
Spring 2024 – University of Virginia 1© Praphamontripong

Introduction to JUnit

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 3]
[https://junit.org/junit5/docs/current/user-guide/]



Spring 2024 – University of Virginia 2© Praphamontripong

Today’s Objectives
• Understand JUnit test classes

• Understand structure of basic JUnit test methods

• Get started with Junit – some commonly used JUnit assertions 
and other features



Spring 2024 – University of Virginia 3© Praphamontripong

What is JUnit?
• An open source Java testing framework (junit.org) used to 

write and run repeatable automated tests

• JUnit is widely used in industry

• A structure for writing test drivers

• JUnit features include

� Assertions to evaluate expected results

� The ability to share common test data among tests

� Test sets to easily organize and run tests

� The ability to run tests from either a command line or a GUI



Spring 2024 – University of Virginia 4© Praphamontripong

Junit 5
• JUnit 4 – single jar file
• JUnit 5 – modular, flexible, robust, extensible 

(Not much changed between Junit 4 and Junit 5 in test writing styles)

IDEs/build tools
JUnit5

JUnit Vintage

JUnit Platform

Old tests
(JUnit)

JUnit Jupiter
Third party

New tests
(JUnit5)

Other 
tests

Define the TestEngine API for developing testing 
framework that runs on the platform

Support JUnit3, Junit4 Combine annotations 
and TestEngine



Spring 2024 – University of Virginia 5© Praphamontripong

JUnit Tests
• For unit and integration testing

� Entire object, part of an object (a method or some interacting 
methods), and interaction between several objects

• One test case in one test method

• A test class contains one or more test methods

• Test classes include

• A collection of test methods

• Method to set up the state before running each test (prefix)

• Method to update the state after each test (postfix)

• [Optional] Method to set up and update before and after all tests



Spring 2024 – University of Virginia 6© Praphamontripong

Test Lifecycle

Setup

Execute

Verify

Teardown

Initialize the test fixture

Interact with the subject under test

Compare the actual (observed) result 
of running the test with the expected 
result – using assertion(s)

Release the test fixture to put the 
subject under test back into the initial 
state

(Prefix)

(Postfix)



Spring 2024 – University of Virginia 7© Praphamontripong

Annotations
Use the methods of the org.junit.jupiter.api class 
(Refer to Javadoc for a complete API)

JUnit 5 
annotation

Description JUnit 4’s 
equivalence

@BeforeEach Method executed before each 
@Test in the current class

@Before

@AfterEach Method executed after each 
@Test in the current class

@After

@BeforeAll Method executed before all 
@Test in the current class

@BeforeClass

@AfterAll Method executed after all 
@Test in the current class

@AfterClass

@Test Define a test method @Test



Spring 2024 – University of Virginia 8© Praphamontripong

Lifecycle and Annotations

Setup

Execute

Verify

Teardown

Test
Subject 

under test 
(SUT)

sometimes 
referred to as 

program 
under test

(PUT)

@BeforeAll

@BeforeEach

@Test

@AfterEach

@AfterAll

initialize

execute

assert



Spring 2024 – University of Virginia 9© Praphamontripong

Writing JUnit Tests (JUnit5)
• Download necessary jar files at junit.org

• Use the methods of the following classes
org.junit.jupiter.api.AfterAll
org.junit.jupiter.api.AfterEach
org.junit.jupiter.api.BeforeAll
org.junit.jupiter.api.BeforeEach
org.junit.jupiter.api.Test
org.junit.jupiter.api.Assertions

• Each test method 

� Checks a condition (assertion) 
� Reports to the test runner whether the test failed or succeeded

• The test runner uses the result to report to the user 

• All of the methods return void



Spring 2024 – University of Virginia 10© Praphamontripong

Test 
ClassImports

Test class

Test method

Test method



Spring 2024 – University of Virginia 11© Praphamontripong

JUnit / xUnit - Conventions
• Group related test methods in a single test class

• The name of test packages/classes/methods should at 
least transmit: 

� The name of the subject under test (SUT) class
� TestArrayOperationsNumZero or ArrayOperationsNumZeroTest

� The name of the method or feature being tested 
� TestArrayOperationsNumZero or ArrayOperationsNumZeroTest

� The purpose of the test case 
� testNumZeroEmptyArray

• It is common to prefix or suffix test classes with “Test” 
and prefix test methods with “test” ( with or without “_” )



Spring 2024 – University of Virginia 12© Praphamontripong

JUnit Test Fixtures
• A test fixture is the state of the test

� Objects and variables that are used by more than one test

� Initializations (prefix values)

� Reset values (postfix values)

• Different tests can use the objects without sharing the state

• Objects used in test fixtures should be declared as instance 
variables

• Objects should be initialized in a @BeforeEach method

• Objects can be deallocated or reset in an @AfterEach method



Spring 2024 – University of Virginia 13© Praphamontripong

Prefix / Postfix Actions

Initialize objects 
and variables that 
are used by more 
than one test 

Reset objects and 
variables that are 
used by more 
than one test 



Spring 2024 – University of Virginia 14© Praphamontripong

Common Methods (JUnit 5)

Assertions Description
assertTrue(boolean condition) Assert that a condition is true.
assertTrue(boolean condition, 
String message)

Assert that a condition is true.
If the assertion is true, the string is ignored. 
Otherwise, the string is sent to the test 
engineer.

assertEquals(Object expected, 
Object actual)

Assert that two objects are equal.

fail(String message) If a certain situation is expected when a 
certain section of code is reached, the string 
is sent to the test engineer. 
Often used to test exceptional behavior.

(Refer to Javadoc for a complete API)



Spring 2024 – University of Virginia 15© Praphamontripong

JUnit – Test Methods
1) Setup test case values 2) Execute program

under test

3) Assert expected vs. actual test outputs

expected actual output



Spring 2024 – University of Virginia 16© Praphamontripong

JUnit – Test Methods
1) Setup test case 

values
2) Execute program 

under test

3) Assert expected vs. 
actual test outputs

expected

actual 
output

4) Printed if assert fails



Spring 2024 – University of Virginia 17© Praphamontripong

Display Names

@DisplayName annotation of the org.junit.jupiter.api.DisplayName
class declares a custom display for a test class or a test method. 

The name will be displayed by the test runners and reporting tools. 

The name can contain spaces, special characters, and even emojis. 



Spring 2024 – University of Virginia 18© Praphamontripong

Multiple Assertions

In a test method with multiple assertions (written in a standard 
way), the first failure will be reported; the remaining assertions 
will not be executed and the test method is terminated.  



Spring 2024 – University of Virginia 19© Praphamontripong

Group of Assertions

assertAll method groups assertions at the same time. 

In a grouped assertion, all assertions are always executed, and any 
failures will be reported together. 

Label the assertion group



Spring 2024 – University of Virginia 20© Praphamontripong

Dependent Tests



Spring 2024 – University of Virginia 21© Praphamontripong

Exceptions as Expected Results

This pattern is more verbose and unnecessary in this case. 

It is useful in situations when we wish to perform other 
assertions beyond the expected exception behavior



Spring 2024 – University of Virginia 22© Praphamontripong

Exceptions as Expected Results
Verify if a given exception is raised using assertThrows

expected

actual
output



Spring 2024 – University of Virginia 23© Praphamontripong

Asserting Timeouts
Verify if a given task or operation takes 
less then a certain period of time to 
complete using assertTimeout

actual
output

expected



Spring 2024 – University of Virginia 24© Praphamontripong

Data-Driven Tests
• Sometimes, the same test method needs to be run 
multiple times, with the only difference being the input 
values and the expected output

• Data-driven unit tests call a factory method for each 
collection of test values

� Run each set of data values with the same tests

� Implement data-driven testing with JUnit Parameterized mechanism



Spring 2024 – University of Virginia 25© Praphamontripong

Example: JUnit5 Data-Driven Unit Test

Necessary
import

Test 2 Test values: 2, -3
Expected: -1

Test 1 Test values: 1, 1
Expected: 2

Test method uses the 
instance variables 
initialized in a factory 
method

Returns a collection 
with 4 arrays of inputs 
and expected outputs
(thus, running the same 
test method 4 times)

Data-driven test
Optional (for reporting)

Test 3 Test 4



Spring 2024 – University of Virginia 26© Praphamontripong

Example: JUnit4 Data-Driven Unit Test

Data-driven test

Necessary
import

Constructor is called for 
each triple of values

Test 1
Test values: 1, 1
Expected: 2

Test 2
Test values: 2, 3
Expected: 5

Returns a 
collection with 
2 arrays of 
inputs and 
expected 
outputs
(thus, call the 
constructor 
twice)

Test method 
uses the 
instance 
variables 
initialized in the 
constructor call



Spring 2024 – University of Virginia 27© Praphamontripong

Wrap-up
• Automate as much as possible to make testing efficient and 

effective 

• Test frameworks provide very simply ways to automate our test

• Data-driven testing can suffer from a combinatorial explosion in 
the number of tests (cross-product of the possible values for 
each of the parameters in the unit tests)

• Test automation is not “silver bullet” .. It does not solve the 
hard problem of testing “What test values to use?”

• “What test values to use?” – solved by test design .. The 
purpose of test criteria

What’s Next? 
• Coverage-based test design


