PHP Arrays

e Arrays in PHP are quite versatile

* See http://php.net/manual/en/language.types.array.php

— We can use them as we use traditional arrays,
indexing on integer values

— We can use them as hashes

* You may know hashing from C52150 associating a
with a value in an arbitrary index of the array

— In either case we access the data via subscripts
* |In the first case the subscript is the integer index
* In the second case the subscript is the key value

— We can even mix the two if we'd like

Lecture 3

PHP Arrays

Creating Arrays

— PHP Arrays can be created in a number of ways
* Explicitly using the array() construct
by

— Since PHP has dynamic typing, you cannot identify a
variable as an array except by assigning an actual
array to it

— If the variable is already set to a string, indexing will
have undesirable results — indexes the string!

— However, we can unset() it and then index it

» We can test a variable to see if it is set (isset()
and if itis an array (is_array()) among other things

e Size will increase dynamically as needed

More on PHP Arrays

e Accessing Arrays —can be done in many ways

— We can use direct access to obtain a desired item

* Good if we are using the array as a hash table or if we
need direct access for some other reason

* We provide the key and retrieve the value

— For sequential access, the foreach loop was
designed to work with arrays
* lterates through the items in two different ways
foreach ($arrayvar as $key => $value)
» Gives both the key and value at each iteration

foreach ($arrayvar as $value)
» Gives just the next value at each iteration

Lecture 3

PHP Arrays

 How can these both be done efficiently?

— PHP arrays are not implemented in the traditional way

e Ex: InJava or C++ the array is a contiguous collection of
memory locations

— PHP arrays more resemble a linked list But wouldn't
this not allow direct access?

— The locations are also hashed
 The "key" in PHP arrays is actually a hash value

— So
— Direct access accesses via the hash value

Key Value Next

Current Sequentia'l
/ Access Functions

Key Value Next
Key-Based Hash
Access Functions Function /

Key Value Next

(Figure 9.3 in Sebesta text)

Lecture 3 5

More on PHP Arrays

e Be careful —iteration via foreach is in the order

the data has been generated, not by index
order

— j.e. it follows the linked list

— Thus, even arrays with identical keys and values can have
different orderings

— |tems accessed in the arrays using foreach are
copies of the data, not references to the data

— So changing the loop control variable in the foreach loop in
PHP does NOT change the data in the original array

— To do this we must change the value using indexing

— A regular for loop can also be used, but due to the
non-sequential requirement for keys, this does not
often give the best results

44

More on PHP Arrays

* The data in the array is not contiguous, so

incrementing a counter for the next access will not
work correctly unless the array index values are
used in the "traditional" way

— We know that there are count(SA) items in SA

 What we do NOT know, is under which indices they are being
stored

— There is no requirement that they have to start at 0 or even be
integers at all

e See ex7.php

More on PHP Arrays

* |n addition to foreach, we there are other
array iterators that we can use

— Ex: Using next to access the array elements

e The next() function gives us the next value in the array
with each call; end of list returns false

— It moves to the next item, then returns it, so we must get the

first item with a separate call (ex: use current())
Scurr = current($al);
while (Scurr):
echo "\$curr is S$curr
\n";
Scurr = next($al) ;
endwhile;

More on PHP Arrays

* Ex: Using each to iterate:

— The each() function returns a pair with each call
* A key field for the current key
A value field for the current value

* It returns the next (key,value) pair, then moves, so the first
item is no longer a special case
while ($curr = each($al)):
Sk = Scurr["key"];
Sv = Scurr["value"];
echo "key is $k and value is $v
\n";
endwhile;

* This function may be preferable to next() if it is possible that
FALSE or an empty string or O could be in the array

— The loop on the previous slide will stop for any of those values

More on PHP Arrays

* Both of these iteration functions operate similar
to the Iterator interface in Java

— |terate through the data in the collection without

requiring us to know how that data is actually
organized

— However, unlike in Java, if the array is changed during

the iteration process, the current iteration is NOT
invalidated

* Since new items are always added at the "end" of the array
(from an iterator’s point of view) adding a new item during
an iteration does not cause any data validity problems

* However, we need to be careful if doing this —can lead to an
infinite iteration

10

Sorting PHP Arrays

 There are various predefined sort functions
in PHP

— sort (rsort for reverse)
 Sorts arrays of numbers numerically
 Sorts arrays of strings alphabetically
* |If mixed, the strings count as O compared to numbers

* Reindexes array so that keys start at 0 and increment
from there

— asort

* Same as sort but retains the original key values
(arsort for reverse)

Sorting PHP Arrays

 PHP uses Quicksort to sort arrays
— This means that PHP sorting is NOT STABLE

— What does it mean for a sort to be STABLE?

* Given equal keys K, and K,, their relative order before and
after the sort will be the same

— Due to data movement during partition, Quicksort is
not stable
* Implications?
* If we want stability, we will have to do it ourselves
— See Web for some solutions

— See ex8.php

Two-dimensional Arrays

* Array values can be any legal PHP type

— This includes the array type, and allows for
arbitrary dimensional arrays

— We may think of them as "arrays of arrays”

— It seems odd but once you know the array syntax
it follows quite naturally
Sa[0] = array(1,2,3,4);
Sa[1] = array(5,6,7,8);
Sa[2] = array(9,10,11,12);

Two-dimensional Arrays

* |In fact Java 2-D arrays are implemented in a
similar way

— Although in Java they must be homogeneous

— We can also use "normal" indexing for 2-D PHP arrays
* Keep in mind that the key values are still arbitrary, so we
need to be careful

* The standard nested i, j loops that work in Java and C++ may
not be appropriate here

— They will only work if we use the arrays in the "normal" way
consistently

* More general access can be done via iterators or recursive
functions — we will see this soon

e See ex9.php

14

Functions and Parameters

* General syntax:

function name (params)

{

// statements
// optional return statement

}
— Parameters are optional

— Note that there is no return type in the header

* If no return statement is used, the function will return
NULL

* |f return is done, type could be anything

— Cannot overload function names
* Dynamic typing does not allow for disambiguation

15

Functions and Parameters

— By default, parameters are passed by value
* Formal parameter is a copy of the actual parameter
e Changes to formal parameter do not affect the actual
parameter
— If we add an ampersand before the formal
parameter, we change it to pass by reference
* Like in C++, but not an option in Java

* Formal parameter is another name for the actual
parameter

e Changes to the formal parameter also change the
actual parameter

16

Value vs. Reference Parameters

e Let's discuss this a bit

— Java has only value parameters

* This means we cannot alter the data stored in the
actual parameter within the function
* However, in many cases the data passed into the

function is itself a reference

— This allows us to change the object that the reference refers
to, but we cannot reassign the reference to a new object

reference h

cannot change Ca.n change

this this
(mutate)

Lecture 3 17

Value vs. Reference Parameters

— Reference parameters allow the data in the object
to be changed

* Assuming the parameter is a reference to an object

— They also allow the reference to be reassigned so

that the actual parameter can reference a
different object

reference
can also be
reassigned

can change

Lecture 3 18

Value vs. Reference Parameters

— Implications:
* In Java we can alter objects, including the contents of

arrays, via parameters

— However, the argument itself (either a primitive value or a
reference) cannot change

— |If we want to reassign a variable within a method what can we
do?
» Use instance variables
» Pass them in via an array (i.e. hack)
* In PHP we CAN reassign a reference with a function if
we want

— Be careful if you choose to do this
» Avoid inadvertent changes to arguments

Functions and Parameters

— Variables within functions by default are local to

the function
e Like method variables in Java or automatic variables in
C++

* We can use the global declaration to state that a
variable used in a function is a global rather than a local

variable

— See ex10.php

