Coverage-Based
Test Design

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 5]

Spring 2024 — University of Virginia © Praphamontripong 1

Today’s Objectives

nat is criteria-based test design?
Ny are test criteria used?

no will benefit from using test criteria? How?

nen are test criteria used?

. How are test criteria used?

- What are existing criteria? How are criteria
categorized?

- Which criterion should be used? When? Why? How?

Later

Spring 2024 — University of Virginia © Praphamontripong

All Possible Inputs?

. Let’s try!!

- Create all possible test inputs for the given program

/**
* Determine if the argument is a leap year in the Gregorian calendar
* Assumes that arguments are in Gregorian calendar range (1582 and onwards)

year value in range for Gregorian calendar
true iff year is a leap year

public static boolean isLeap(int year)

4
if (year % 4 = 0) return false;

if (year % 400 == 0) return true;
if (year % 100 == 0) return false;

return true;

- How many test inputs?
- List them all ...?

Spring 2024 — University of Virginia © Praphamontripong

iteria

00 00 00 00 00 00
00 00 00 0o ao ao
© Praphamontripong

Coverage Cr

[0 Possible test case

number of possible tests we should execute

found per test case

)
ot
-
=
=
S~
i)
wn
(0]
>
Q
i
i)
(VI
@)
4
-
@)
0]
Q
0]
(0]
O
s
0]
)
)
(VI
@)
4
Q
0]
@)
>
0]
Q
ot
-
U—
O
()
@)
-
O
0]
Q
QO

- Divide the input space to maximize the number of faults

- Provide useful rules for when to stop testing

Spring 2024 — University of Virginia

Benefits of Coverage Criteria

Adequate
- Have I got enough tests?

Guidance
- Where should I test more?

Automation
- Generate test that satisfies a test requirement

Spring 2024 — University of Virginia © Praphamontripong

Two Ways to Use Test Criteria

- Directly generate test case values to satisfy the criterion

- Often assumed by the research community
- Most obvious way to use criteria
- Very hard without automated tools

- Evaluate existing test sets
Usually favored by industry
Sometimes misleading

If tests do not reach 100% coverage, what does that
mean?

We don’t have enough data to tell how much 99% coverage is
worse than 100% coverage

Spring 2024 — University of Virginia © Praphamontripong

Implementation of Test Criteria

Generator

- A procedure that automatically generate values to satisfy a
criterion

- Automated test generation tools

Recognizer

- A procedure that decides whether a set of test case values
satisfies a criterion

- Coverage analysis tools; e.g., JaCoCo, Eclipse’s coverage

It is possible to recognize whether test cases satisfy a criterion

far more than it is possible to generate tests that satisfy the
criterion

Spring 2024 — University of Virginia © Praphamontripong

Revisit

Model-Driven Test Design

model / test e
> : requirements /
structure requirements
test specs

Test Design

test Design
requirements Abstraction Level

Implementation N
software Abstraction Level input

artifact

values

xio®™
st N—‘toma
te

pass / test test test
fail results scripts cases

Test Test
Evaluation Execution

[AO, p.30]
Spring 2024 — University of Virginia © Praphamontripong 8

Changing Notions In Testing

Old view (phase)

Requirements
Analysis

Architectural
Design

Subsystem
Design

Detailed
Design

Implementation

Spring 2024 — University of Virginia

Acceptance
Test

Integration
Test

Module
Test

[AO, p 21]

© Praphamontripong

New view
(structures and criteria)

Input space (sets)

A: {0, 1, >1}
B: {undergraduate, graduate}
C: {1000, 2000, 3000, 4000}

Graphs ‘\
N\ /.

Logical expressions

(not X or not Y) and A and B

Syntax structures (grammar)

New: Structures and Criteria

Input space (sets)

A: {0, 1, >1}
B: {undergraduate, graduate}
C: {1000, 2000, 3000, 4000}

Graphs .
T
\ @

Logical expressions

(not X or not Y) and A and B

Syntax structures (grammar)

Spring 2024 — University of Virginia

Test design is largely the same at each
phase

« Creating the structure is different

- Choosing values and automating the
tests is different

Tester defines a structure of the
software and then find ways to cover it

Structures can be extracted from lots
of software artifacts

* Graphs - from UML use cases, finite state
machines, source code, ...

« Logical expressions - from decisions in

program source, guards on transitions,
conditionals in use cases, ...

© Praphamontripong

Test Coverage Criteria

Coverage Criterion

- A rule or collection of rules that impose test requirements on
a test set

Test requirement

- A specific element of a software artifact that a test case
must satisfy or cover

- Depends on the specific artifact under test

Revisit

Test case

A set of test inputs, execution conditions, and expected results,
developed for a particular test scenario to verify whether the
system under test satisfies a specific requirement

Test set
A set of test cases

Spring 2024 — University of Virginia © Praphamontripong

Example: Blow Pop Coverage

Flavors Colors

Cherry - Red (Cherry,
strawberry,
watermelon)

Blue (Blue razz berry)
Green (Sour apple)

Blue razz berry
Strawberry
Sour apple
Grape

Purple (Grape
Watermelon ple (be)

Possible coverage criteria:

C1: Taste one blow pop of each flavor

(deciding if red blow pop is cherry, strawberry, or watermelon is
a controllability problem)

C2: Taste one blow pop of each color

Spring 2024 — University of Virginia © Praphamontripong

Example: Blow Pop Coverage

Test requirements for C1

Flavors
Cherry
Blue razz berry
Strawberry
Sour apple
Grape
Watermelon

tri:
tr2:
tr3:
tr4:
tr5:
tré6:

Cherry

Blue razz berry TR1 = {Cherry,
Blue razz berry,

Strawberry,
Sour apple Sour apple,
Grape Grape,
Watermelon}

Strawberry

Watermelon

Colors

Red (Cherry,
strawberry,
watermelon)

Blue (Blue razz
berry)

Green (Sour apple)
Purple (Grape)

Spring 2024 — University of Virginia

Test requirements for C2

tri:
tr2:
tr3:
tr4:

Red

Blue TR2 = {Red, Blue,

Green Green, Purple}

Purple

© Praphamontripong

Coverage

Given a set of test requirements TR for coverage criterion C,
a test set T satisfies C coverage if and only if for every test
requirement tr in TR, there is at least one test t in T such
that t satisfies tr

Adequate test set - test set that satisfies all test requirements

Minimal test set — removing any single test from the set will
cause the test set to no longer satisfy all test requirements

Spring 2024 — University of Virginia © Praphamontripong

Blow Pop Coverage (continue)

C1: Flavor criterion Test sets

TR1 = {Cherry, Tl = {one Cherry,
Blue razz berry, one Blue razz be_rry,
Strawberry, three Strawberries,
Sour apple, one Sour apple,
Grape, two Grapes,
Watermelon} four Watermelons?}

Satishy C27
. . Satisfy C2? Yes
C2: Color criterion Y

TR2 = {Red, Blue,
Green, Purple}

T2 = {one Blue razz berry,
one Sour apple,
two Grapes,

Adequate test set? three Watermelons}
Minimal test set? Satisfy C1? NG
Yes

15

Satisfy C2?

Spring 2024 — University of Virginia © Praphamontripong

Coverage Level

- It is sometimes expensive to satisfy a coverage criterion.

- Testers compromise by trying to achieve a certain
coverage level.

Coverage level = number of test requirements satisfied by T
Size of TR

Spring 2024 — University of Virginia © Praphamontripong

Blow Pop Coverage (continue)

C1: Flavor criterion Test sets

TR1 = {Cherry, Tl = {one Cherry,
Blue razz berry, one Blue razz be_rry,
Strawberry, three Strawberries,
Sour apple, one Sour apple,
Grape, two Grapes,
Watermelon} four Watermelons?}

Satisfy C1? Coverage level 6 / 6
N Satisfy C2? 4 /4
CZ2: Color criterion 1 /

TR2 = {Red, Blue,
Green, Purple}

T2 = {one Blue razz berry,
one Sour apple,
two Grapes,
three Watermelons}

Satisfy C1? Coverage level 4 / 6
Satisfy C2? 4 / 4

Spring 2024 — University of Virginia © Praphamontripong

Infeasible Test Requirement

Example:

" sl, s2, s3: sides of the putative triangle
* enum describing type of triangle
o
public static Triangle triangle (int sl, int s2, int s3)

Imagine if we have the following test requirements
TR = {all sides > 0, all sides = 0, all sides < 0}

- Some test requirements are infeasible (i.e., cannot be satisfied)
- No test case values exist that meet the test requirements
- Example: dead code

- Detection of infeasible test requirements is undecidable for most test
criteria

- 100% coverage is usually impossible in practice

Spring 2024 — University of Virginia © Praphamontripong

Comparing Criteria

Criteria Subsumption

- A test criterion C1 subsumes CZ2 if and only if every set of test
cases that satisfies criterion C1 also satisfies C2

Must be true for every test set

test req. test req. test req. test req.
for C1 for C2 for C1 for C2
test req.

for C1 t \ tri tri tri

rl
tr2
s >< tr2 tr2 tr2
test req. trd tr3 tr3 tr3
for C2 tr5 >< tra trd trd
tré /

C1 subsumes C2 C1 subsumes C2

(superset) C1 subsumes C2 C2 subsumes C1
(many-to-one) (one-to-one)

Spring 2024 — University of Virginia © Praphamontripong

Blow Pop Coverage (Subsume)

C1: Flavor criterion Test sets
TR1 = {Cherry, (considering 2 test sets, T1 and T2)

Blue razz berry,
Strawberry,
Sour apple,
Grape,
Watermelon}

T1 = {one Cherry, one Blue razz berry,
three Strawberries,
one Sour apple, two Grapes,
four Watermelons?}

Satisfy C17? Yes (C1 adequate tests)

m Satisfy C27? Yes (C2 adequate tests)

CZ2: Color criterion T2 = {one Blue razz berry,

one Sour apple, two Grapes,
three Watermelons}

Satisfy C17? No
Satisfy C27? Yes (C2 adequate tests)

Spring 2024 — University of Virginia © Praphamontripong

TR2 = {Red, Blue,
Green, Purple}

Good Coverage Criterion

It should be fairly easy compute test requirements
automatically

It should be efficient to generate test values

The resulting tests should reveal as many faults as possible

Additional notes:

Subsumption is only a rough approximation of fault revealing
capability

Researchers still need to gives us more data on how to
compare coverage criteria

Spring 2024 — University of Virginia © Praphamontripong

Advantages of Using Criteria

- Yield fewer tests that are more effective at finding faults
Design test inputs that are more likely to find problems

- Increase traceability

- Answer the “why” for each test
- Support regression testing

- Provide stopping rules for testing — "how many test” are needed
« Support test automation

] . _ More comprehensive
- Make testing more efficient and effective Less overlap

- Provide grater assurance that the software is of high quality and
reliability

How do we start applying these ideas in practice

Spring 2024 — University of Virginia © Praphamontripong

How to Improve Testing?

- Test engineers need more and better software tools

- Test engineers need to adopt practices and techniques that lead
to more efficient and effective testing

- More education
- Different management organizational strategies

- Testing / QA teams need more technical expertise
- Developer expertise has been increasing dramatically

- Testing / QA teams need to specialize more

Spring 2024 — University of Virginia © Praphamontripong

Changes in Practice

- Reorganize test and QA teams to make effective use of individual
abilities — one math-head can support many testers

- Retrain test and QA teams

Use a process like MDTD
Learn more testing concepts

- Encourage researchers to
Invent processes and techniques

Embed theoretical ideas in tools

Demonstrate economic value of criteria testing
Which criteria should be used and when?
When does the extra effort pay off?

- Get involved in curricular design efforts through industrial
advisory boards

Spring 2024 — University of Virginia © Praphamontripong

Summary

Many companies still use "monkey testing”

A human sits at the keyboard, wiggles the mouse and bangs the
keyboard

No automation

Minimal training required

Some companies automate human-designed tests

But companies that use both automation and criteria-
based testing save money, find more faults, and build
better software

Spring 2024 — University of Virginia © Praphamontripong

What's Next?

Structures for Criteria-Based Testing

Four structures for modeling software

| L\ |

Graph Logic Syntax

L source L Source L Source

— Models

— Design — Specs

Applied to
Applied to
Applied to

— Specs — FSMs — Integration

— Use cases — DNF — Inputs

Spring 2024 — University of Virginia © Praphamontripong

