
Spring 2024 – University of Virginia 1© Praphamontripong

Coverage-Based
Test Design

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 5]

Spring 2024 – University of Virginia 2© Praphamontripong

Today’s Objectives
• What is criteria-based test design?

• Why are test criteria used?

• Who will benefit from using test criteria? How?

• When are test criteria used?

• How are test criteria used?

• What are existing criteria? How are criteria
categorized?

• Which criterion should be used? When? Why? How?
Later

Spring 2024 – University of Virginia 3© Praphamontripong

All Possible Inputs?
• Let’s try!!
• Create all possible test inputs for the given program

• It is impossible to provide all possible inputs

• Therefore, we need some rules to help us decide which
inputs to enter and give us an idea if we test enough

• How many test inputs?
• List them all …?

Spring 2024 – University of Virginia 4© Praphamontripong

Coverage Criteria
• Describe a finite subset of test cases out of the vast/infinite
number of possible tests we should execute

• Divide the input space to maximize the number of faults
found per test case

• Provide useful rules for when to stop testing

Spring 2024 – University of Virginia 5© Praphamontripong

Benefits of Coverage Criteria
Adequate
• Have I got enough tests?

Guidance
• Where should I test more?

Automation
• Generate test that satisfies a test requirement

Spring 2024 – University of Virginia 6© Praphamontripong

Two Ways to Use Test Criteria
� Directly generate test case values to satisfy the criterion

� Often assumed by the research community
� Most obvious way to use criteria
� Very hard without automated tools

� Evaluate existing test sets
� Usually favored by industry

� Sometimes misleading

� If tests do not reach 100% coverage, what does that
mean?

� We don’t have enough data to tell how much 99% coverage is
worse than 100% coverage

Spring 2024 – University of Virginia 7© Praphamontripong

Implementation of Test Criteria
Generator
� A procedure that automatically generate values to satisfy a

criterion
� Automated test generation tools

Recognizer
� A procedure that decides whether a set of test case values

satisfies a criterion
� Coverage analysis tools; e.g., JaCoCo, Eclipse’s coverage

It is possible to recognize whether test cases satisfy a criterion
far more than it is possible to generate tests that satisfy the
criterion

Spring 2024 – University of Virginia 8© Praphamontripong

Test
Evaluation

Test
Execution

Test Automation

Test Design

Model-Driven Test Design

software
artifact

model /
structure

test
requirements

refined
requirements /

test specs

input
values

test
cases

test
scripts

test
results

Implementation
Abstraction Level

test
requirements

[AO, p.30]

Design
Abstraction Level

pass /
fail

Revisit

Spring 2024 – University of Virginia 9© Praphamontripong

(not X or not Y) and A and B

if (x > y)
z = x - y;

else
z = 2 * x;

New view
(structures and criteria)

A: {0, 1, >1}
B: {undergraduate, graduate}
C: {1000, 2000, 3000, 4000}

Input space (sets)

Graphs

Logical expressions

Syntax structures (grammar)

Changing Notions in Testing

[AO, p 21]

Requirements
Analysis

Architectural
Design

Subsystem
Design

Detailed
Design

Implementation

Acceptance
Test

System
Test

Integration
Test

Module
Test

Unit
Test

Old view (phase)

Spring 2024 – University of Virginia 10© Praphamontripong

(not X or not Y) and A and B

if (x > y)
z = x - y;

else
z = 2 * x;

A: {0, 1, >1}
B: {undergraduate, graduate}
C: {1000, 2000, 3000, 4000}

Input space (sets)

Graphs

Logical expressions

Syntax structures (grammar)

New: Structures and Criteria
Test design is largely the same at each
phase
• Creating the structure is different
• Choosing values and automating the

tests is different

Tester defines a structure of the
software and then find ways to cover it

Structures can be extracted from lots
of software artifacts
• Graphs – from UML use cases, finite state

machines, source code, …

• Logical expressions – from decisions in
program source, guards on transitions,
conditionals in use cases, ...

Spring 2024 – University of Virginia 11© Praphamontripong

Revisit

Test Coverage Criteria
Coverage Criterion
• A rule or collection of rules that impose test requirements on

a test set

Test requirement
• A specific element of a software artifact that a test case

must satisfy or cover
• Depends on the specific artifact under test

Test case
• A set of test inputs, execution conditions, and expected results,

developed for a particular test scenario to verify whether the
system under test satisfies a specific requirement

Test set
• A set of test cases

Spring 2024 – University of Virginia 12© Praphamontripong

Example: Blow Pop Coverage

Possible coverage criteria:
C1: Taste one blow pop of each flavor

(deciding if red blow pop is cherry, strawberry, or watermelon is
a controllability problem)

C2: Taste one blow pop of each color

Flavors
• Cherry
• Blue razz berry
• Strawberry
• Sour apple
• Grape
• Watermelon

Colors
• Red (Cherry,

strawberry,
watermelon)

• Blue (Blue razz berry)
• Green (Sour apple)
• Purple (Grape)

Spring 2024 – University of Virginia 13© Praphamontripong

Example: Blow Pop Coverage
Flavors
• Cherry
• Blue razz berry
• Strawberry
• Sour apple
• Grape
• Watermelon

Test requirements for C1
tr1: Cherry
tr2: Blue razz berry
tr3: Strawberry
tr4: Sour apple
tr5: Grape
tr6: Watermelon

Colors
• Red (Cherry,

strawberry,
watermelon)

• Blue (Blue razz
berry)

• Green (Sour apple)
• Purple (Grape)

Test requirements for C2
tr1: Red
tr2: Blue
tr3: Green
tr4: Purple

TR1 = {Cherry,
Blue razz berry,
Strawberry,
Sour apple,
Grape,
Watermelon}

TR2 = {Red, Blue,
Green, Purple}

Spring 2024 – University of Virginia 14© Praphamontripong

Coverage
Given a set of test requirements TR for coverage criterion C,
a test set T satisfies C coverage if and only if for every test
requirement tr in TR, there is at least one test t in T such
that t satisfies tr

Adequate test set – test set that satisfies all test requirements

Minimal test set – removing any single test from the set will
cause the test set to no longer satisfy all test requirements

Spring 2024 – University of Virginia 15© Praphamontripong

Blow Pop Coverage (continue)
C1: Flavor criterion

TR1 = {Cherry,
Blue razz berry,
Strawberry,
Sour apple,
Grape,
Watermelon}

C2: Color criterion

TR2 = {Red, Blue,
Green, Purple}

Test sets

T1 = {one Cherry,
one Blue razz berry,
three Strawberries,
one Sour apple,
two Grapes,
four Watermelons}

T2 = {one Blue razz berry,
one Sour apple,
two Grapes,
three Watermelons}

Satisfy C1?
Satisfy C2?

Satisfy C1?
Satisfy C2?

Yes
Yes

No
Yes

Adequate test set?
Minimal test set?

Spring 2024 – University of Virginia 16© Praphamontripong

Coverage Level
• It is sometimes expensive to satisfy a coverage criterion.

• Testers compromise by trying to achieve a certain
coverage level.

Size of TR

Coverage level = number of test requirements satisfied by T

Spring 2024 – University of Virginia 17© Praphamontripong

Blow Pop Coverage (continue)
C1: Flavor criterion

TR1 = {Cherry,
Blue razz berry,
Strawberry,
Sour apple,
Grape,
Watermelon}

C2: Color criterion

TR2 = {Red, Blue,
Green, Purple}

Test sets

T1 = {one Cherry,
one Blue razz berry,
three Strawberries,
one Sour apple,
two Grapes,
four Watermelons}

T2 = {one Blue razz berry,
one Sour apple,
two Grapes,
three Watermelons}

Satisfy C1?
Satisfy C2?

Satisfy C1?
Satisfy C2?

Coverage level 6 / 6
4 / 4

Coverage level 4 / 6
4 / 4

Spring 2024 – University of Virginia 18© Praphamontripong

Infeasible Test Requirement

• Some test requirements are infeasible (i.e., cannot be satisfied)
� No test case values exist that meet the test requirements
� Example: dead code
� Detection of infeasible test requirements is undecidable for most test

criteria

• 100% coverage is usually impossible in practice

Example:

Imagine if we have the following test requirements
TR = {all sides > 0, all sides = 0, all sides < 0}

Spring 2024 – University of Virginia 19© Praphamontripong

Comparing Criteria
Criteria Subsumption
� A test criterion C1 subsumes C2 if and only if every set of test

cases that satisfies criterion C1 also satisfies C2

� Must be true for every test set

test req.
for C1

test req.
for C2

C1 subsumes C2
(superset) C1 subsumes C2

(many-to-one)

tr1

tr2

tr3

tr4

tr5

tr6

test req.
for C2

tr1

tr2

tr3

tr4

test req.
for C1

C2 subsumes C1
(one-to-one)

test req.
for C2

tr1

tr2

tr3

tr4

test req.
for C1

tr1

tr2

tr3

tr4

C1 subsumes C2

Spring 2024 – University of Virginia 20© Praphamontripong

Blow Pop Coverage (Subsume)
C1: Flavor criterion

TR1 = {Cherry,
Blue razz berry,
Strawberry,
Sour apple,
Grape,
Watermelon}

C2: Color criterion

TR2 = {Red, Blue,
Green, Purple}

Test sets
(considering 2 test sets, T1 and T2)

T1 = {one Cherry, one Blue razz berry,
three Strawberries,
one Sour apple, two Grapes,
four Watermelons}

T2 = {one Blue razz berry,
one Sour apple, two Grapes,
three Watermelons}

Satisfy C1?
Satisfy C2?

Satisfy C1?
Satisfy C2?

Yes (C1 adequate tests)
Yes (C2 adequate tests)

No
Yes (C2 adequate tests)

C1 subsumes C2

Spring 2024 – University of Virginia 21© Praphamontripong

Good Coverage Criterion
� It should be fairly easy compute test requirements

automatically

� It should be efficient to generate test values

� The resulting tests should reveal as many faults as possible

Additional notes:

� Subsumption is only a rough approximation of fault revealing
capability

� Researchers still need to gives us more data on how to
compare coverage criteria

Spring 2024 – University of Virginia 22© Praphamontripong

Advantages of Using Criteria
� Yield fewer tests that are more effective at finding faults

� Design test inputs that are more likely to find problems

� Increase traceability
� Answer the “why” for each test
� Support regression testing

� Provide stopping rules for testing – “how many test” are needed

� Support test automation

� Make testing more efficient and effective

� Provide grater assurance that the software is of high quality and
reliability

How do we start applying these ideas in practice

More comprehensive
Less overlap

Spring 2024 – University of Virginia 23© Praphamontripong

How to Improve Testing?
� Test engineers need more and better software tools

� Test engineers need to adopt practices and techniques that lead
to more efficient and effective testing

� More education
� Different management organizational strategies

� Testing / QA teams need more technical expertise
� Developer expertise has been increasing dramatically

� Testing / QA teams need to specialize more

Spring 2024 – University of Virginia 24© Praphamontripong

Changes in Practice
� Reorganize test and QA teams to make effective use of individual

abilities – one math-head can support many testers

� Retrain test and QA teams
� Use a process like MDTD
� Learn more testing concepts

� Encourage researchers to
� Invent processes and techniques
� Embed theoretical ideas in tools
� Demonstrate economic value of criteria testing

� Which criteria should be used and when?
� When does the extra effort pay off?

� Get involved in curricular design efforts through industrial
advisory boards

Spring 2024 – University of Virginia 25© Praphamontripong

Summary
� Many companies still use “monkey testing”

� A human sits at the keyboard, wiggles the mouse and bangs the
keyboard

� No automation

� Minimal training required

� Some companies automate human-designed tests

� But companies that use both automation and criteria-
based testing save money, find more faults, and build
better software

Spring 2024 – University of Virginia 26© Praphamontripong

What’s Next?
Structures for Criteria-Based Testing

Four structures for modeling software

Input
space

Graph

Source

Design

Specs

Use cases

A
pp

lie
d

to

Logic

Source

Specs

FSMs

DNF

A
pp

lie
d

to

Syntax

Source

Models

Integration

Inputs

A
pp

lie
d

to

