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ABSTRACT
The technique of deterministic record and replay aims at
faithfully reenacting an earlier program execution. For con-
current programs, it is one of the most important techniques
for program understanding and debugging. The state of
the art deterministic replay techniques face challenging ef-
ficiency problems in supporting multi-processor executions
due to the unoptimized treatment of shared memory ac-
cesses. We propose LEAP: a deterministic record and re-
play technique that uses a new type of local order w.r.t.
the shared memory locations and concurrent threads. Com-
pared to the related work, our technique records much less
information without losing the replay determinism. The cor-
rectness of our technique is underpinned by formal models
and a replay theorem that we have developed in this work.
Through our evaluation using both benchmarks and real
world applications, we show that LEAP is more than 10x
faster than conventional global-order based approaches and,
in most cases, 2x to 10x faster than other local-order based
approaches. Our recording overhead on the two large open
source multi-threaded applications Tomcat and Derby is less
than 10%. Moreover, as the evidence of the deterministic
replay, LEAP is able to deterministically reproduce 7 out of
8 real bugs in Tomcat and Derby, 13 out of 16 benchmark
bugs in IBM ConTest benchmark suite, and 100% of the
randomly injected concurrency bugs.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids; Tracing; Diagnostics

General Terms
Algorithms, Performance, Reliability

1. INTRODUCTION
As concurrency becomes the major programming model

of the performance improvement of software in the multi-
core era, it is also the culprit of many so-called Heisenbugs,
such as data races, deadlocks, and atomicity violations, that
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are easy to hatch but difficult to detect and to fix. One
of the most effective ways for combating these bugs is the
technique of record and replay [5, 14, 10, 25, 24, 1, 23, 7,
16, 12, 17, 19, 27]. The record and replay technique aims
at fully reenacting the problematic execution of concurrent
programs, thus giving the programmers both the context
and the history information to dramatically expedite the
process of bug fix.

A crucial design factor of record and replay solutions is
the degree of recording fidelity, i.e., the amount of data to
be recorded, for the sufficient reproduction of problematic
program executions. Simply speaking, the degree of record-
ing fidelity is proportional to the degree of faithfulness in
replay, unfortunately, also to the runtime overhead of us-
ing the technique. This characteristic is less problematic for
the hardware-based record and replay solutions [30, 20, 16,
12, 17], in which special chips share the cost of the record-
ing computation. For the software-only solutions [19, 27]
on uni-processors, the replay of concurrent programs can be
achieved deterministically with low overhead by capturing
the thread scheduling decisions. However, for software-only
solutions on multi-processors, making the best trade-off be-
tween how much to record and how faithful to replay is still
a very challenging problem, drawing intense research atten-
tions [10, 25, 5, 14, 24, 1, 23].

Our research is also concerned with the software-only record
and replay solutions. Our general observation is that the
state of the art does not achieve the recording efficiency and
the replay determinism1 at the same time. Conventional de-
terministic multi-processor replay techniques usually incur a
significant runtime overhead of 10x to 100x [14, 5, 7, 6], mak-
ing them unattractive for production use or even for testing
purposes. For instance, Dejavu [5] is a global clock based ap-
proach that is capable of deterministically replaying concur-
rent systems on multi-processors by assigning a global order
to all “critical events”, including both the synchronization
points and the shared memory accesses. As indicated by
the authors, the enforcement of the global order on variable
accesses across multiple threads incurs a large runtime over-
head on multi-processors. The research of lightweight record
and replay techniques [10, 25, 24, 1, 23] has successfully low-
ered the recording overhead, however, at the cost of sacri-
ficing the determinism in reproducing buggy runs. JaRec
[10] and RecPlay [25] abolish the idea of global ordering and

1We define replay determinism as the faithful reenactment
of all program state transitions experienced by a previous
execution. A more complete and formal model is presented
in Section 3.
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use Lamport clock [13] to maintain partial thread access or-
ders w.r.t. only the monitor entry and exit events, thus,
making the recording process lightweight. However, with-
out tracking the shared memory accesses, their approaches
cannot deterministically reproduce problematic runs for the
fact that a large majority of shared memory accesses are not
synchronized, either due to programming errors or because
they are harmless [21].

As also pointed out in [26], to deterministically replay
a concurrent system on multi-processors, it is necessary to
record the thread access orders of the shared memory loca-
tions, a method commonly believed to be too expensive to
be practical [10, 25, 24, 1, 23]. In this paper, we demonstrate
that it is possible to achieve efficiency in this approach by
observing that, given the same program input, it is sufficient
to deterministically replay the program execution by record-
ing partial thread access information local to the individual
shared variables. Based on this observation, we have de-
signed and implemented LEAP, a replay tool that addresses
both the recording efficiency and the replay determinism.
The replay determinism is underpinned by a semantic model
and formal theorems. To achieve efficiency, we use a field-
based approach to statically identify shared variables, thus,
avoiding the cost of runtime identification. In addition, we
make extensive use of static analysis to provide a close ap-
proximation of the necessary program locations that need to
be monitored and, thus, to prune away a large percentage
of otherwise redundant recording operations.

The idea of the local-order based recording can be rooted
back to InstantReplay [14], which enables the deterministic
replay by recording the access history of all the shared ob-
jects w.r.t. a particular thread. This technique does not suit
our design objectives of being both deterministic and effi-
cient. First, InstantReplay requires the unique identification
of shared objects dynamically, a task hard to be efficiently
and correctly implemented in practice. Second, InstantRe-
play uses a complex computation model based on the CREW
protocol, making the recording process very costly. Third,
there are important soundness issues with the local-order
based approaches that must be formally proved. Another
local-order based approach is the use of Lamport clock that
tracks the partial order of critical events that each thread
sees [10, 25]. Our technique tracks the order of thread ac-
cesses that each shared variable sees, which is operationally
simpler than the use of Lamport clock.

We evaluate the runtime performance of LEAP by com-
paring to the related techniques including the use of global
clock, InstantReplay, and Lamport clock. Our micro-benchmark
shows that LEAP is more than 10x faster than the global
clock based approach, more than 5x faster than InstantRe-
play, and at least 2x faster than the use of Lamport clock.
On real world large open source multi-threaded applications
such as Tomcat and Derby, LEAP is 5x to 10x faster than the
related approaches, measured by third-party benchmarks.
The average runtime overhead of LEAP is less than 10% on
Tomcat and Derby. Moreover, as the evidence of the replay
correctness, LEAP is able to deterministically reproduce 7
out of 8 real concurrency bugs in Tomcat and Derby, 13 out
of 16 benchmark bugs in IBM ConTest benchmark suite [8],
and 100% of the randomly injected concurrency bugs.

In summary, this paper makes the following contributions:
1. We present a new local-order based deterministic and

efficient record and replay technique, LEAP. We provide a

Figure 1: Example code with races
Thread t1 {
1: x = 1;

Thread t2 {
1:    x = 1;
2:    y = 1;
3: if(x<0)

5:    y = 0;
6:    if(y==1)

3:    if(x<0)
4:        ERROR;
}

7:        x = -1;
}

}

Execution schedule: 1,5,2,6,7,3,4

x.vec: t1�t2�t1

2 1 2
Access vectors:

y.vec:�t2�t1�t2

formal model of the concurrent program execution and use
it to prove the soundness of our technique.

2. We describe the implementation of LEAP that uses
static analysis and bytecode instrumentation to transpar-
ently provide the capability of the deterministic replay for
Java programs without any user intervention.

3. We evaluate LEAP by first quantifying its differences
compared to the state of the art recording techniques, in-
cluding global clock, InstantReplay and Lamport clock. We
then conduct thorough experiments to evaluate the correct-
ness of LEAP by reproducing real and randomly injected
bugs, using popular and computation-intensive concurrent
applications.

The rest of the paper is organized as follows: Section 2
presents the technical details of LEAP; Section 3 presents
the semantic model and proofs; Section 4 describes the im-
plementation of LEAP; Section 5 evaluates LEAP; Section 6
reviews related work and Section 7 summarizes this paper.

2. LEAP: LOCAL-ORDER BASED DETER-
MINISTIC REPLAY

LEAP provides a general technique for the determinis-
tic replay of concurrent programs on multi-processors. The
main idea of LEAP is that each shared variable tracks the
order of thread accesses it sees during execution. In this
section, we present the core techniques of LEAP.

2.1 LEAP overview
We first use a simple example to show the main technique

of LEAP and draw its differences as compared to the con-
ventional global-order based approach to the deterministic
replay. In Figure 1, we show a race condition that triggers
an ERROR at line 4 following the interleaved execution or-
der <1,5,2,6,7,3,4>. The global-order based approaches
record this schedule and use it to re-execute the program
at the cost of 7 global synchronization operations. Our ob-
servation is that thread accesses to different shared vari-
ables need not to be tracked together. Instead of enforcing
a global order, we claim that it is sufficient to record the
thread access order that each shared variable sees. In our
example, instead of the global order vector, we use two ac-
cess vectors (x.vec and y.vec) for the shared variables x
and y and record <t1,t2,t1> and <t2,t1,t2> respectively.
We require zero global synchronization operations and two
groups of local synchronization operations executed in par-
allel. During replay, we associate x and y with conditional
variables to enforce the access order of threads be identical
to what is recorded in their respective access vectors.

Although our technique can be easily illustrated, to ensure
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determinism and efficiency, there are many tough challenges
that we must tackle:

1. Static shared variable localization. How to effectively
locate shared variables statically? What will happen if we
miss some shared variables, or some local variables are mis-
takenly recognized to be shared?

2. Consistent shared variable and thread identification across
runs. How to match the identities of shared variables and of
threads between the recording run and the replay run? For
example, the deterministic replay would fail if the shared
variable x at record is incorrectly recognized as y at replay,
or the thread t1 is mistakenly recognized as t2.

3. Non-unique global order. Keen readers may point out
that, by only recording the thread access orders each vari-
able sees, LEAP will permit a global thread schedule that is
different from the recording run. For instance, in our exam-
ple, LEAP also permits the global order <5,1,2,6,7,3,4>.
Will this affect the faithfulness of the replay?

In the rest of the section, we focus on discussing the first
two issues. The soundness of our approach associated with
the third issue is fundamental to our technique. In Section 3,
we provide a formal semantic model and proofs to show this
phenomenon does not affect the faithfulness of the replay.

2.2 Locating shared variable accesses
Precisely locating shared variables is generally undecid-

able [4]. We therefore compute a complete over-approxi-
mation using a static escape analysis in the Soot2 framework
called ThreadLocalObjectAnalysis [11]. ThreadLocalObject-
Analysis provides on demand answers to whether a vari-
able can be accessed by multiple threads simultaneously or
not. However, there are a few important issues with this
analysis. First, static analysis is inherently conservative, as
local variables might be reported as shared. We show in
Section 3 (Corollary 1) that this type of conservativeness
does not affect the correctness of the deterministic replay.
Second, ThreadLocalObjectAnalysis does not distinguish be-
tween read and write accesses. For shared immutable vari-
ables, of which the values never change after initialization,
we do not need to address them for they cannot cause non-
determinism. Third, we discover that static variables are
all conservatively reported as escaped in ThreadLocalObject-
Analysis. Since the static variables might also be accessed
only by one thread, we wish them to be analyzed in the
same way as the instance variables, in order to obtain a
more precise result. Thus, we make two enhancements to the
ThreadLocalObjectAnalysis: 1. we further refine the analy-
sis results of ThreadLocalObjectAnalysis so that we do not
record accesses to shared immutable variables; 2. we modify
ThreadLocalObjectAnalysis to treat static variables in the
same way as instance variables.

2.3 Field-based shared variable identification
For Java programs, since the standard JVMs do not sup-

port the consistent object identification across runs, we can-
not use the default object hash-code. We use a static field-
based shared variable identification scheme, applied to the
following three categories of variables, which are collectively
referred to as the shared program elements (SPE): 1. vari-
ables that serve as monitors; 2. class variables; 3. thread
escaped instance variables. These SPEs include both Java

2http://www.sable.mcgill.ca/soot

Figure 2: The instrumentation of SPE accesses

class Account
{

SPE name index
{

int balance1;                                                    
int balance2;

balance1 Account.balance1 1

balance2 Account balance2 2int balance2;

B l 1
…

balance2 Account.balance2 2

getBalance1getBalance1
{

tmp = balance1;

getBalance1
{

thread_id = getThreadId();tmp balance1;
return tmp;

}

_ g ()
get_lock(1);
accessSPE(thread_id, 1);

b l 1
setBalance2
{

}
tmp = balance1;
release_lock(1);
return tmp;{

…
balance2 = value;                                                    

return tmp;
}

}
}

monitors and shared field variables that may cause nondeter-
minism. SPEs are uniquely named as follows: for category
1, it is the name of the declaring type of the object variable;
for category 2 and 3, it is the variable name, combined with
the name of the class, in which the variable is declared.

After obtaining all the SPEs in the program, LEAP as-
signs offline to each SPE a numerical index as its runtime
identifier. For example, in Figure 2, suppose the two field
variable balance1 and balance2 of the Account class are
identified as shared, they are mapped to the numerical IDs
1 and 2.

The static field-based shared variable identification re-
mains consistent across runs and does not incur runtime
overhead. Moreover, compared to the object level identifi-
cation approaches [14], this approach is more fine-grained
as different fields of the same object are mapped to differ-
ent indices. Consequently, accesses to different fields of the
same object do not need to be serialized at the runtime.

There are a few issues with our field-based shared vari-
able identification. First, our approach does not statically
distinguish between different instances of the same type. As
a result, accesses to the same shared field variable of dif-
ferent instances of the same type would be serialized and
recorded into the same access vector. For this concern, we
formally prove in Section 3 (Corollary 2) that the deter-
ministic replay is also guaranteed, if the thread accesses to
different shared variables are recorded globally into a single
access vector. Second, we cannot uniquely identify scalar
variables that are alias to shared array variables. To deal
with this issue, we perform an alias analysis for all of the
scalar array variables in the program and represent all the
aliases with the same SPE, ignoring the indexing operations.
This treatment guarantees that the nondeterminism caused
by array aliases can be correctly tracked, however, at the
cost of reducing the degree of concurrency. Fortunately, in
our experiment, we find very few such cases in large Java
multi-threaded applications. A good object-oriented pro-
gram rarely manipulates shared array data directly, so they
are rarely escaped.

2.4 Unique thread identification
Since the thread identity is the only information recorded

into the access vectors, we must make sure that a thread at
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the recording phase is correctly recognized during replay. A
naive way is to keep a mapping between the thread name and
the thread ID during recording and use the same mapping
for replay. However, different parent threads can race with
each other on creating their child threads. Therefore, the
thread ID assignment is not fixed across runs.

To address this problem, LEAP introduces additional syn-
chronization operations at the thread creation time to ensure
the same thread creation order across the recording run and
the replay run. More specifically, LEAP maintains a list that
records the IDs of the parent threads in the global order of
their thread creation operations. The list is used to direct
the thread creation order at replay.

2.5 Handling early replay termination
Our local-order based approach permits different global

schedules for threads that do not affect each other’s pro-
gram states. One caveat of this approach is that it gives
rise to the possibility of early termination: a program crash
action, compared to the original one, might be performed
“earlier” in the replay execution, thus, making the replayed
run not fully identical to the recording run in terms of its
behavior. To faithfully replay all the thread execution ac-
tions, we ensure that every thread in the replay execution
performs the same number of SPE accesses as it does in the
recording execution. Consequently, we guarantee that the
replay execution does not terminate until all the recorded
actions in the original execution are performed, thus mak-
ing the final state of the replayed execution the same as that
of the original one.

3. A THEOREM OF LOCAL ORDERING
In this section we formally prove the soundness of our

local-order based approach for the deterministic replay of
shared memory races. We also use two corollaries to show
the soundness the field-based shared variable identification
approach and the soundness of using an unsound but com-
plete static escape analysis for the deterministic replay.

3.1 Modeling concurrent program execution
To provide a basis for our proof, we first define the exe-

cution semantics of concurrent programs in a style similar
to [9]. We consider a program comprised of a set of con-
currently executing threads T = {t1, t2, ...}, communicating
through a global store σ. The global store consists of a set
of variables S = {s1, s2, ...} that are shared among threads,
and we use σ[s] to denote the value of the shared variable
s on the global store. Each thread has also its own local
store π, consisting of the local variables and the program
counter to the thread. Each thread executes by performing
a sequence of actions on the global store and its own local
store. Each action α is a single indivisible access3 on a sin-
gle variable. We use Γ(α) to denote the owner thread of
action α and var(α) the variable accessed by α. If var(α)
is a shared variable, we call α a global action, otherwise it is
a local action. The program state is defined as Σ = (σ,Π),
where σ is the global store and Π is a mapping from thread
identifiers ti to the local store πi of each thread.

3The access could be a read, a write, a lock acquisition, a
lock release, a message sending or a message receiving [22].
Nevertheless, in our setting, we do not necessarily need to
distinguish between different access types.

The program execution is modeled as a sequence of tran-
sitions defined over the program state Σ. Let αk be the
kth action in the global order of the program execution and
Σk−1 be the program state just before αk is performed (Σ0

is the initial state), the state transition sequence is:

Σ0 α1−−→ Σ1 α2−−→ Σ2 α3−−→ . . .

Given a concurrent system described above, we next for-
mally define the execution semantics of action α. To give a
precise definition, we first introduce some additional nota-
tions similar to [9]:

• σ[s := v] is identical to σ except that it maps the
variable s to the value v.

• Π[ti := πi] is identical to Π except that it maps the
thread identifier ti to πi.

Let the relation σ
α−→ σ′ models the effect of performing

an action α on the global store σ, and π
α−→ π′ models the

effect of performing α on the local store π. The execution
semantics of performing α are defined as:

var(α) /∈ S Γ(α) = ti πi
α−→ π′

i

(σ,Π)
α−→ (σ,Π[ti := π′

i])

var(α) = s ∈ S Γ(α) = ti πi
α−→ π′

i σ[s]
α−→ σ′[s]

(σ,Π)
α−→ (σ[s := σ′[s]],Π[ti := π′

i])

These semantics simply take different kinds of actions into
consideration. The first case means that when a local action
is performed by a thread, only the local store of the thread
is changed to a new state determined by its current state.
The global store and the local stores of other threads remain
the same. The second case means that when a global action
is performed by a thread ti on the shared variable s, only s
and πi are changed to new states. The states of other shared
variables on the global store as well as the local stores of
other threads remain the same. Also, consider the action
sequence local to each thread, since the program counter is
included in the local store, the next action of ti should be
determined by ti’s current local store πi.
The execution semantics defined above conform to a gen-

eral concurrent execution model with deterministic input.
Although dynamic thread creation and dynamic shared vari-
able creation are not explicitly supported by the semantics,
they can be modeled within the semantics in a straightfor-
ward way [9].

3.2 Equivalence of execution schedules
The action sequence 〈αk〉 of a program execution is called

an execution schedule denoted by δ. Suppose there is an ex-
ecution schedule δ of size N that drives the program state to
ΣN , our goal is to have another execution schedule δ′ that is
able to produce the same program state as ΣN . Obviously,
this can be achieved if δ′ = δ holds. However, this is too
strong a condition. We show a relaxed and sufficient condi-
tion based on the access vectors of all the shared variables.
To state precisely, let δs be the sequence of actions w.r.t.
s projected from δ, τs be the sequence of thread identifiers
picked out from δs, and τ be the mapping from s to τs for
∀s ∈ S (τ is the access vectors of all the shared variables),
we prove:

210



Theorem 1. Under the execution semantics defined in
Section 3.1, two execution schedules δ and δ′ of the same
concurrent program have the same final state ΣN = Σ′N if
Σ0 = Σ′0 ∧ τ = τ ′.

The core of the proof is to prove the following lemma:

Lemma 1. For any action α′k (k ≤ N) in the replay
execution δ′, suppose it is the pth action on a shared variable
s, then α′k is equal to the pth action on s in the original
execution δ.

For two actions to be equal here, they need to read and
write the same values, not just do the same operation on
the same shared variable. Next, we first define a notion of
“happened-before”, and then we prove Lemma 1 using this
notion.

Consider the “happened-before” order of the original exe-
cution. The “happened-before” relation is defined as follows:

(a) if action αi immediately preceded action αj in the same
thread, then αi happened-before αj ;

(b) if action αi and action αj by different threads are con-
secutive actions on a shared variable s, without any in-
tervening actions on s, then αi happened-before αj ;

(c) “happened-before” is reflexive and transitive.

More accurately, rules (a) and (b) define “happened-immedi-
ately-before” and “happened-before” is the reflexive transi-
tive closure of “happened-immediately-before”.

Proof. Let’s say the “happened-before” tree of an ac-
tion is the tree of all the actions that “happened-before” it,
we next prove Lemma 1 by induction on the depth of the
“happened-before” tree.

Base case: Consider an action on the shared variable
s, with a “happened-before” tree of depth 1. This means
that the current action does not depend on anything that
happened-before it involving shared variables. Because the
first action on a shared variable is performed by the same
thread in both the original and the replay execution, and be-
cause that thread is deterministic, the replay action should
be identical to the one in the original execution.

Induction: Now assuming that Lemma 1 holds for all
actions with happened-before depth ≤ n, we prove it for n+
1. Consider an action αi on a shared variable s, where αi has
a tree of happened-before depth n+1. Let’s say αi is the p

th

action on s. The (p-1)th action on s has a lower happened-
before depth so it is an equal action in both the original and
the replay execution. Additionally, every action αj that
“happened-immediately-before” αi has a happened-before
tree of depth n, therefore it is equal to a similarly numbered
action in the original execution (i.e., if αj is the kth action
on a shared variable v, then αj is equal to the kth action
on v in the original execution). Now action αi only depends
on all the αj actions. So, since our approach enforces that
the pth action on s is performed by the same thread in both
executions, and since the thread is deterministic and every
value that αi can depend on has to be equal to each other, it
follows that action αi is also equal in the original and replay
executions.

Lemma 1 is proved. If we apply Lemma 1 to the last
action α′N in the replay execution, we can get Σ′N = ΣN .
Thus, Theorem 1 is proved.

With Theorem 1, we have proved the soundness of local-
order based approaches for the deterministic replay that is
able to reach the same program state as the original execu-
tion, by only recording the access vectors for all the shared
variables.

While τ = τ ′ is a rather relaxed condition, we can surely
add more information that also guarantees the determinis-
tic replay. For example, if the local variable accesses are
recorded, the deterministic replay is still guaranteed as long
as we do not miss any shared variable accesses. Following
we derive two corollaries:

Corollary 1. The deterministic replay holds as long as
τ = τ ′, regardless of whether accesses to local variables are
recorded or not.

Corollary 2. Recording different shared variable accesses
into a single access vector does not affect the correctness of
the deterministic replay.

As noted in Section 2.2, the static escape analysis is con-
servative such that local variables might be mistakenly cat-
egorized as shared. Corollary 1 ensures that this conserva-
tiveness does not affect the correctness of the determinis-
tic replay as long as all the shared variables are correctly
identified. Corollary 2 is easy to understand as the thread
access orders on different shared variables can be considered
as a global order on a single variable abstracted from these
shared variables. To be more clear, assuming all thread ac-
cesses are recorded into a global access vector, it is a global
order of the execution schedule and the determinism must
hold. As noted in Section 2.3, Corollary 2 ensures the sound-
ness of our field-based shared variable identification.

4. LEAP IMPLEMENTATION
We have implemented LEAP using the Soot2 framework.

Figure 3 shows the overview of the LEAP infrastructure, con-
sisting of the transformer, the recorder, and the replayer.
The transformer takes the bytecode of an arbitrary Java
program and produces two versions: the record version and
the replay version. Started by a record driver, LEAP collects
the access vector for each SPE during the execution of the
record version. When the recording stops, LEAP saves both
the access vectors and the thread creation order information

Figure 3: The overview of LEAP infrastructure
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and generates a replay driver. To replay, the LEAP replayer
uses the generated replay driver as the entry point to run the
replay version of the program, together with recorded infor-
mation. The replayer takes control of the thread scheduling
to enforce the correct execution order of the threads w.r.t.
the SPEs. We now introduce each of the components in
turn.

4.1 The LEAP transformer
The LEAP transformer performs the instrumentation on

Jimple, an intermediate representation of Java bytecode in
the three-address form. For the record version, after locating
all the SPEs in the program, the transformer visits each
Jimple statement and performs the following tasks:

Instrumenting SPE accesses If the SPE is not a Java
monitor object, we insert a LEAP monitoring API invoca-
tion before the Jimple statement to collect both the thread
ID and the numeric SPE ID. Both the API call and the SPE
access are wrapped by a lock specific to the accessed SPE
to ensure we collect the right thread accessing order seen by
the SPE. If the SPE is a Java monitor object, we insert the
monitoring API call after the monitorentry and before the
monitorexit instructions. The API call is also inserted be-
fore notify/notifyAll/thread start operations and after
wait/thread join operations. Figure 2 shows a source-code
equivalent view of the instrumentation on the read/write ac-
cesses to the shared field variables. The box on the left shows
the original method getBalance1, inside of which the shared
variable balance1 is read. The box on the right shows the
transformed version of getBalance1. For multiple shared
variable accesses in a method, the thread ID needs only to
be obtained once. Also, to remove the unnecessary record-
ing overhead, we do not need to instrument the SPEs that
are always protected by the same monitor.

Instrumenting thread initialization To capture the
thread identity information, as described in Section 2.4,
the transformer inserts the instrumentation code inside the
Thread constructor to synchronize and to collect the thread
creation order.

Instrumenting recording end points To enable the
deterministic replay, we insert the recording end points to
save the recorded runtime information and to generate the
replay driver. Currently, LEAP supports three types of record-
ing end points. First, we add a ShutDownHook to the JVM
Runtime in the record driver as a recording end point. When
the program ends, the ShutDownHook will be invoked to
perform the saving operations. Second, we insert a try-
catch block into the main thread and the run method of
each Java Runnable class. We then add a method invo-
cation in the catch block to capture the uncaught runtime
exceptions as the recording end points. Third, LEAP also
supports the user specified recording end points by allowing
the annotation-based specification of end points. During the
traversal of the program statements, the transformer will re-
place the annotation with a method invocation, indicating
the end of recording.

To generate the replay version, the transforming process
is largely identical to the record version with a few differ-
ences: 1. since the order of synchronization operations on
each SPE is controlled by the LEAP replayer during replay,
we need to insert the API call before the original synchro-
nization operations in the program, i.e, monitorenter and
wait, to avoid deadlock; 2. the inserted API call is bound

to a different implementation from the one used during the
recording phase; 3. since we need to ensure that the replay
execution does not terminate until all recorded actions in
the original execution have been executed (See Section 2.5),
we insert extra API invocations after each SPE access so
that we can check whether a thread has performed all its
recorded actions in the original execution or not.

4.2 The LEAP recorder
When executing the record version of the target program,

the LEAP monitoring API will be invoked on each critical
event to record the ID of the executing thread into the ac-
cess vector of the accessed SPE. To reduce the memory
requirement, we use a compact representation of the ac-
cess vectors by replacing consecutive and identical thread
IDs with a single thread ID and a corresponding counter.
For example, suppose the access vector of a SPE contains
<t1,t1,t2,t2,t2>, it is replaced by <t1,t2> and a corre-
sponding counter <2,3>. This compact representation pro-
duces much smaller log size compared to the related ap-
proaches in our experiment.

Once a new thread is created, we add the parent thread ID
to the thread creation order list. Once a program end point
is detected, the LEAP recorder will then save the recorded
data, i.e, the recorded access vectors, and the thread cre-
ation order list, and generate the replay driver.

4.3 The LEAP replayer
The LEAP replayer controls the scheduling of threads to

enforce a deterministic replay using both the access vectors
and the thread identity information. To enable the user level
thread scheduling, the replayer associates each thread in re-
play with a semaphore maintained in a global data struc-
ture, so that each thread can be suspended and resumed on
demand.

To replay, the replay driver first loads both the saved ac-
cess vectors and the thread creation order list and starts
executing the replay version of the program. Before a new
thread is created, the ID of the parent thread is compared
to the ID at the head of the thread creation order list. If
they are the same, the new thread is allowed to be created
and the head of the list is removed. In this way, the iden-
tification of each thread is guaranteed to be the same as
that of the recording phase. Before each SPE access, the
threads use their semaphores to coordinate with each other
in order to obey the access order defined in the access vec-
tor of the SPE. Also, to make sure that the replay execution
does not terminate “early”, the thread also counts the total
number of SPE accesses it has performed so far after each
SPE access. The thread suspends itself if it finds that it has
already executed all its SPE accesses in the original execu-
tion, as recorded in the access vector, until all threads have
finished their recorded actions. Since the threads accessing
different SPEs can execute in parallel, the replaying process
is also faster than that of a global order scheduler, which
can only execute one thread each time.

5. EVALUATION

5.1 Evaluation methodology
We assess the quality of LEAP by quantifying both its

recording overhead and the correctness of the determinis-
tic replay. To properly compare our technique to the state
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of the art, we have also implemented the following tech-
niques: the Dejavu approach based on the global clock [5],
the technique presented by InstantReplay [14], and the JaRec
approach based on the Lamport clock [13]. Because none of
these tools are publicly available, we faithfully implemented
them according to their representative publications. Since
JaRec is not a deterministic replay technique, we extended
its capability to tracking shared memory races, in order to
make it comparable to our technique. Our implementations
are publicly available4.
For the evaluation, we first design a micro-benchmark

to conduct controlled experiments for quantifying various
runtime characteristics of the evaluated techniques. We
then use real complex Java server programs and third-party
benchmarks to assess the recording overhead of LEAP in
comparison to the related approaches. We use the bug re-
producibility as a way to verify if our technique can faith-
fully and deterministically reproduce problematic concur-
rent runs. All experiments are conducted on two 8-core
3.00GHz Intel Xeon machines with 16GB memory and Linux
version 2.6.22. We now present these experiments in detail.

Figure 4: The runtime characteristic of LEAP and
other techniques on our microbenchmark with the
number of SPE ranges from 1 to 500. The mi-
crobenchmark starts 10 threads running on 8 pro-
cessors.
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5.1.1 Micro-benchmarking
We have designed a micro-benchmark to quantify the run-

time characteristics of LEAP and the related record and
replay techniques. The benchmark consists of concurrent
threads that randomly update shared variables in a loop.
For each experiment, we can control the number of threads
and shared variables. In our experiments, we set the number
of threads ranging from 1 to 100, and the number of shared
variables ranging from 1 to 1000, we then measure the time
needed for all the threads to finish a fixed total number of
updating operations under different settings.

Figure 4 and 5 show the runtime characteristics of LEAP
and the related techniques on our micro-benchmark. In the
figures, Base refers to the native execution. Global, Lam-

4http://www.cse.ust.hk/prism/leap

Figure 5: The runtime characteristic of LEAP and
other techniques on our microbenchmark with the
number of threads ranges from 1 to 80 running on
8 processors. The number of SPE is set to 1000.
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port and Instant refer to the recorded execution using global
clock, Lamport clock and InstantReplay respectively. Figure
4 shows that the performance of the LEAP instrumented ver-
sion is close to the base version. By fixing the number of
threads to 10, as the number of SPE increases from 10 to
500, LEAP is more than 10x faster than global clock, more
than 5x faster than InstantReplay, and at least 2x faster than
Lamport clock. Global clock is the slowest among the four
techniques. The main reason is that the use of global clock
requires a global synchronization on every shared variable
access, which significantly affects the degree of concurrency.
Figure 5 shows a similar performance trend as the number
of threads increases from 10 to 80 and the number of SPEs
is fixed to 1000.

5.1.2 Benchmarking with third-party systems
To perform the unbiased evaluation, we first use LEAP

on two widely used complex server programs, Derby and
Tomcat, with the PolePosition5 database benchmark and the
SPECWeb-20056 web workload benchmark. Each bench-
mark starts with 10 threads and we measure the time for fin-
ishing a total number of 10000 operations. We also selected
a suite of third-party benchmarks, among which Avrora and
Lusearch are from the dacapo-9.12-bach benchmark suite7,
and MolDyn, MonteCarlo and RayTracer are from the Java
Grande multi-thread benchmark suite.

Table 1 shows some of the relevant static attributes of
the benchmarked programs as well as the associated run-
time overhead of the evaluated record and replay techniques.
We report the total number of field variable accesses in the
program (Total), the total number instrumented SPE ac-
cesses (SPE), the number of SPEs (SPESize), the log size
(KB/sec) of the related approaches (Log), the log size of
LEAP (LogCmp), and the runtime overhead (LEAP, Lam-
port, Instant and Global). Overall, the percentage of SPE

5http://polepos.sourceforge.net
6http://www.spec.org/web2005
7http://dacapobench.org
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Table 1: The runtime overhead of LEAP and the state-of-the-art techniques
Application LOC Total SPE SPESize LEAP Lamport Instant Global

Avrora 93K 16003 1725(11%) 113 626% 1697% 1821% 1036%
Lusearch 69K 11497 1140(9.9%) 75 74% 308% 379% 227%
Derby 1.51M 48356 1433(3.0%) 264 9.9% 68% 113% 52%
Tomcat 535K 23046 654(2.6%) 163 7.3% 39% 44% 34%
MolDyn 864 821 634(77%) 66 64% 2776% 3567% 9960%
MonteCarlo 3128 427 104(24%) 18 7.5% 7.9% 8.6% 9.1%
RayTracer 1431 442 223(50%) 19 18% 39% 43% 94%

accesses over the total number of field variable accesses varies
from less than 3% on Derby and Tomcat to around 10% on
Avrora and Lusearch. As MolDyn (77%), MonteCarlo (24%)
and RayTracer (50%) are relatively small applications ded-
icated for multi-threaded benchmarking, the percentage of
their SPE accesses is large.

Log size By using our compact representation of the ac-
cess vectors, the log size of LEAP is much smaller than the
related approaches, from 3x in MolDyn to as large as 164x
in Derby. We recognize that the log size in LEAP is still
considerable ranging from 51 to 37760 KB/sec. With the
increasing disk capacity and disk write performance, as also
observed by other researchers [24], moderate log size does
not pose serious problem. For long running programs, we
can reset logs through the use of checkpoints.

Recording overhead LEAP is the fastest on all the eval-
uated applications. It is even more than 150x faster than
global clock on MolDyn. For Derby and Tomcat, LEAP is
5x to 10x faster than all the related approaches. The sheer
runtime overhead of LEAP on Derby and Tomcat is less than
10% (9.9% and 7.3% respectively). LEAP’s overhead is large
on Avrora (626%), the reason is that there are several SPEs
in Avrora that are frequently accessed in hot loops.

5.1.3 Concurrency bug reproduction
One of the major motivating forces for the record and re-

play technique is to help reproducing so-called Heisenbugs.
We believe that the ability of deterministically reproduc-
ing a concurrency-related bug is a strong indicator of the
replay correctness, because it requires the program state
to be correctly restored for the bug to be triggered. To
compare the bug reproducibility, we have also implemented
JaRec for the comparison. We first compare LEAP and JaRec
for their capabilities of reproducing real-world concurrency
bugs happened in complex server systems as well as a num-
ber of benchmark bugs widely used in concurrency testing.
To proper quantify the bug reproducibility, we have also
designed a bug injection technique that injects atomic set
violations into our micro-benchmark. We then assess how
many of the violations can be deterministically replayed by
LEAP and JaRec.

Random bug injection
Our bug injection technique is based on the problematic
thread interleaving patterns presented in [29]. We intro-
duce 10 dummy shared variables into the program and di-
vide them into 5 groups, each group representing an atomic
set as defined in [29]. During the recording phase, on each
critical event, the thread also randomly performs a write or
read access on one of the introduced variables. We use the
same random seed for each thread across record and replay.

After each random access, if one of the problematic thread
interleaving patterns occurs, the program stops and the re-
play data are exported. Given the same program input, a
deterministic replay technique should be able to recreate the
occurred bug pattern.

To compare the concurrency bug reproducibility between
LEAP and JaRec, we use 100 different random seeds to inject
100 concurrency bugs into our micro-benchmark. For each
run, we initialize 10 threads in the program. LEAP is able to
deterministically reproduce 100% of these bugs, while JaRec
cannot deterministically reproduce any of them. The reason
is that JaRec does not record shared memory races, while
all these bug patterns are generated on shared memory ac-
cesses.

Table 2: Summary of the evaluated real bugs
Bug Id Version LOC Exception Type

Derby230 Derby-10.1 1.34M DuplicateDescriptor

Derby1573 Derby-10.2 1.52M NullPointerException

Derby2861 Derby-10.3 1.51M NullPointerException

Derby3260 Derby-10.2 1.52M SQLException

Tomcat728 Tomcat-3.2 150K NullPointerException

Tomcat4036 Tomcat-3.3 184K NumberFormatException

Tomcat27315 Tomcat-4.1 361K ConcurrentModification

Tomcat37458 Tomcat-5.5 535K NullPointerException

Table 3: Summary of the evaluated benchmark bugs
Bug Name LOC Bug Description

BubbleSort 362 Not-atomic, Orphaned-Thread
AllocationVector 286 Weak-reality, two stage access
AirlineTickets 95 Not-atomic interleaving
PingPong 272 Not-atomic
BufferWriter 255 Wrong or no-Lock
RandomNumbers 359 Blocking-Critical-Section
Loader 130 Initialization-Sleep Pattern
Account 155 Wrong or no-Lock
LinkedList 416 Not-atomic
BoundedBuffer 536 Notify instead of notifyAll
MergeSort 375 Not-atomic
Critical 73 Not-atomic
Deadlock 135 Deadlock
DeadlockException 255 Deadlock
FileWriter 311 Not-atomic
Manager 236 Not-atomic

Real and benchmark concurrency bugs
Table 2 and 3 show the description of the real concurrency
bugs and the benchmark bugs used in our experiments. All
the 8 real bugs in Table 2 are extracted from the Derby and
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Tomcat bug repositories8 that were reported by users. The
16 benchmark bugs in Table 3 are from the IBM ConTest
benchmark suite [8], which cover the major types of concur-
rency bugs, including data races, atomicity violation, order
violation, and deadlocks. We also run both JaRec and LEAP
on these buggy programs to compare the bug reproducibility
between them.

For the 8 real world concurrency bugs, LEAP is able to de-
terministically reproduce 7 of them (88%), except the bug
tomcat4036, and JaRec reproduced none of them. For the 16
benchmark bugs, LEAP can reproduce 13 of them (81%), ex-
cept BufferWriter, Loader, and DeadlockException, while
JaRec can only reproduce one of them (Deadlock). The
reason for LEAP to miss tomcat4036 is that the bug is trig-
gered by races of the internal data of the underlying JDK
library java.text.DateFormat, which LEAP does not in-
strument. And because all these real bugs are related to
shared memory races, JaRec are not able to reproduce any
of them. For the three benchmark cases LEAP cannot re-
produce, two of them are related to random numbers and
the other one makes LEAP OutOfMemory because too many
threads (>5000) are involved in loops.

5.2 Discussion
The evaluation results have clearly demonstrated the su-

perior runtime performance of LEAP as well as its much
higher concurrency bug reproducibility, compared to exist-
ing approaches. Through our experiments with real world
large multi-threaded applications, we observed several limi-
tations of LEAP that we plan to address in our future work:

Input nondeterminismAs LEAP only captures the non-
determinism brought by thread inter-leavings, it may not re-
produce executions containing input nondeterminism, e.g.,
programs with nondeterministic I/O. The two benchmark
bugs that LEAP cannot reproduce both contain random num-
ber generators that use the current system time as the ran-
dom seed. Since it is not likely to keep the random num-
bers the same across record and replay without saving them,
LEAP may not reproduce executions that contain such ran-
dom issues. A way to overcome these issues is to save the
program states of some key nondeterministic events, e.g.,
the value of random seeds. We set this as our future work.

JDK library LEAP does not record shared variable ac-
cesses in the underlying JDK library. If an execution con-
tains races of the internal data of these APIs, LEAP might
not be able to reproduce it. The bug tomcat4036 is an ex-
ample of this limitation. In fact, we can also instrument the
underlying Java Runtime, but as the JDK library is used
frequently, it would incur large runtime overhead. An im-
plementation of LEAP on the JVM should relieve this issue
as the JVM environment enables efficiently tracing the in-
ternal data of the JDK library. We also set this as our future
work.

Long running programs LEAP currently has to replay
from the beginning of the program execution. For long run-
ning programs, it might not be convenient to replay the
whole program execution concerning the long replay time
and the large log size. We plan to extend LEAP to use
a lightweight checkpoint scheme that only replays the pro-
gram from the last checkpoint to the recording end point.

8https://issues.apache.org

6. RELATED WORK
As the deterministic replay of concurrent programs is of

such significant importance, there have been enumerable re-
search efforts on this topic. In this section we briefly review
some of the other key software-only related work.

Record/replay PRES [24] and ODR [1] are two recent
projects that use record/replay for the reproduction of con-
currency bugs. PRES proposes a novel technique that uses
a feedback replayer to explore thread interleaving space,
which reduces the recording overhead at the price of more
replay attempts. ODR proposes a new concept, output-
deterministic replay, that focuses on replaying the same pro-
gram output, and uses a similar idea as PRES that depends
on offline inference to help recording less online. SMP-ReVirt
[7] makes use of hardware page protection to detect shared
memory accesses, aiming at replaying multi-processor vir-
tual machines, but its overhead can increase upto 10x on
multi-processors. To avoid the overhead of recording mem-
ory races, RecPlay [25] and Kendo [23] provide deterministic
multi-threading of concurrent programs that perfectly syn-
chronized using locks. Unfortunately, most real world con-
current applications may contain benign or harmful data
races, making these approaches unattractive. Though Rec-
Play and Kendo both use a data race detector during replay
to ensure the deterministic replay up until the first race, they
suffer from the limitation that they cannot replay past the
data race. For instance, while debugging using a replayer,
a programmer might want to understand the after effects of
a benign data race, which is not possible with RecPlay and
Kendo.

Deterministic by default There are also approaches
to the nondeterminism in concurrency by making concur-
rent programs deterministic by default. In this direction,
there have been language design approaches [3, 2] as well
as hardware ones [6, 31]. For example, languages such as
DPJ [3] guarantee deterministic semantics by providing a
type and effect system to perform compile-time type check-
ing. The problem with language level approaches is that
they often require nontrivial programmer annotations or
have a limited class of concurrency semantics. Hardware ap-
proaches such as DMP [6] make inter-thread communication
fully deterministic by imposing a deterministic commit or-
der among processors. PSet [31] eliminates untested thread
inter-leavings by enforcing the runtime to follow a tested
interleaving via processor support. Because hardware ap-
proaches rely on non-standard hardware support, they are
limited to proprietary platforms. Though DMP [6] also pro-
poses a software-only algorithm, its overhead is more than
10x.

Code analysis tools Another line of approaches is to
use code analysis tools [15] or model checkers [18] to try
to eliminate concurrency bugs offline. Code analysis tools
suffer from inaccuracies and false positives. Model checkers
statically explore all thread schedules, which is hard to scale
to large programs. Though CHESS [18] employs a context-
bounded way to reduce the search space, it may miss most of
the concurrency bugs in theory. RaceFuzzer [28] is another
representative technique that given a potential race pair it
controls a race directed random thread scheduler to actively
create real races. As RaceFuzzer has only partial information
of the races, it suffers from the limitation of nondeterminism.
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7. CONCLUSION
We have presented LEAP, a new local-order based ap-

proach that deterministically replays concurrent program
executions on multi-processors with low overhead. Our ba-
sic idea is to capture the thread access history of each shared
variable, and we use theoretic models to guarantee its cor-
rectness. We have implemented LEAP as an automatic pro-
gram transformation tool that provides the deterministic re-
play support to arbitrary Java programs. To evaluate our
technique, we make use of both benchmarks and real world
concurrent applications. We extensively quantified the run-
time overhead of using LEAP as well as the correctness of the
LEAP-based replay through reproducing concurrency bugs.
Our evaluation shows that, compared to the state of the art,
LEAP incurs much lower runtime overhead and has much su-
perior capability of correctly reproducing concurrency bugs.
For real world applications that we evaluated, the overhead
of using LEAP is under 10%, exhibiting the great potential
for the production use. We have also discussed some limi-
tations that we have observed during our experimentation,
and these limitations are the focus of our future work.
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