
Spring 2024 – University of Virginia 1© Praphamontripong

Test Automation

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 3]

Spring 2024 – University of Virginia 2© Praphamontripong

Load the web program

Enter all inputs

Click “Place order” button

Record the test result

Manual Testing
Imagine you are testing a web
program that takes a drink
order

Name [valid, invalid]
Email [valid, invalid]
Phone [valid, invalid]
Drink [select, not select]
Hot or cold [hot, cold, not select]
Send text [send, not send]

How many tests?
How many clicks, keystrokes?

[Ref: emoji by Ekarin Apirakthanakorn]

Entered inputs
incorrectly?

Updated
code?

Spring 2024 – University of Virginia 3© Praphamontripong

Manual Testing
Benefits
• Simple and straightforward

• No up-front cost

• Easy to set up

• No additional software to
learn, purchase, write

• Flexible

• More likely to test things that
users care about

• Possible to catch issues that
automated testing does not

Drawbacks
• (Extremely) boring

• Often not repeatable

• Some tasks are difficult or
impossible to test manually

• Human errors

• Extremely time- and
resource-intensive

• Limit to black-box and gray-
box testing

Spring 2024 – University of Virginia 4© Praphamontripong

Tasks in Testing Process

Enter
Test values

(inputs)

Actual
results

Program Expected
results

vs

Comparison

Execute tests against the program under test (PUT)
or sometimes referred to as a software under test (SUT)

Design tests

Enter inputs, run program, record results

Revenue task

Excise task

Analyze results Revenue task

Spring 2024 – University of Virginia 5© Praphamontripong

Software Testing Activities

Test
Engineer

Test
Manager

Test
Engineer

Test
Engineer

1. Test
Design

2. Test
Automationinstantiatedesign

Output

PComputer

execute

automate

3. Test
Execution

analyze 4. Test
Evaluation

[AO, p.22]

Revisit

Human-based or
Criteria-based

Spring 2024 – University of Virginia 6© Praphamontripong

Actual
results

Expected
results

vs.

Assert

Program

Execute

Test Automation
• Use of software to control the execution of tests

• Comparison of actual outcomes to predicted outputs

• Setting up of test preconditions, and other test control and
test reporting functions

Report

Test inputs
Executable Tests
• Precondition
• Test control
• Test inputs
• Postcondition

Set up

Spring 2024 – University of Virginia 7© Praphamontripong

Automated Testing
Benefits
• Reduce human errors

• Reduce excise tasks

• Free up time to focus on revenue
tasks

• Reduce cost, less resource-
intensive

• Reduce variance in test quality
from different individuals

• Easily repeatable

• Significantly reduce the cost of
regression testing

• Cover aspects that manual
testing is impossible

• Scalable

Drawbacks
• Setup time up-front

• May miss some user-facing
defects

• Require training (programming
languages, testing frameworks,
tools)

Automate as much as possible

Spring 2024 – University of Virginia 8© Praphamontripong

Flaky (Nondeterministic) Tests

[Thanks to Professor Jeff Offutt, CS 3250 Guest speaker, Fall 2019]

“Tests that exhibits both a passing and a failing results with the same code”
– Google

Run #1
Test A on
program P

Run #2
Test A on
program P

Run #3
Test A on
program P

Potential causes
• Concurrency
• Asynchronous behavior
• Random inputs
• Resource leaks

• Test order dependency
• Collection class assumptions
• Relying on external systems
• Not checking emails

Google says 16% of their tests are flaky
Controllability

Spring 2024 – University of Virginia 9© Praphamontripong

Blind Tests

Potential causes

• Unintended ignorance
• Observe the wrong place
• Overlooked information

Tests that do not notice failures

“Almost half the tests written by professional software engineers
had broken test oracles” – Jeff Offutt

[Thanks to Professor Jeff Offutt, CS 3250 Guest speaker, Fall 2019]

Observability

Spring 2024 – University of Virginia 10© Praphamontripong

What Makes Test Automation Hard
Imagine you are tasked to test a company’s software.

You need to set up three different web services, create five
different files in different folders of the system, and put SQL and
NoSQL databases in specific states.

After all the setup, you execute the feature under test.

To assert the behavior of the software under test, you need to
check if the three web services were invoked, the five files were
manipulated correctly, and the databases were now in proper
state.

Doable? Can this be simpler?

Spring 2024 – University of Virginia 11© Praphamontripong

What Makes Test Automation Hard
Testability

• “The degree to which a system or component facilitates that
establishment of test criteria and the performance of tests to
determine whether those criteria have been met”

Two practical problems:
� Controllability: how to provide the test values to the software

� Observability: how to observe the results of test execution

How hard it is to detect faults in the software

Spring 2024 – University of Virginia 12© Praphamontripong

Aspects that Impact Testability
Controllability

• “How easy it is to provide a program with the needed inputs,
in terms of values, operations, and behaviors”

• Example of software that often have low controllability:

� Embedded software often gets its inputs from hardware sensors
� Difficult to control
� Some inputs may be difficult, dangerous, or impossible to supply

� Component-based software

� Distributed software

� Web applications

� Mobile applications

Spring 2024 – University of Virginia 13© Praphamontripong

(Some) Controllability Problems
1. State hidden in method

2. Difficult setup

3. Incomplete shutdown

4. State-leaks across tests

5. Framework frustration

6. Difficult mocking

7. Hidden effects

8. Hidden inputs

Spring 2024 – University of Virginia 14© Praphamontripong

Aspects that Impact Testability
Observability

• “How easy it is to observe the behavior of a program in
terms of its outputs, effects on the environment and other
hardware and software components”

• Example of software that often have low observability:

� Embedded software often does not produce output for human
consumption

� Component-based software

� Distributed software

� Web applications

� Mobile applications

Spring 2024 – University of Virginia 15© Praphamontripong

Rules of Thumb
1. Design and implement your software for testability

2. Create good test code

If it is difficult to test your code, there may be problems with your
design and implementation.

Writing testable code is harder than writing untestable code.

Solving design problems will solve testing problems.

Making code testable does not necessarily make the design better.

Design for testability is fundamental for systematic testing

Spring 2024 – University of Virginia 16© Praphamontripong

(Some) Design Ideas for Testability
1. Separate the infrastructure from the domain code

2. If a class depends on another class, make it in a way that the
dependency can easily be replaced by a mock, fake, or stub

3. Make your classes and methods observable

4. Passing values via method parameters to simplify the callers,
instead of passing dependency via a constructor

5. Focus on a single responsibility

6. Try to minimize coupling

7. Keep Boolean expressions small and simple

8. If you need to test a private method, this private method may
not belong in its current place à refactor your code

Spring 2024 – University of Virginia 17© Praphamontripong

Good Test Code
1. Test one thing (purpose, traceable) – one assertion per test

2. Clear, easy to understand, precise, concise

3. Keep it small (more small tests are better than few large tests)

4. Move repeated code to fixtures or shared methods

5. Independent (test frameworks don’t guarantee order of
execution)

6. Repeatable

7. Avoid complicated control flow in tests

8. Remember to refactor test code

9. Test oracles should check the right place (no need to check the
entire output state)

10. Use the right type of assertion

Spring 2024 – University of Virginia 18© Praphamontripong

Components of a Test Case
A multipart artifact with a definite structure

Test case values, expected results,
prefix and postfix values necessary for a complete
execution and evaluation of the software under
test

Test case

Expected results The result that will be produced by
the test if the software behaves as
expected

Test oracle
(pass or fail)

Inputs needed to complete an
execution of the software under
test

Inputs can be input values or
series of actions

Test case values Determine
the testing

quality

Spring 2024 – University of Virginia 19© Praphamontripong

Components of a Test Case
Prefix values

Postfix values

Inputs needed to put the software
into the appropriate state to
receive the test case values

Inputs needed to be sent to the
software after the test case values
are sent

Verification values: values needed to see the results of the test
case values

Exit values: values or commands needed to terminate the program
or otherwise return it to a stable state

Affecting
controllability

and
observability

Inputs can be input values or series of actions

Additional components: test case ID, purpose of the test

Spring 2024 – University of Virginia 20© Praphamontripong

Putting Tests Together
• Test case

� The test case values, prefix values, postfix values, and expected
results necessary for a complete execution and evaluation of the
software under test

• Test set
� A set of test cases

• Executable test script
� A test case that is prepared in a form to be executed automatically

on the test software and produce a report

Spring 2024 – University of Virginia 21© Praphamontripong

Test Case Execution

Program

Execute SUT

Actual
results

Expected
results

vs
Setup

prefix values

1

Setup
Test case

values

2

3 Compare the results4

Setup
postfix values

5

AssertExecute

Set up

Spring 2024 – University of Virginia 22© Praphamontripong

Test Automation Framework
• A set of assumptions, concepts, and tools that support test

automation

• Provides a standard design for test scripts and support for the
test driver

• Test driver

• Runs a test set by executing the software repeatedly on each test

• Supplies the “main” method to run the software if it is not
standalone (i.e., a method, class, or other component)

• Compares the results of execution with the expected results

• Reports the results to the tester

Spring 2024 – University of Virginia 23© Praphamontripong

Test Automation Frameworks (2)
• Most test automation frameworks support

� Assertions to evaluate expected results
� The ability to share common test data among tests
� Test sets to easily organize and run tests
� The ability to run tests from either a command line or a GUI

• Most test automation frameworks are designed for unit and
integration testing; some specifically support system
testing; some are built to support testing over the web

• Example test automation frameworks

• JUnit, HttpUnit, HtmlUnit, JWebUnit, Selenium, unittest,
Jasmine, Jest, Cucumber, PHPUnit, Robotium

Spring 2024 – University of Virginia 24© Praphamontripong

Wrap-up
• Test automation

• Testability, Observability, Controllability

• Design software for testability

• Write good test code

• Components of a test case

What’s Next?

• Test automation framework – JUnit

