
Spring 2024 – University of Virginia 1© Praphamontripong

Why Do We Test Software?

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 1]

Spring 2024 – University of Virginia 2© Praphamontripong

Think about your experience.

Where do you see or use
software?

Spring 2024 – University of Virginia 3© Praphamontripong

What could go wrong
if software is not tested

(appropriately, adequately, or
not tested at all)?

Spring 2024 – University of Virginia 4© Praphamontripong

(some) Software Failures
� 2023: Flights from coast to coast were grounded and unable to depart due to a

software malfunction (FAA outage)

� 2023: Military helicopter crash caused by failure to apply a software patch

� 2022: Tesla recalled nearly 12K vehicles due to battery controller failures

� 2022: Millions of web server vulnerability due to a defect in the Log4j software

� 2021: Log4j did not sanitize its input, allowing malicious attackers to execute code
remotely on any targeted computer

� 2020: More than 100 flights to and from London’s Heathrow airport disruption due
to issues with departure boards and check-in systems

� 2020: A number of Hyundai and Kia recalls due to software park system
malfunction

� 2020: Microsoft Azure experienced a six-hour outage due to issues with the
building automation control system that caused a cooling system failure

� 2020: Google Cloud service disruptions affecting Gmail, Google Classroom, Nest,
YouTube due to storage issues with Google’s authentication system and email
configuration update

� 2020: AWS suffered over 6 hours due to an operating system configuration issue

Spring 2024 – University of Virginia 5© Praphamontripong

(some) Software Failures (cont.)
� 2019: Facebook, Instagram, WhatsApp 14 hours downtime due to Facebook News

Feed issue in routine maintenance

� 2019: Boeing 737 Max crashed due to aggressive software flight overrides

� 2018: Hawaii Emergency Management Agency sent out a false missile alert due to
no visible alterations between live alert and testing environments

� 2018: Pedestrian in Arizona was killed by an Uber car due to its self-driving
software failure

� 2018: Google shut down Google+ due to the undetected fault that was present for
more than two years, causing nearly 500,000 users’ data to be compromised

� 2018: TSB system upgrade causes months of online banking disruption

� 2017: Cloudflare’s major software fault led to customer sensitive data leakage

� 2017: 606 recorded software failures, impacting 3.7 billion people, 314 companies,
$1.7 trillion in financial losses

� 2016: Nissan recalled 4 millions cars from the market due to software failure in
the airbag sensory detectors

� 2016: Info lost due to the browser back button while using TurboTax software

Spring 2024 – University of Virginia 6© Praphamontripong

(some) Software Failures (cont.)
� 2015: Bloomberg’s trading terminal failures forced the British government to

postpone $4.4 billion debt sale

� 2014: Dropbox’s outage was due to a fault in a maintenance script

� 2012: Faults in a new Knight Capital’s trading software causes $440 millions

� 2007: Symantec concluded that most security vulnerabilities are due to faulty
software

� 2003: Northeast blackout due to the alarm system in the energy management
system failure, affecting 40 million people in 8 US states, 10 million people in
Ontario, Canada

� 1999: NASA’s Mars lander crashed due to a unit integration fault

� 1997: Ariane 5 explosion: Exception-handling bug forced self-destruct on maiden
flight (64-bit to 16-bit conversion), causing $370 millions

� 1986: 3 patients were killed by Therac-25 radiation machine due to poor testing of
its safety-critical software

Spring 2024 – University of Virginia 7© Praphamontripong

Cost of Late Testing
60

50

40

30

20

10

0

Re
qu
ire
me
nts

Pro
g /
	Un
it	T
est

De
sig
n

Int
egr
ati
on
	Te
st

Fault	origin	(%)

Fault	detection	(%)

Unit	cost	(X)

Software	Engineering	Institute;	Carnegie	Mellon	University;	Handbook	CMU/SEI-96-HB-002

Assume	$1000	unit	cost,	per	fault,	100	faults

$6K

$13K

$20K

$360K

$250K

Sys
tem
	Te
st

Po
st-
De
plo
ym
en
t

$100K

Introduction	to	Software	Testing,	Edition	2		(Ch 1) ©	Ammann &	Offutt 25

[Chart illustrated by Ammann & Offutt
Source: Software Engineering Institute; Carnegie Mellon University;
Handbook CMU/SEI-96-HB-002; page 56-58]

Spring 2024 – University of Virginia 8© Praphamontripong

History of Software Testing

[image: http://ashishqa.blogspot.com/2012/12/history-of-software-testing.html]

Spring 2024 – University of Virginia 9© Praphamontripong

Why Do We Test?
• Guard software from regression

• Improve the code quality

• Reduce uncertainty

• Increase the development pace

• Enhance the specification density

• Boost confidence and courage

Increase confidence for anyone who is affected
through some forms of evidence

Spring 2024 – University of Virginia 10© Praphamontripong

Software Testing – Who Cares?

[Ref: emoji by Ekarin Apirakthanakorn]

My company has a
dedicated team of

testers, and it’s their
job to ensure quality

If we don’t test a
software, something
could go wrong. Then,
who should test it?

Writing production
code is more fun and

challenging

Most developers
don’t really love

writing tests

Software testing is
time-consuming

Software testing is not just for testers. As a developer:

• It is also your responsibility to ensure the quality of your product.

• Tests are the tool to help you with that responsibility.

• If you design tests properly, you can test your code in an effective
and systematic way.

Spring 2024 – University of Virginia 11© Praphamontripong

The Essence of Testing
Technical

investigation

to expose quality-related information

about the project or software under test

Models (ISP, graph, logic, syntax), tools or test
automation frameworks

An organized and thorough search for information
(~run tests and look carefully at the results)

• Find sources or problems to get them fixed
• Check intraoperability and interoperability
• Help in decision making (release/no-release)
• Minimize technical support costs
• Assess conformance and compliance
• Minimize safety-related lawsuit risk
• Determine safe scenarios for use of the product

Spring 2024 – University of Virginia 12© Praphamontripong

Testing in the 21st Century
• Safety critical, real-time software

• Embedded software

• Enterprise applications

• Security

• Web

• Mobile

Software testing becomes more important

We need reliable software.
Testing is one way to assess reliability and thus

improve quality of software

Spring 2024 – University of Virginia 13© Praphamontripong

Wrap-up
• Testing is the most time consuming and expensive part

of software development

• Not testing is even more expensive

• Having too little testing effort early increases the testing
cost

• Planning for testing after development is prohibitively
expensive

• A tester’s goal is to eliminate faults as early as possible

• What’s next?
• Getting started – intro to software testing

