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Model-Driven 
Test Design

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 2]

“Designers are more efficient and effective 
if they can raise their level of abstraction.” – Jeff Offutt
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• Testing can only show the presence of failures, not the absence
• Sometimes refer to as Fault, Error, Failure model
• Not all inputs will “trigger” a fault into causing a failure
• RIPR: Four conditions necessary for a failure to be observed

RIPR Model

[AO, p.21]
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[based in part on AO, p.23]
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Old View: Colored Boxes
• Black-box testing

� Derive tests from external descriptions of the software, including 
specifications, requirements, and design

• White-box testing
� Derive tests from the source code internals of the software, 

including branches, conditions, and statements

• Model-based testing (MBT)
� Derive tests from a model of the software (such as a UML diagram)

• Model-Driven Test Design (MDTD)
� Focus on “from what abstraction level do we derive tests?”
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Model-Driven Test Design (MDTD)
• Break testing into a series of small tasks that simplify test 

generation

• Isolate each task

• Work at a higher level of abstraction
� Use mathematical structures to design test values independently of 

the details of software or design artifacts, test automation, and 
test execution

• Key intellectual step: test case design

• Test case design -- the primary factor determining whether 
tests successfully find failures in software
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Software Testing Activities
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[AO, p.22]
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1. Test Design

• Design test values based on 
� Domain knowledge of the program
� Human knowledge of testing
� Knowledge of user interface

• Require almost no traditional 
CS degree
� Essential – background in the 

software domain

� Helpful – empirical background 
(biology, psychology, …)

� Helpful – logic background (law, 
philosophy, math, ...)

• Design test values to satisfy
coverage criteria 

• The most technical job in 
software testing

• Require knowledge of 
� Discrete math
� Programming
� Testing

• Require a traditional CS degree

• Using people who are not 
qualified to design tests will 
result in ineffective tests

Human-based approach Criteria-based approach
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Coverage Criteria
• Testers search a huge input space -- to find the fewest inputs 

that will reveal the most problems

• Coverage criteria give structured, practical ways to search the 
input space

• Advantages of coverage criteria
� Search the input space thoroughly
� Not much overlap in the tests
� Maximize the “bang for the buck”
� Provide traceability from software artifacts to tests 
� Make regression testing easier
� Provide a “stopping rule”
� Can be well supported with tools

How to search, when to stop
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Test Criteria and Requirements 
• Test criterion: A collection of rules and a process that define 

test requirements
Cover every statement
Cover every functional requirement

• Test requirements: Specific things that must be satisfied or 
covered during testing

Each statement
Each functional requirement

Many criteria have been defined. 
They can be categorized into
four types of structures.

1. Input domains
2. Graphs
3. Logic expressions
4. Syntax descriptions

Examples:

Examples:
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Characteristics of Good Tests
Each test case: 

• Test one thing 

� Have accurate purpose
� Traceable to requirement or design

• Clear and easy to understand

• Relatively small

• Independent

• Precise and concise

• Repeatable
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2. Test Automation
• Embed test values into executable scripts

• Slightly less technical

• Require knowledge of programming

• Require very little theory

• Often involve observability and controllability issues

• Can be boring for test designers

• Programming is out of reach for many domain experts

• Who should determine and embed the expected outputs? 
� Test designers may not always know the expected outputs
� Test evaluators need to get involved early to help with this
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3. Test Execution
• Run tests on the software and record the results

• Easy and trivial if the tests are well automated

• Requires basic computer skills

� Interns
� Employees with no technical background

• Can be boring for test designers

� Asking qualified test designers to execute tests is a sure way to 
convince them to look for a development job

• Test executors have to be very careful and meticulous with 
bookkeeping
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4. Test Evaluation
• Evaluate results of testing, report to developers

• This is much harder than it may seem

• Requires knowledge of 

� Domain
� Testing
� User interfaces and psychology

• Usually requires almost no traditional CS

� Background in the software domain is essential
� Empirical background is very helpful (biology, psychology, …)

� Logic background is very helpful (law, philosophy, math, ...)
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Other Activities
• Test management

� Sets policy, organizes team, interfaces with development, chooses 
criteria, decides how much automation is needed, …

• Test maintenance
• Save tests
• Requires cooperation of test designers and test automators
• Partly policy and partly technical

• Test documentation
• All parties participate
• Each test must document “why” – criterion and test requirement 

satisfied or a rationale for human-designed test
• Ensure traceability throughout the process
• Keep documentation in the automated tests
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Organizing the Team
• A mature test organization needs only one test designer to work 

with several test automators, executors, and evaluators

• Improved automation will reduce the number of test executors

• Putting the wrong people on the wrong tasks leads to 
inefficiency, low job satisfaction and low job performance

� A qualified test designer will be bored with other tasks and look for 
a job in development

� A qualified test evaluator will not understand the benefits of test 
criteria

• Test evaluators have the domain knowledge, so they must be 
free to add tests that “blind” engineering processes will not 
think of
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Using MDTD in Practice
• This approach lets one test designer do the math

• Then traditional testers and programmers can do their parts
� Find values
� Automate the tests
� Run the tests
� Evaluate the tests

• Test designers become technical experts

• Many test designers get involved in crowd testing
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Model-Driven Test Design - Steps
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Wrap-up
• This course focuses on test design with criteria-based 
approach 

• Testing activities
� Design tests: model software + apply test coverage criteria

� Characteristics of good test cases

� Automate tests

� Execute tests

� Evaluate tests

What’s Next? 

• Test automation


