space so that
the template automaton for SPM can be compiled before runtime and repli-
cated to make full use of the capacity and massive parallelism of the AP board.
The proposed NFA design for recognizing disjunctive rules utilizes the on-chip
Boolean units to calculate AND relations among disjunctive items (“d-item”
in short, an item allowing several alternatives) but takes full use of the bit-
wise parallelism appearing in the state unites of the AP chips to calculate OR
relations of items within a d-item.

On multiple real-world and synthetic datasets, we compare the performance
of the proposed AP-accelerated SPM against CPU and GPU implementations
of GSP, an Apriori based algorithm, as well as Java multi-threaded imple-
mentations of SPADE and PrefixSpan [11]. The performance analysis of the
AP-accelerated SPM shows up to 90X speedup over the multicore CPU GSP
and up to 29X speedups over the GPU GSP version. The proposed approach
also outperforms the Java multi-threaded implementations of SPADE and Pre-
fixSpan by up to 452X and 49X speedups. The proposed AP-accelerated SPM
also shows good performance scaling as the size of the input dataset grows,
achieving even better speedup over SPADE and PrefixSpan. Our input size
scaling experiments also show that SPADE fails at some datasets larger than
10MB (a small dataset size, thus limiting utility of SPADE in today’s ”big
data” era).

The proposed CPU-AP DRM solution shows up to 614X speedups over se-
quential CPU algorithm on two real-world datasets. The experiments also show
a significant increase of CPU matching-and-counting time when increasing the
d-rule size or the number of alternative items but constant AP processing time
with increasing complexity of disjunctive patterns. This analysis extends the
prior analysis [23] with Boolean-based pattern matching including analysis of
disjunctive features.

Overall, this paper makes four principal contributions:
1. We develop a flexible CPU-AP computing infrastructure for mining hier-

archical patterns based on Apriori algorithm.
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2. We propose a novel automaton design strategy, called linear design, to gen-
erate automata for matching and counting hierarchical patterns and apply
it on SPM. This strategy flattens the hierarchical structure of patterns to
strings and adopts a multiple-entry scheme to reduce the automaton design
space for candidate patterns.

3. We propose another novel automaton design strategy, called reduction de-
sign, for the disjunctive rule matching and counting. This strategy takes
full use of the bit-wise parallelism of the state units on the AP chips to
discover the optionality of items on a lower level and utilize Boolean units
on the AP chip to identify occurrences of items on a higher level.

4. Our AP SPM and DRM solutions show performance improvement and
broader capability over multicore and GPU implementations of GSP SPM,
and also outperforms state-of-the-art SPM algorithms SPADE and PrefixS-
pan (especially for larger datasets).

2 Sequential Pattern Mining

2.1 Introduction to SPM

Sequential pattern mining (SPM) was first described by Agrawal and Srikant [4].
SPM finds frequent sequences of frequent itemsets. All the items in one itemset
have the same transaction time or happen within a certain window of time,
but in SPM, the order among itemsets/transactions matters. In short, SPM
looks for frequent permutations of frequent itemsets, which in turn are fre-
quent combinations of items. FIM takes care of the items that are purchased
together; for example, “7% of customers buy laptop, flash drive, and software
packages together”; whereas in SPM, the sequence in which the items are pur-
chased matters, e.g., “6% of customers buy laptop first, then flash drive, and
then software packages”.

In a mathematical description, we define I = i1, i2, ..., im as a set of items,
where ik is usually represented by an integer, call item ID. Let s =< t1t2...tn >
denotes a sequential pattern (or sequence), where tk is a transaction and also
can be called as an itemset. We define an element of a sequence by tj =
{x1, x2, ..., xm} where xk ∈ I. In a sequence, one item may occur just once in
one transaction but may appear in many transactions. We also assume that the
order within a transaction (itemset) does not matter, so the items within one
transaction can be lexicographically ordered in preprocessing stage. We define
the size of a sequence as the number of items in it. A sequence with a size k
is called a k-sequence. Sequence s1 =< t1t2...tm > is called a subsequence of
s2 =< r1r2...rj > if there are integers 1 ≤ k1 < k2 < .. < km−1 < km ≤ j such
that t1 ⊆ rk1, t2 ⊆ rk2, ..., tm ⊆ rkm. Such a sequence sj is called a sequential
pattern. The support for a sequence is the number of total data sequences
that contains this sequence. A sequence is known as frequent iff its support
is greater than a given threshold value called minimum support, minsup. The
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goal of SPM is to find out all the sequential patterns whose supports are
greater than minsup.

2.2 Generalized Sequential Pattern framework

The GSP method, a member in the Apriori family, is based on the down-
ward-closure property and represents the dataset in a horizontal format. The
downward-closure property means all the subsequences of a frequent sequence
are also frequent and thus for an infrequent sequence, all its supersequences
must also be infrequent. In GSP, candidates of (k+1)-sequences are gener-
ated from known frequent k-sequences by adding one more possible frequent
item. The mining begins with 1-sequences and the size of candidate sequences
increases by one with each pass. In each pass, the GSP algorithm has two
major operations: 1) Candidate Generation: generating candidates of frequent
(k+1)-sequences from known frequent k-sequences 2) Matching and Counting:
Matching candidate sequences and counting support.

2.2.1 Sequence Candidates Generation

In GSP, the candidates of (k+1)-sequences are generated by joining two k-
sequences that have the same contiguous subsequence. c is a contiguous sub-
sequence of sequence s =< t1t2...tn > if one of these conditions hold:
1. c is derived from s by deleting one item from either t1 or tn
2. c is derived from s by deleting an item from an transaction ti which has at

least two items
3. c is a contiguous subsequence of c′, and c′ is a contiguous subsequence of s
Candidate sequences are generated in two steps as follows.

Joining phase Two k-sequence candidates (s1 and s2) can be joined
if the subsequence formed by dropping the first item in s1 is the same as
the subsequence formed by dropping the last items in s2. Consider frequent
3-sequences s1 =< {A,B} {C} > and s2 =< {B} {C} {E} > in Table 1;
dropping the first items in s1 results in < {B} {C} > and dropping the last
element in s2 results in < {B} {C}. Therefore, s1 and s2 can get joined to a
candidate 4-sequence s3 =< {A,B} {C} {E} >. Note that here {E} will not
merge into the last itemset in the s1, because it is a separate element in s2.

Pruning Phase If a sequence has any infrequent subsequence, this phase
must delete this candidate sequence. For example, in Table 1, candidate <
{A,B} {C} {E} > gets pruned because subsequence < {B} {C} {E} > is not
a frequent 3-sequence.

2.2.2 Matching and Counting

The matching-and-counting stage will count how many times an input matches
a sequence candidate. The occurrence of each candidate pattern is recorded
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Table 1: Example of candidate generation

Frequent 3-sequences
Candidate 4-sequences

Joined Pruned
< {B} {C} {E} > < {A,B} {C} {E} > < {A,B} {C,D} >
< {A,B} {C} > < {A,B} {C,D} >
< {B} {C,D} >
< {A} {C,D} >
< {A,B} {D} >

and compared with the minimum support number. The matching-and-counting
stage is the performance bottleneck for GSP, but it exposes massive paral-
lelism. The high density of on-chip state elements and fine-granularity com-
munication found on the AP allows many candidate sequences (patterns) to be
matched in parallel, and make AP a promising hardware performance booster
for matching and counting operations of GSP. For this reason, the GSP algo-
rithm becomes a natural choice for mapping SPM onto the AP. In the rest of
this paper, we will show how to utilize the AP to speed up the matching-and-
counting stage of GSP (Section 5) and how this solution compares with other
parallel or accelerator implementations of SPM (Section 8). For comparison
purpose, we also propose OpenMP and CUDA implementations for multicore
CPU and GPU to speed up the matching and counting of GSP.

3 Disjunctive Rule Mining

3.1 Introduction to DRM

Disjunctive Rule Mining (DRM) is derived from frequent set mining [5]. In
the DRM problem, we define I = i1, i2, ..., im as a set of interesting items. Let
T = t1, t2, ..., tn be a dataset of transactions, where each transaction tj is a
subset of I. Define xj = {is1, is2, ..., isl} to be a set of items in I, called an
itemset in traditional frequent set mining. Define yj = {ds1, ds2, ..., dsl} to be
a set of disjunctive items (d-items), called a disjunctive rule in DRM, where
each d-item dsj =< im1, im2...imw > is a set of alternative items. w is the max
number of alternative items could appear in one d-item. Duplicate items are
not allowed in a disjunctive rule.

The d-rule with k d-items is called k-d-rule. A d-item dr is said to cover
an item is iff is ∈ dr. A transaction tp is said to cover the d-rule yq iff each
d-item yq covers one item of tp. The support of yq, Sup(yq), is the number
of transactions that cover it. A d-rule is known as frequent iff its support is
greater than a given threshold value called minimum support, minsup. The
goal of disjunctive rule mining is to find out all d-rules which supports are
greater than minsup.

3.2 Apriori and downward-closure

In DRM, the downward-closure means all the subsets of a frequent d-rule are
also frequent and thus for an infrequent d-rule, all its supersets must also
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be infrequent. The downward-closure is valid when considering the relations
among d-rules. On the contrary, an upward-closure is valid when considering
the items within a d-item. In another word, for a frequent d-rule yq, a new
d-rule y′q with one more alternative item in any d-item must be frequent.

3.2.1 Algorithm framework

Given both downward-closure and upward-closure properties described above,
we implement an Apriori like algorithm. The mining begins at 2-d-rules and
increases the size of d-rules by one with each outer iteration. In each inner it-
eration, infrequent d-rules are picked up to generate new d-rules by adding one
alternative item to any possible d-item. The algorithm will take the following
steps:
1. Candidate Generation:

(a) d-rule size-increase iteration: generating candidates of frequent (k+1)-
d-rules from the known frequent k-d-rules

(b) d-item size-increase iteration: generating candidates of frequent k-d-
rules from the known infrequent k-d-rules

2. Matching and Counting: matching candidate d-rules and counting supports

3.2.2 Matching and Counting

The matching-and-counting stage counts how many times the input matches
a d-rule. The occurrence of each candidate d-rule is recorded and compared
with the minimum support number. When considering both the OR rela-
tions among items of each d-item and the AND relations among d-items, the
CPU implementation takes a longer time to match a d-rule than a itemset.
In addition to the high capacity of state units on the AP chips, which allows
massively parallel matching and counting on a large number of d-rules, the
sub-set matching nature of AP state units makes it no extra cost in calculat-
ing OR relations among items of each d-item. Therefore, in practical cases, the
runtime of CPU-implemented matching and counting will increase along the
complexity of a d-rule (d-rule size and the total number of alternative items).
In contrast, the AP matching-and-counting time will keep constant and is two
orders of magnitude faster than the CPU version (see Section 9).

4 Automata Processor

4.1 Architecture

The AP chip has three types of functional elements - the state transition
element (STE), counters, and Boolean elements [9]. The STE is the central
feature of the AP chip and is the element with the highest population density.
An STE holds a subset of 8-bit symbols via a DRAM column and represents
an NFA state, activated or deactivated, via an one-bit register along with the
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matching rule for that state. The AP architecture achieves fine-granularity
(bit-wise) parallelism at the scale of entire row of the memory, every cycle.
The high parallelism is achieved in two places:

1. Activating the row in each subarray that corresponds to the matching rules
for the entire system in response to the input symbol

2. Operating directly on the row buffer to complete the process of checking
the input symbol against all possible transitions, by doing the OR in each
column of the matching rule with the active vector

Therefore, when any symbol of the symbol set compiled on one activated STE
is seen, the STE “matches” and produces a high signal. In another word, the
OR operations are implicitly applied among the symbols complied on an STE.
This feature, as a part of bit-wise parallelism, could be utilized for efficient dis-
junctive rule mining. The AP uses a homogeneous NFA representation [9] for a
more natural match to the hardware operation. In terms of Flynn’s taxonomy,
the AP is therefore a very unusual multiple-instruction, single-data (MISD)
architecture: each state (column) holds unique responses (instructions) to po-
tential inputs, and they all respond in parallel to each input. Most other com-
mercial architectures are von Neumann architectures, e.g. single CPU cores
(SISD), multicore or multiprocessors (MIMD), and GPUs (SIMD).

The counter element counts the occurrence of a pattern described by the
NFA connected to it and activates other elements or reports when a given
threshold is reached. One counter can count up to 212−1. Two or more counters
can be daisy-chained to handle larger threshold. Counter elements are a scarce
resource of the AP chip, and therefore become an important limiting factor
for the capacity of the SPM automaton proposed in this work.

The Boolean element is programmable and could be configured to one of
nine different Boolean gates including AND, OR, NOT, SOP (sum of prod-
uct) and POS (product of sum). The AND gate supports up to seven fan-in
connections. However, due to the available routing resource, it is hard to reach
this limitation in practical cases.

The current generation AP-D480 boards use AP chips built on 50nm
DRAM technology, running at an input symbol (8-bit) rate of 133 MHz. Each
D480 chip has 192 blocks, with 256 STEs, 4 counters and 12 Boolean elements
per block [9]. We assume an AP board with 32 AP chips, so that all AP chips
process input data stream in parallel. The projected power consumption of a
32-chip AP board is about 155W.

4.2 Input and output

The AP takes input streams of 8-bit symbols. Any STE can be configured to
accept the first symbol in the stream (called start-of-data mode, small “1”
in the left-upper corner of STE in the following automaton illustrations), to
accept every symbol in the input stream (called all-input mode, small “∞”
in the left-upper corner of STE in the following illustrations) or to accept a
symbol only upon activation.
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Any type of element on the AP chip can be configured as a reporting
element; one reporting element generates a one-bit signal when it matches the
input symbol. If any reporting element reports on a particular cycle, the chip
will generate an output vector which contains 1s in positions corresponding to
the elements that report and 0s for reporting elements that do not report. Too-
frequent outputs will cause AP stalls; therefore, minimizing output vectors is
an important consideration for performance optimization.

4.3 Programming and configuration

The AP SDK provides the Automata Network Markup Language (ANML),
an XML-like language for describing automata networks, as well as C, Java
and Python bindings to describe automata networks, create input streams,
parse output and manage computational tasks on the AP board. A “macro”
is a container of automata for encapsulating a given functionality, similar to a
function or subroutine in common programming languages.

Deploying automata onto the AP fabric involves two stages: placement-
and-routing compilation (PRC ) and loading ( configuration ) [2]. In the PRC
stage, the AP compiler deduces the best element layout and generates a binary
version of the automata network. In the cases of large number of topologically
identical automata, macros or templates can be precompiled in PRC stage and
composed later [18]. This shortens PRC time, because only a small automata
network within a macro needs to be processed, and then the board can be
tiled with as many of these macros as fit.

A pre-compiled automata only needs the loading stage. The loading stage,
which needs about 50 milliseconds for a whole AP board [18], includes two
steps: routing configuration / reconfiguration that programs the connections,
and the symbol set configuration/reconfiguration that writes the matching
rules for the STEs. The changing of STE rules only involves the second step
of loading, which takes 45 milliseconds for a whole AP board. The feature of
fast partial reconfiguration play a key role in a successful AP implementation
of SPM: the fast symbol replacement helps to deal with the case that the total
set of candidate patterns exceeds the AP board capacity; the quick routing
reconfiguration enables a fast switch from k to k + 1 level in a multiple-pass
algorithm like GSP for sequence mining.

5 Mapping SPM onto the AP

The general framework for AP-accelerated hierarchical pattern mining is to
generate candidate patterns on the CPU and utilize the high parallelism of the
AP chips to speedup performance bottleneck of matching-and-counting steps.
For SPM, we adopt the GSP algorithm (discussed in Sec. 2.2), a variant of the
Apriori algorithm for SPM, to generate candidates for sequential patterns.
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5.1 Automaton for Matching and Counting

The hierarchical patterns in SPM, sequences of itemsets, are more complex
than strings or individual itemsets as studied in previous works [18, 22]. Within
itemsets of a sequence, items of interest may be discontinuous, i.e., we may
only be interested in some frequent subsets of an itemset [22]. Furthermore, one
input sequence may have irrelevant itemsets in between interesting itemsets.
The matching part of the automaton for SPM should identify the interesting
itemsets as well as the order among the itemsets. In summary, the automaton
design needs to deal with all possible continuous and discontinuous situations
for both items and itemsets, and keep the order among itemsets in the same
time. There is no previous work that has proposed any automaton design
for hierarchical pattern matching. Furthermore, in order to maximize benefit
from the high parallelism of NFAs, and the AP in particular, an appropriate
automaton structure must be as compact as possible, to maximize the number
of such structures that can be accommodated in a single pass.

5.1.1 Flattening the Hierarchy of Sequential Patterns

To match sequences of itemsets, we first convert sets into strings with a pre-
defined order. Then we introduce a delimiter for itemsets to bound and con-
nect these strings (converted from itemsets) within a sequential pattern. The
sequence of strings is also a string. Keeping this observation in mind, the
hierarchy of a sequence of itemsets is therefore flattened to a discontinuous
sequence-matching problem. This is the key innovation of proposed automa-
ton design for SPM.

Figure 1 shows the automaton design for sequential pattern matching and
counting. In the examples shown here, the items are coded as digital num-
bers in the range from 0 to 252, with the numbers 255, 254, 253 reserved as
the data-ending reporting symbol, sequence delimiter, and itemset delimiter,
respectively. Other choices of these three special symbols also work well un-
der the proposed algorithm framework. In the case of more than 253 frequent
items, two consecutive STEs are used to represent an item and support up
to 64,009 (253× 253) frequent items, which is sufficient in all the datasets we
examine; because the AP native symbol size is 8 bits, this will require two
clock cycles to process each 16-bit symbol. Even larger symbol alphabets are
possible by longer consecutive sequences of STEs. In Figure 1, the counting
and reporting component is shown below the (orange) dotted line. The I/O
optimization strategy proposed in [22] is adopted by delaying all reports from
frequent patterns to the last cycle.

The STEs for matching sequential patterns are shown above the orange
dotted line. One matching NFA is bounded by a starting sequence delimiter
for starting a new sequence and an ending sequence delimiter (the same sym-
bol) for activating the counting-and-reporting component. In contrast to the
set-matching NFAs proposed in [22], the NFA for SPM is divided into several
itemsets, demarcated by the itemset delimiters. Each NFA has two rows of
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STEs. The bottom row is for the actual symbols in a candidate sequential
pattern. The STEs in the top row, called “position holders”, help to deal with
the discontinuous situations (within itemsets or between itemsets). Each “po-
sition holder” has a self-activation connection and matches all valid symbols
(excluding the delimiters). As long as the input symbol stays in range, the
“position holder” will stay activated and keep activating the next STE in the
bottom row. The key idea to implement hierarchical pattern matching with
the flattened automaton design is to define two types of “position holder”:
“itemset position holder” and “item position holder”. In the case of sequen-
tial pattern, the first “position holder” in each itemset should be an itemset
position holder, 0 : 253. It will stay activated before the end of a sequence and
handle discontinuous itemsets within that sequence. The other “position hold-
ers” are “item position holders”, 0 : 252, which only hold the position within
an input itemset. In the example shown in Figure 1a, any other itemsets except
a superset of {1, 50}, will not reach the itemset delimiter. After a superset of
{1, 50} is seen, the “position holder” above STE “15” will hold the position
(activate itself) until the end of the same input sequence. Namely, after a su-
perset of {1, 50} is seen, the itemsets other than the superset of {15, 80} are
ignored before a superset of {15, 80} appears in the same input sequence. Note
that more sophisticated hierarchical patterns, such as sequences of sequences
or patterns of more than a two-level hierarchy, can be implemented using the
same idea.

The only difference between an “item position holder” and an “itemset po-
sition holder” are their symbol set. One important advantage of the flattened
automaton design is that one such automaton structure can deal with all situa-
tions of the same encoded pattern length (the encoded pattern length includes
the itemset delimiters). This feature greatly reduces the design space of sequen-
tial pattern matching automata. For example, the automaton structure shown
in Figure 1 can deal with all these cases: < {a, b, c, d, e} >, < {a}{b, c, d} >,
< {a, b}{c, d} >, < {a, b, c}{d} >, < {a}{b}{c} >. We define the actual item
IDs in a sequential pattern without counting delimiters as “effective items”
and define the pattern that considers the itemset delimiters “encoded pat-
tern”. In this step, the automaton design space for a given length of “encoded
pattern” is reduced to one. If we regard one item node in the bottom line
and the position holder above it as a super node, the matching will proceed
from the left to the right linearly. Therefore, we call the strategy of flatting
hierarchical patterns into string patterns as linear design strategy.

5.1.2 Multiple-entry NFAs

In each GSP level, there could be 0 to k− 1 delimiters in actual patterns, and
the encoded pattern lengths of level k can vary from k (a sequence consisting
of a single itemset) to k + k − 1 (all the itemsets only have a single item, so
we have k-1 itemset delimiters). Because candidate sequences are generated at
runtime, the number of patterns to be checked for a given encoded length is
not known before runtime. We need a further step to reduce the automaton
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Set	  {1,	  50}	   Set	  {15,	  80}	  
itemset	  	  
delimiter	  

Sequence	  
delimiter	  

Sequence	  
delimiter	  

Coun8ng	  and	  
repor8ng	  component	  

(a) Automaton for sequence < {1, 50}, {15, 80} >

Set	  {7}	   Set	  {40}	  
itemset	  	  
delimiter	  

Sequence	  
delimiter	  

itemset	  	  
delimiter	  Set	  {2}	  

Sequence	  
delimiter	  

Coun7ng	  and	  
repor7ng	  component	  

(b) Automaton for sequence < {7}, {2}, {40} >

Fig. 1: Examples of automaton design for sequential pattern matching and
counting. Blue circles and black boxes are STEs and counters, respectively.
The numbers on an STE represent the symbol set that STE can match. “0:252”
means any item ID in the range of ASCII 0-252. Symbols “255”, “254”, “253”
are reserved as the input ending, sequence delimiter and itemset delimiter.

design space of the candidates for each GSP iteration to one single template,
so that the place and routing can be done before runtime.

To solve this problem, we adopt the idea of multiple-entry NFAs for variable-
size itemsets (ME-NFA-VSI) proposed by Wang et al. [22]. Figure 2 shows an
example of the ME-NFA-VSI structure that can handle all possible cases of
sequences of effective length 3. Figure 2a shows the ANML macro of this
ME-NFA-VSI structure, leaving some parameters to be assigned for a specific
sequence. %TD and %NTD are the sequence delimiter and its complement and
are assigned to “254” and “0-253”. %ER is the ending and reporting symbol
of the input stream and is assigned to “255” in this paper. %e00 - %e02 are
symbols for three entries. Only one entry is enabled for a given sequence. %i00
- %i04 are individual symbols of items and itemset delimiter. %p00 - %p04 are
the corresponding “position holders”.
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Table 2: Number of macros that fit into one block with 8-bit encoding

k <= 10 10 < k <= 20 20 < k <= 40
sup < 4096 4 2 1
sup >= 4096 2 2 1

Table 3: Number of macros that fit into one block with 16-bit encod-
ing

k <= 5 5 < k <= 10 10 < k <= 20
sup < 4096 4 2 1
sup >= 4096 2 2 1

192 AP blocks per D480 AP chip; 6144 blocks per 32-chip AP board.

To match and count a sequence of three itemsets (two itemset delimiters
are introduced), the first entry is enabled by “254”, the sequence delimiter,
and the other two entries are blocked by “255” (Figure 2d). The sequence
matching will start at the left most item symbol, and handle the cases of
< {X}{Y }{Z} >. Similarly, this structure can be configured to handle other
situations by enabling a different entry point (Figure 2c and 2d).

5.1.3 Macro Selection and Capacity

The flattening strategy and multiple-entry strategy introduced in Sec 5.1.1 and
5.1.2 shrink the automata design space (the number of different automata
design) of a sequential pattern of length k from 2k−1 patterns to a single
pattern template, which makes it possible to pre-compile a library of automata
for each level k and load the appropriate one to the AP chip at runtime. In
each level k, the different encoding schemes, 8-bit and 16-bit, and the support
threshold (greater than 4095 or not) lead to four different automaton designs.
To count a support number larger than 4095, two counters should be daisy-
chained to behave as a larger counter. In this case, counters are more likely a
limiting factor of the capacity.

The actual capacity of a macro may be limited by STEs, counters, or rout-
ing resources of the AP chip. We have developed a library of macro structures
described in Section 5.1.2 and compiled all these macros with the newest AP
compiler (v1.7.17). Table 2 and 3 show the actual capacities of macros for the
different encoding schemes, support number and level range. Note that across
all of our datasets, we never encountered a case of k larger than 20.

5.2 Program Infrastructure

Figure 3 shows the complete workflow of the AP-accelerated SPM proposed
in this paper. The data pre-processing step creates a data stream from the
input dataset and makes the data stream compatible with the AP interface.
Pre-processing consists of the following steps:
1. Filter out infrequent items from input sequences
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Entry	  0	   Entry	  1	   Entry	  2	  

(a) AP macro for sequential pattern

(b) Automaton for sequence < {12, 79, 95} >

(c) Automaton for sequence < {33, 80}{11} >

(d) Automaton for sequence < {17}{2}{90} >

Fig. 2: A small example of multiple-entry NFA for all possible sequences of
effective size 3. (a) is the macro of this ME-NFA-VSI with parameters.
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Fig. 3: The workflow of AP-accelerated SPM

2. Recode items into 8-bit or 16-bit symbols
3. Recode input sequences
4. Sort items within each itemset of input sequences, and connect itemsets

and sequences

Step 1 helps to avoid unnecessary computing on infrequent items and reduces
the dictionary size of items. Depending on the number of frequent items, the
items can be encoded by 8-bit (freq item# < 254) or 16-bit symbols (254 <=
freq item# <= 64009) in step 2. Different encoding schemes lead to different
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automaton designs and automaton capacities. Step 3 removes infrequent items
from the input sequences, recodes items, and removes very short transactions
(fewer than two items). Step 4 sorts items in each itemset (in any given order)
to fit the automaton design described in Section 5.1. The data pre-processing
is only carried out once per workflow.

Each iteration of the outer loop shown in Figure 3 explores all frequent k-
sequences from the candidates generated from (k−1)-sequences. In the begin-
ning of a new level, an appropriate precompiled template macro of automaton
structure for sequential patterns is selected according to k, encoding scheme
(8-bit or 16-bit), and the minimum support (see Section 5.1.3), and is con-
figured onto the AP board with many instances spread out the whole board.
The candidates are generated on the CPU and are filled into the instances of
the selected automaton template macro. The input data formulated in pre-
processing is then streamed into the AP board for matching and counting.

6 Mapping DRM onto the AP

We adopt the same flexible framework as described in Section 5 to develop
a CPU-AP algorithm for disjunctive rule mining. Similarly, we generate can-
didates of disjunctive rules by an Apriori based algorithm. The performance
bottleneck of this algorithm is still the matching-and-counting operation. We
will show how to accelerate this bottleneck by using the AP in this section.

6.1 Program Infrastructure

Figure 4 shows the complete workflow of the AP-accelerated DRM proposed
in this paper. The data pre-processing step is similar to that for frequent
itemset mining [22] and SPM (Section 5.2). However the sorting operation is
no longer needed. The outer loop is the d-rule size-increase iteration which
generates candidates of frequent (k+1)-d-rules from known frequent k-d-rules
by a d-item without any alternative. The outer loop stops when no more
frequent k-d-rule is found. The inner loop is the d-item expanding iteration
which generates candidates of frequent k-d-rules from known infrequent k-
d-rules by adding one alternative item into any possible d-item each time.
The outer loop stops when no more infrequent k-d-rule is found. Although
the algorithm to generate d-rule candidates could be improved, the delicate
candidate generation algorithm is out of the scope of this paper. We focus on
accelerating matching and counting d-rules by using the AP.

6.2 Automaton for Matching and Counting

Similar to sequential patterns, a d-rule has a two-level hierarchy. In the lower
level, the alternative items in one d-item follow OR relations, that is, any
items in this d-item seen in the input stream will cause a match of this d-item.
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Fig. 4: The workflow of AP-accelerated DRM.

In the higher level, the d-items within a d-rule obey AND relations, and the
d-rule matches a transaction when every its d-item matches an item in this
transaction. The AP STE has a feature to hold a symbol set of 8-bit symbols
instead of a single symbol, and any symbol of the symbol set seen in the input
will cause a match of this STE. This feature is a part of the AP’s bit-wise
parallelism capability, and could be naturally utilized to accommodate a d-
item on an STE without any extra cost.

The linear design strategy, proposed in Section 5 for SPM, which flattens a
hierarchical pattern to a plain string by pre-sorting items within each itemset
and connecting transactions with a delimiter symbol, is no longer applicable
to a disjunctive mining problem. This is because a pre-defined item order of
input transactions will cause false negatives when two non-conjunctive items
appear in one d-item. For example, a dataset has only three items, 1, 2, 3. The
linear design strategy only works well on two d-rules: 1or2, 3 and 1, 2or3 when
the pre-defined order lets 2 to be next to both 1 and 3. There are only two
options: < 1, 2, 3 > or < 3, 2, 1 >. Given an input transaction < 1, 2, 3 >,
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a new d-rule 1or3, 2 will cause a false negative on transaction 2, 3. No pre-
defined order works well with 1or2, 3, 1, 2or3 and 1or3, 2 on all possible input
transactions.

6.2.1 Boolean based d-rule representation

To solve the problem described above, we introduce a novel automaton design
strategy, reduction design, which works for disjunctive rule mining without
a need of pre-sorting items in transactions. The key idea of this automaton
design is to take advantage of bit-wise parallelism of an STE to represent the
OR relation of alternative items in a d-item and utilize the on-chip Boolean
elements to calculate AND relation among d-items of a d-rule.

Figure 5a shows the automaton design for d-rule matching. The d-rule
matching automaton has three major components: starter, d-item sub-structure
and AND sub-structure. A starter has two STEs, the “%TD” STE repre-
sents the beginning of a new input transaction and activates all d-item sub-
structures when matches a transaction delimiter; “%AI” STE matches any
valid item and keeps activating all d-item sub-structures before the end of the
current transaction. The left STE of d-item sub-structure holds the set of items
in one d-item. The middle “%AI” STE holds the activated status of this d-
item sub-structure until the end of the current transaction. The right “%TD”
STE waits until the end of the current transaction to finish d-item match-
ing. All the outputs of d-item sub-structure connect to the AND unit of an
AND sub-structure. An AND unit of the current AP generation supports up
to 7 fan-in connections. Therefore, we can have up to 7 d-item sub-structures
in this d-rule matching automaton. This automaton structure could be pre-
compiled and loaded in the runtime. When fewer d-items are needed, the rest
of the d-item sub-structures can be filled with “%AI”, any valid item, to feed
“true” to AND gate. The “%W” STE wildcard, matching any 8-bit symbol,
simply separates the AND gate and counter or logic gate connected to this
d-rule matching structure by paying one cycle of delay in the end of the whole
input stream. However, without the wildcard STE, the Boolean and counter
elements will connect to each other, which causes the clock rate of the whole
AP chip to reduce to half the normal speed. In summary, the parallel d-item
sub-structures seek d-items independently, and their results are collected by a
“reduction” of AND to obtain the final output. This automaton design strat-
egy for pattern matching is called reduction design.

Figure 5a shows an example of d-rule {12/15, 50, 57, 66/67, 75}. In the ex-
amples shown in this paper, the items are coded as digital numbers in the
range from 0 to 253, with the numbers 255, 254 reserved as the data-ending
reporting symbol and the itemset delimiter, respectively. That is, %AI = 0-
253, %TD = 254, %ER = 255 and %W = 0-255. Therefore, the two unused
d-items are filled with 0-253.



20 Ke Wang et al.

(a) d-rule matching sub-structure with parameters

(b) d-rule matching example {12/15, 50, 57, 66/67, 75}

Fig. 5: d-rule matching automaton



Hierarchical Pattern Mining with the Automata Processor 21

Fig. 6: A d-rule matching-and-counting macro.

6.2.2 d-rule with larger size

In many cases, a d-rule has more than 7 d-items. We propose to use another
level of AND (reduction) sub-structure to connect several d-rule matching
automata to extend to larger d-rules, as shown in Figure 6. In theory, seven d-
rule matching automata could be connected together to extend to 49 d-items.
However, there is a trade-off between the total capacity of d-rule matching-
and-counting macros and the size of d-rules. To fit two d-rule matching-and-
counting automata in one AP block, we need to reduce the size of each d-rule
automaton. An optimal configuration, shown in Figure 6 with automata sizes
of 5, 5, 5, 4, 4, representing a d-rule of size 23, can fit two macros in one AP
block. Further automaton optimization and advanced placement and routing
optimization may allow larger d-rule with the same capacity, however 23 d-
items are more than enough in practical cases of FIM and DRM we have
observed. This automaton design can also be utilized for simple FIM problem.
However when compared with the linear design strategy that supports an
itemset with up to 40 items, an interesting trade-off between pattern size
(number of items) and bit-wise parallelism (holding multiple symbols in one
STE) is shown here.

6.2.3 Macro Selection and Capacity

Similar to SPM, one major factor in the AP performance is macro capacity,
that is, how many macro instances can fit onto an AP board, which will directly
affect the actual parallelism of the AP device. The different ranges of d-rule
size and the max support number will lead to different automaton designs
and therefore different capacities. We have developed an automaton library of
DRM macro structures described in Section 6.2.1 and compiled all different
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Table 4: Number of macros that fit into one block with 8-bit encoding

k <= 7 7 < k <= 23 23 < k <= 33
sup < 4096 4 2 1

k <= 23 23 < k <= 33
sup >= 4096 2 1

macros with the newest AP compiler (v1.7.17). Table 4 shows the capacity of
DRM macros that can fit into one block for different d-rule sizes and support
thresholds. In runtime, the appropriate macro should be selected and loaded
onto the AP board before AP processing.

To count a support number larger than 4095, two counters should be daisy-
chained to behave as a larger counter. Unlike the linear design for SPM, where
the counter resource is a major limiting factor of the capacity, routing and
STE capacity become important limitations in reduction design because of
the routing hotspots of Boolean elements and more STE usage of a d-item
sub-structure than that of an item representation in linear design. In order to
support a larger size of symbol sets (e.g. 12 bits or 212 different items) without
changing the design, we need a new AP architecture, capable of handling
larger symbol-set size. Alternatively, by changing the design and considering
for different combinations of disjunctive items, current generation AP can also
handle 16-bit encoding. In this paper, we only test the automaton design for
8-bit encoding.

7 Testing platform and datasets

The performance of our CPU-AP implementations of SPM and DRM are eval-
uated using CPU timers (CPU sequential parts), stated configuration latencies,
and an AP simulator in the AP SDK [2, 16], assuming a 32-chip Micron D480
AP board. Because the AP advances by one 8-bit symbol every clock cycle,
the number of patterns that can be placed into the board, and the number of
candidates that must be checked in each stage, determines how many passes
through the input are required, which allows a simple calculation to determine
the total time on the AP (see hardware parameters in Section 4).

7.1 Testing Platform and Parameters

All of the above implementations are tested using the following hardware:

– CPU: Intel CPU i7-5820K (6 physical cores, 3.30GHz)
– Memory: 32GB, 1.333GHz
– GPU: Nvidia Kepler K40C, 706 MHz clock, 2888 CUDA cores, 12GB global

memory
– AP: D480 board, 133 MHz clock, 32 AP chips (simulation)
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Table 5: Datasets for sequential pattern mining

Name #sequences Aver. Len. #item Size (MB)
BMS1 59601 2.42 497 1.5
BMS2 77512 4.62 3340 3.5
Kosarak 69998 16.95 41270 4.0
Bible 36369 17.84 13905 5.4
Leviathan 5834 33.8 9025 1.3
FIFA 20450 34.74 2990 4.8

Aver. Len. = Average number of items per sequence.

7.2 Datasets

7.2.1 Datasets for SPM

Six public real-world datasets for sequential pattern mining available on the
spmf [11] website are tested. The details of these datasets are shown in Ta-
ble 5. The BMS (1&2), Kosarak, and FIFA are clickstream data from an e-
commerce site, Hungarian news portal and the website of FIFA World Cup
98, respectively. The SPM studies on these four clickstream datasets are to dis-
cover the frequent click sequences of the corresponding applications. The Bible
and Leviathan are sequence datasets generated from the Bible and the novel
Leviathan (by Thomas Hobbes, 1651), considering each sentence as a sequence
and each word as an item. The goal of SPM analysis on these two datasets is
to discover the common word sequences in English (a natural language).

7.2.2 Datasets for DRM

One commonly-used real-world dataset, Webdocs, from the Frequent Itemset
Mining Dataset Repository [1] and one real-world dataset generated by our-
selves (ENWiki [22]) are tested (details are shown in Table 6). The ENWiki
is the English Wikipedia downloaded in December 2014. We have removed
all paragraphs containing non-roman characters and all MediaWiki markups.
The resulting dataset contains about 1,461,281 articles, 11,507,383 sentences
(defined as transactions) with 6,322,092 unique words. We construct a dic-
tionary by ranking the words using their frequencies. Capital letters are all
converted into lower case and numbers are replaced with the special ”NUM”
word. Webdocs is a collection of web html documents after filtering out html
tags and most common words. In natural language processing, the idea of de-
ducing some aspects of semantic meaning from patterns of word co-occurrence
is becoming increasingly popular. The goal of disjunctive rule mining on these
two datasets is to compute such co-occurred word clusters with alternative
words.



24 Ke Wang et al.

8 Experimental Results for SPM

8.1 Comparison with Other Implementations

We compare the performance of the proposed AP-accelerated GSP (GSP-AP)
versus the multi-threaded Java GSP implementation (GSP-JAVA) from spmf
toolkit [11], as well as a highly optimized GSP single-core CPU C implementa-
tion (GSP-1C), a multicore implementation using OpenMP, (GSP-6C), and a
GPU implementation (GSP-1G) of the GSP algorithm. We also compare the
AP-accelerated GSP with Java multi-threaded implementations of SPADE
and PrefixSpan [11]. Because GSP-1C is always faster than GSP-JAVA, we
don’t show the results of GSP-JAVA in this paper, but use it as a baseline to
determine the feasible ranges of minimum support number.

For each benchmark, we compare the performance of the above implemen-
tations over a range of minimum support values. A lower minimum support
number requires a larger search space (because more candidates survive to the
next generation) and more memory usage. To finish all our experiments in a
reasonable time, we select minimum support numbers that produce computa-
tion times of the GSP-JAVA in the range of 2 seconds to 2 hours. A relative
minimum support number, defined as the ratio of a minimum support number
to the transaction number, is adopted in the figures.

8.2 Multicore and GPU GSP

In multicore and GPU implementations of GSP, the most time-consuming
step, the matching and counting, is parallelized using OpenMP and CUDA.
GSP-GPU: After filtering out the infrequent items, the whole dataset is
transferred to the GPU global memory. Then, the algorithm iterates over two
steps: (1) generating (k+1)-sequence candidates from the frequent k-sequences
on CPU, and (2) identify the frequent (k + 1)-sequences on GPU. In the
CUDA kernel function, each thread is responsible for matching and counting
one candidate in the input dataset. Once the matching-and-counting phase is
done for all the candidates of k+1 level, the results are transferred back to the
CPU for the next level. We do not consider pruning in the candidate generation
step (neither in AP nor in GPU implementation) as it increases pre-processing
time and decreases the overall performance. An array data structure is used to
contain candidates and the input dataset for GPU and AP implementations
to optimize the performance of candidate pattern generation.

Table 6: Datasets for disjunctive rule mining

Name Trans# Aver. Len. Item# Size (MB)
Webdocs 1692082 177.2 5267656 1434
ENWiki 11507383 70.3 6322092 2997.5

Aver. Len. – Average number of items per transaction.
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GSP-multi-core: Workflow is the same as the GSP-CPU implementation
except that the matching-and-counting step is parallelized using OpenMP.
The CPU version uses a linked-list to accelerate the pruning and counting
operations to achieve the best overall performance.

8.3 GSP-AP vs. Other GSP Implementations

Figure 7 shows the performance comparison among four different GSP im-
plementations. As the minimum support number decreases, the computation
time of each method increases, as a larger pattern search space is exposed. On
average, the performance relationship among the four tested implementations
follows this order: GSP − 1C < GSP − 6C < GSP − 1G < GSP − AP . The
multicore GSP-6C achieves about 3.7X-6X speedup over single-core version
GSP-1C. The GPU version outperforms GSP-1C up to 63X. GSP-1G shows
better performance than GSP-6C at large support numbers but loses at small
ones. This indicates that more parallelism needs to be exposed for GPU im-
plementation to compensate for the data transfer overhead between CPU and
GPU. The proposed GSP-AP is the clear winner, with a max 430X (in the
BMS2) speedup over single-core, up to 90X speedup over multicore, and 2-29X
speedup over GPU.

8.4 Timing Breakdown and Speedup Analysis

To better understand the performance shown in Figure 7, profiling results are
shown in Figures 8 and 9. Focusing on the matching-and-counting stage, the
multi-core and GPU versions achieve 5X and tens-X speedups over single-core
CPU implementation, while the AP implementation achieves several hundreds
to 1300 times speedups over the sequential matching and counting implemen-
tation. The smaller the minimum support, the more candidates are generated,
and the larger the speedups achieved for both GPU and AP versions. On one
hand, it shows the performance boost of massive complex-pattern matching
achieved by the AP. On the other hand, Amdahl’s law starts to take effect at
small support numbers, with the percentage of time for matching and counting
within the total execution time dropping, and the un-accelerated candidate-
generation stage becoming dominant. This could be addressed by parallelizing
candidate generation (see Section 8.5). Amdahl’s law has even more severe
impact on the AP version than on GPU implementation. FIFA is one typical
example, where over 1300X speedup is achieved at 7.5% relative support, but
the percentage of matching and counting drops to 3%.

From Figures 8 and 9 we observe that configuration time dominates the
total AP matching-and-counting time, 80%-90% of the AP time for all cases.
Fortunately, the latency of symbol replacement could be significantly reduced
in future generations of the AP, because symbol replacement is simply a series
of DRAM writes, and this should be much faster. We hypothesize that the cur-
rent times assume some conservative buffering. Reducing symbol replacement
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Fig. 7: The performance comparison among GSP-1C, GSP-6C, GSP-1G and
GSP-AP on six benchmarks.
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Fig. 8: The timing breakdown and speedup analysis on GSP implementa-
tions. “M&C percentage” means the percentage of matching-and-counting
steps within the total GSP execution time. “AP conf. percentage” means the
percentage of the AP configuration time, including both routing configuration
time and symbol replacement time, in the total AP matching and counting
time.
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Fig. 9: The timing breakdown and speedup analysis on GSP implementations.
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could improve the overall performance greatly. Figure 10 studies the cases of
BMS2 and Kosarak, assuming 2X, 5X and 10X faster symbol replacement. Up
to 2.7X speedup is achieved over current AP hardware when assuming 10X
faster symbol replacement.

8.5 GSP-AP vs. Other SPM Algorithms

PrefixSpan and SPADE are two advanced algorithms which outperform GSP
in general cases. In this paper, we test multi-threaded Java implementations
of these two algorithms and evaluate them on a multi-core CPU. Figure 11
compares the performance of the Java multi-threaded implementations Pre-
fixSpan and SPADE with hardware-accelerated GSP implementations. The
performance of GSP-1G is in between PrefixSpan and SPADE on average.
The proposed GSP-AP outperforms both PrefixSpan and SPADE in most
cases, and achieves up to 300X speedup over PrefixSpan (in Bible) and up to
30X speedup over SPADE (in FIFA). As we see in the results, even multi-core
PrefixSpan gives poor performance related to the AP. In addition, at least
50X speedup would be needed for PrefixSpan on the GPU to be competitive
to the AP. So we do not implement it on the GPU. For SPADE, we again do
not implement it for the GPU, because it runs out of memory for benchmarks
larger than 10MB, assuming a high-end GPU with 24GB memory, such as the
Nvidia K80. Smaller GPUs will fail even earlier.

As we discussed in Section 8.4, the performance of the AP and GPU so-
lutions suffer from the increasing portion of the un-accelerated candidate-
generation stage. We therefore implemented a multi-threaded candidate gener-
ation version for the AP and the GPU, GSP-AP-MTCG and GSP-1G-MTCG.
The performance improvements are clear in Bible, FIFA and Leviathan, which
become candidate-generation dominant at small minimum support numbers.
The GSP-AP-MTCG get 452X speedup over PrefixSpan (in Bible) and up
to 49X speedup over SPADE (in FIFA). The speedups of GSP-AP-MTCG
over GSP-1G-MTCG become even larger because the same sequential stage is
parallelized in the same way.

8.6 Performance Scaling with Data Size

In this era of “big data”, mining must accommodate ever-larger data sets. The
size of the original datasets we adopted are all below 10MB, which may once
have been representative, but are less so for the future. In this subsection, we
study the trend of the performance scaling as a function of input data sizes. We
enlarge the input data size by concatenating duplicates of the whole dataset
with an assumption that the number of input sequences will grow much faster
than the dictionary size (the number of distinct items) does.

Figure 12 shows the performance results of input data scaling on Kosarak
and Leviathan. The total execution times of all tested methods, PrefixSpan,
SPADE, GSP-1G and GSP-AP, increase linearly with the input data size on
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Fig. 10: The impact of symbol replacement time on GSP-AP performance for
BMS2 and Kosarak. The columns show the percentage of AP configuration
time in total AP matching-and-counting time. The symbols and lines show
overall all computation time.
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Fig. 11: The performance comparison among GSP-GPU, GSP-AP, PrefixSpan
and SPADE.
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both benchmarks. The SPADE method runs out of memory (32GB on the
CPU) for both tested minimum support numbers on Kosarak at input size
larger than 10MB. Given smaller GPU on-board memory, a GPU SPADE
would fail at even smaller datasets. The execution time of the proposed GSP-
AP method scales much more favorably than other methods. Its speedup over
PrefixSpan grows with larger data sizes, and reaches 31X at relative minimum
support of 0.45%. A GPU implementation of PrefixSpan is unlikely to gain
more speedup over the multi-threaded PrefixSpan shown here. For these rea-
sons, the GPU implementations of PrefixSpan and SPADE are not needed
in this analysis. In the case of Leviathan, GSP-AP shows worse performance
than SPADE at small datasets, but outperforms it at large datasets. In this
case, GSP-AP achieves up to 420X speedup over PrefixSpan and 11X speedup
over SPADE.

9 Experimental Results for DRM

9.1 Comparison with CPU implementation

For each benchmark, we compare the performance of our CPU-AP implemen-
tation and a sequential CPU implementation over a range of minimum support
values. Similar to SPM, a lower minimum support number requires longer
CPU time. To finish all of our experiments in a reasonable time, we select
minimum support numbers that produce computation times of the CPU-only
implementation in the range of 10 seconds to 20 hours. A relative minimum
support number, defined as the ratio of a minimum support number to the
transaction number, is adopted in the figures. For a single d-item, the extra
items beyond one item are called alternative items. The number of alternative
items in one d-item is defined as the size of the d-item minus one. To avoid an
extremely large search space, we only allow one alternative item (could be in
any d-item) for end-to-end performance comparison, no matter how large the
size of a d-rule is.

Considering disjunctive items, more candidates need to be scanned and
more operations (OR operations between disjunctive items) need to be cal-
culated. Therefore, the matching-and-counting step is more likely to be a
performance bottleneck than that of the traditional frequent itemset mining.
Figure 13 shows performance results of the CPU-AP solution and sequential
CPU solution on datasets Webdocs and ENWiki. The CPU-AP DRM solution
proposed by this paper achieves up to 487X and 614X speedups for end-to-
end computation time measurement over the CPU solution on Webdocs and
ENWiki. 2971X and 1366X speedups are achieved when comparing the d-rule
matching-and-counting performances.
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Fig. 12: Performance scaling with input data size on Kosarak and Leviathan.
(This figure is for Section 8)
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Fig. 13: The performance comparison between CPU-AP DRM and CPU DRM.
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Fig. 14: The CPU time of matching and counting 20,000 d-rules against d-rule
size and total number of alternative items. The corresponding AP matching
and counting time is just 1.16s for all the cases shown in this figure.

9.2 Matching and Counting

Figure 14 shows the trends of the CPU matching-and-counting time varying
against d-rule size (d-item numbers of a d-rule) and total number of alterna-
tive items of a d-rule. The d-rules and input stream are all generated from
the benchmark Webdocs. Adding one more d-item to an existing d-rule causes
one extra AND operation when recognizing this d-rule. Adding one more al-
ternative items to an existing d-rule causes extra one OR operation when
recognizing this d-rule. Figure 14 shows significant increase in the CPU time
when increasing either d-rule size or alternative items. From the figure, one
can expect even longer CPU time for larger d-rule sizes and more alternative
items. The sub-linearity and the noise shown in this figure are all due to the
short-circuit evaluation technique we adopted to improve the CPU matching
performance. In contrast, the AP matching-and-counting time keeps invariant
if d-rule size is not larger than the design capacity of the d-rule automaton
macro (for example, 23). Actually, in very rare cases, the mining will not
stop before d-rule size reaches 20. Therefore, in practical cases, the AP DRM
matching-and-counting time only depends on the number of d-rule candidates
and the input length.
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10 Related Work

Because of the larger permutation space and complex hierarchical patterns
involved, performance is a critical issue for applying hierarchical pattern min-
ing techniques. Many efforts have been made to speed up hierarchical pattern
mining via software and hardware.

10.1 Sequential Pattern Mining

10.1.1 Sequential Algorithms

Generalized Sequential Pattern GSP [21] follows the multi-pass candidate gen-
eration–pruning scheme of the classic Apriori algorithm and inherits the hori-
zontal data format and breadth-first-search scheme from it. Also in the family
of the Apriori algorithms, Sequential PAttern Discovery using Equivalence
classes (SPADE ) [27] was derived from the concept of equivalence class [25]
for sequential pattern mining, and adopts the vertical data representation. To
avoid the multiple passes of candidate generation and pruning steps, PrefixS-
pan [17] algorithm extended the idea of the pattern growth paradigm [13] to
sequential pattern mining.

10.1.2 Parallel Implementations

Shintani and Kitsuregawa [20] proposed three parallel GSP algorithms on
distributed memory systems. These algorithms show good scaling properties
on an IBM SP2 cluster. Zaki et al. [26] designed pSPADE, a data-parallel
version of SPADE for fast discovery of frequent sequences in large databases on
distributed-shared memory systems, and achieved up to 7.2X speedup on a 12-
processor SGI Origin 2000 cluster. Guralnik and Karypis [12] developed tree-
projection-based parallel sequence mining algorithms for distributed-memory
architectures and achieved up to 30X speedups on a 32-processor IBM SP
cluster. Cong et al. [8] presented a parallel sequential pattern mining algorithm
(Par-ASP) under their sampling-based framework for parallel data mining,
implemented by using MPI over a 64-node Linux cluster, achieving up to
37.8X speedup.

10.1.3 Accelerators

Hardware accelerators allow a single node to achieve orders of magnitude im-
provements in performance and energy efficiency. General-purpose graphics
processing units (GPUs) leverage high parallelism, but GPUs’ single instruc-
tion multiple data (SIMD), lockstep organization means that the parallel tasks
must generally be similar. Hryniów [14] presented a parallel GSP implementa-
tion on GPU. However this work did not accelerate sequential pattern mining
but relaxed the problem to an itemset mining. To the best of our knowledge,
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there has been no previous work on hardware acceleration for true SPM. In
particular, SPADE and PrefixSpan have not been implemented on GPU. For
our analysis purpose, we implemented true GSP for SPM on GPU.

10.2 Disjunctive Rule Mining

Nanavati et al. [15] first introduced the concept of disjunctive rules and did
conceptual and algorithmic studies on disjunctive rules of both inclusive OR
and exclusive OR. Sampaio et al. [19] developed a new algorithm to induce
disjunctive rules under certain restrictions to limit the search spaces of the
antecedent and consequent terms. Chiang et al. [7] proposed disjunctive con-
sequent association rules, a conceptual combination of the disjunctive rule and
the sequential pattern, and illustrated the promising commercial applications
of this new mining technique. However, all these existing works focused on
effectiveness more than the efficiency of the implementations.

The Automata Processor shows great potential in boosting the perfor-
mance of massive and complex pattern-searching applications. We show in
this paper that the proposed AP-accelerated solutions for sequential pattern
mining and disjunctive rule mining have great performance advantages over
the CPU and other parallel and hardware-accelerated implementations.

11 Conclusions and the Future Work

We present a flexible hardware-accelerated framework for hierarchical pattern
mining problems. Under this framework, sequential pattern mining (SPM) and
disjunctive rule mining (DRM) are accelerated on the new Automata Processor
(AP), which provides native hardware implementation of non-deterministic
finite automata. Two automaton design strategies, linear design and reduction
design, are proposed and tested for SPM and DRM respectively, and have
shown to effectively leverage highly-parallel automata hardware such as the
AP.

Our CPU-AP solution for SPM adopts the Generalized Sequential Pattern
(GSP) algorithm from the Apriori family, based on the downward-closure
property of frequent sequential patterns. We derive a compact automaton de-
sign for matching and counting frequent sequences. The linear design strategy
designs automata for SPM by flatting hierarchical patterns of sequences into
plain strings with delimiters and place-holders. A multiple-entry NFA strat-
egy is proposed to accommodate variable-structured sequences. This allows a
single, compact template to match any candidate sequence of a given length,
so this template can be replicated to make full use of the capacity and massive
parallelism of the AP. We compare GSP across different hardware platforms.
Up to 430X, 90X, and 29X speedups are achieved by the AP-accelerated GSP
on six real-world datasets, when compared with the single-threaded CPU,
multicore CPU, and GPU GSP implementations. The AP-accelerated SPM
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also outperforms PrefixSpan and SPADE on multicore CPU by up to 300X
and 30X. By parallelizing candidate generation, these speedups are further im-
proved to 452X and 49X. Even more performance improvement can be achieved
with hardware support to minimize symbol replacement latency. Our AP so-
lution shows good scaling properties for larger datasets, while the alternatives
scale poorly.

To accelerate DRM by using the AP, we present an automaton design
for matching and counting disjunctive rules efficiently. This automaton design
follows the reduction design strategy and utilizes the on-chip Boolean (AND)
gates to implement the reduction operations among d-rules, and the bit-wise
parallelism feature of STEs to deal with the OR operations among items in one
d-item. The experiments show up to 614X speedups of the proposed CPU-AP
DRM solution over sequential CPU algorithm on two real-world datasets. The
experiments also demonstrate significant increase on the CPU matching-and-
counting time when increasing d-rule size or the number of alternative items.
In contrast, the d-rule recognition time on the AP is two orders of magni-
tudes faster than the CPU version and keeps invariant despite the increasing
complexity of d-rules.

A field-programmable gate array (FPGA) is a good competitor to the
AP architecture in symbolic data processing, because it is another reconfig-
urable architecture. A performance comparison between the AP and FPGA
for pattern-mining algorithms is an interesting direction for future work.
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