
Spring 2024 – University of Virginia 1© Praphamontripong

Model-Driven 
Test Design

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 2]

“Designers are more efficient and effective 
if they can raise their level of abstraction.” – Jeff Offutt



Spring 2024 – University of Virginia 2© Praphamontripong

• Testing can only show the presence of failures, not the absence
• Sometimes refer to as Fault, Error, Failure model
• Not all inputs will “trigger” a fault into causing a failure
• RIPR: Four conditions necessary for a failure to be observed

RIPR Model

[AO, p.21]

Test

Fault 
location

Incorrect 
program 
states

Incorrect 
portion of the 

final state

Observed 
portion of 

the program 
state

Final program state and outputs

Reaches

Infects

Propagates

Reveals
Observes

Test oracle

Revisit



Spring 2024 – University of Virginia 3© Praphamontripong

Testing Levels and Types of Faults
Requirements 

Analysis

Architectural
Design

Subsystem
Design

Detailed
Design

Implementation

Acceptance
Test

System
Test

Integration
Test

Module
Test

Unit
Test

Test
Design

Information

[based in part on AO, p.23]

Check if software 
does what the user 
needs

Check overall 
behavior w.r.t. the 
specs

Check interface 
between modules
in the same 
subsystem

Check interactions 
of units and 
associated data 
structures

Check each unit 
(method) 
individually

Developer 
testing



Spring 2024 – University of Virginia 4© Praphamontripong

Old View: Colored Boxes
• Black-box testing

� Derive tests from external descriptions of the software, including 
specifications, requirements, and design

• White-box testing
� Derive tests from the source code internals of the software, 

including branches, conditions, and statements

• Model-based testing (MBT)
� Derive tests from a model of the software (such as a UML diagram)

• Model-Driven Test Design (MDTD)
� Focus on “from what abstraction level do we derive tests?”



Spring 2024 – University of Virginia 5© Praphamontripong

Model-Driven Test Design (MDTD)
• Break testing into a series of small tasks that simplify test 

generation

• Isolate each task

• Work at a higher level of abstraction
� Use mathematical structures to design test values independently of 

the details of software or design artifacts, test automation, and 
test execution

• Key intellectual step: test case design

• Test case design -- the primary factor determining whether 
tests successfully find failures in software



Spring 2024 – University of Virginia 6© Praphamontripong

Software Testing Activities

Test 
Engineer

Test 
Manager

Test 
Engineer

Test 
Engineer

1. Test
Design

2. Test 
Automationinstantiatedesign

Output

PComputer

execute

automate

3. Test
Execution

analyze 4. Test 
Evaluation

Human-based or
Criteria-based

Each activity requires different skills, background knowledge, 
education, and training.

Program
under test

(PUT)

[AO, p.22]



Spring 2024 – University of Virginia 7© Praphamontripong

1. Test Design

• Design test values based on 
� Domain knowledge of the program
� Human knowledge of testing
� Knowledge of user interface

• Require almost no traditional 
CS degree
� Essential – background in the 

software domain

� Helpful – empirical background 
(biology, psychology, …)

� Helpful – logic background (law, 
philosophy, math, ...)

• Design test values to satisfy
coverage criteria 

• The most technical job in 
software testing

• Require knowledge of 
� Discrete math
� Programming
� Testing

• Require a traditional CS degree

• Using people who are not 
qualified to design tests will 
result in ineffective tests

Human-based approach Criteria-based approach



Spring 2024 – University of Virginia 8© Praphamontripong

Coverage Criteria
• Testers search a huge input space -- to find the fewest inputs 

that will reveal the most problems

• Coverage criteria give structured, practical ways to search the 
input space

• Advantages of coverage criteria
� Search the input space thoroughly
� Not much overlap in the tests
� Maximize the “bang for the buck”
� Provide traceability from software artifacts to tests 
� Make regression testing easier
� Provide a “stopping rule”
� Can be well supported with tools

How to search, when to stop



Spring 2024 – University of Virginia 9© Praphamontripong

Test Criteria and Requirements 
• Test criterion: A collection of rules and a process that define 

test requirements
Cover every statement
Cover every functional requirement

• Test requirements: Specific things that must be satisfied or 
covered during testing

Each statement
Each functional requirement

Many criteria have been defined. 
They can be categorized into
four types of structures.

1. Input domains
2. Graphs
3. Logic expressions
4. Syntax descriptions

Examples:

Examples:



Spring 2024 – University of Virginia 10© Praphamontripong

Characteristics of Good Tests
Each test case: 

• Test one thing 

� Have accurate purpose
� Traceable to requirement or design

• Clear and easy to understand

• Relatively small

• Independent

• Precise and concise

• Repeatable



Spring 2024 – University of Virginia 11© Praphamontripong

2. Test Automation
• Embed test values into executable scripts

• Slightly less technical

• Require knowledge of programming

• Require very little theory

• Often involve observability and controllability issues

• Can be boring for test designers

• Programming is out of reach for many domain experts

• Who should determine and embed the expected outputs? 
� Test designers may not always know the expected outputs
� Test evaluators need to get involved early to help with this



Spring 2024 – University of Virginia 12© Praphamontripong

3. Test Execution
• Run tests on the software and record the results

• Easy and trivial if the tests are well automated

• Requires basic computer skills

� Interns
� Employees with no technical background

• Can be boring for test designers

� Asking qualified test designers to execute tests is a sure way to 
convince them to look for a development job

• Test executors have to be very careful and meticulous with 
bookkeeping



Spring 2024 – University of Virginia 13© Praphamontripong

4. Test Evaluation
• Evaluate results of testing, report to developers

• This is much harder than it may seem

• Requires knowledge of 

� Domain
� Testing
� User interfaces and psychology

• Usually requires almost no traditional CS

� Background in the software domain is essential
� Empirical background is very helpful (biology, psychology, …)

� Logic background is very helpful (law, philosophy, math, ...)



Spring 2024 – University of Virginia 14© Praphamontripong

Other Activities
• Test management

� Sets policy, organizes team, interfaces with development, chooses 
criteria, decides how much automation is needed, …

• Test maintenance
• Save tests
• Requires cooperation of test designers and test automators
• Partly policy and partly technical

• Test documentation
• All parties participate
• Each test must document “why” – criterion and test requirement 

satisfied or a rationale for human-designed test
• Ensure traceability throughout the process
• Keep documentation in the automated tests



Spring 2024 – University of Virginia 15© Praphamontripong

Organizing the Team
• A mature test organization needs only one test designer to work 

with several test automators, executors, and evaluators

• Improved automation will reduce the number of test executors

• Putting the wrong people on the wrong tasks leads to 
inefficiency, low job satisfaction and low job performance

� A qualified test designer will be bored with other tasks and look for 
a job in development

� A qualified test evaluator will not understand the benefits of test 
criteria

• Test evaluators have the domain knowledge, so they must be 
free to add tests that “blind” engineering processes will not 
think of



Spring 2024 – University of Virginia 16© Praphamontripong

Using MDTD in Practice
• This approach lets one test designer do the math

• Then traditional testers and programmers can do their parts
� Find values
� Automate the tests
� Run the tests
� Evaluate the tests

• Test designers become technical experts

• Many test designers get involved in crowd testing



Spring 2024 – University of Virginia 17© Praphamontripong

Model-Driven Test Design - Steps

software 
artifact

model / 
structure

test 
requirements

refined 
requirements / 

test specs

input 
values

test 
cases

test 
scripts

test 
results

pass / 
fail

Implementation
Abstraction Level

test 
requirements

[AO, p.30]

Design
Abstraction Level

analysis

criterion refine

generate

domain 
analysis

prefix
postfix

expected

au
tom

ate

ex
ec

ute

ev
alu

ate

feedback



Spring 2024 – University of Virginia 18© Praphamontripong

Test 
Evaluation

Test 
Execution

Test Automation

Test Design

Model-Driven Test Design - Activities

software 
artifact

model / 
structure

test 
requirements

refined 
requirements / 

test specs

input 
values

test 
cases

test 
scripts

test 
results

Implementation
Abstraction Level

test 
requirements

[AO, p.30]

Design
Abstraction Level

pass / 
fail



Spring 2024 – University of Virginia 19© Praphamontripong

Wrap-up
• This course focuses on test design with criteria-based 
approach 

• Testing activities
� Design tests: model software + apply test coverage criteria

� Characteristics of good test cases

� Automate tests

� Execute tests

� Evaluate tests

What’s Next? 

• Test automation


