
Spring 2024 – University of Virginia 1© Praphamontripong

Input Space Partitioning
Testing

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 6.1]



Spring 2024 – University of Virginia 2© Praphamontripong

Structures for Criteria-Based Testing

Four structures for modeling software

Input 
space

Graph

Source

Design

Specs

Use cases

A
pp

lie
d 

to

Logic

Source

Specs

FSMs

DNF

A
pp

lie
d 

to

Syntax

Source

Models

Integration

Inputs

A
pp

lie
d 

to

R--R RI-R RIPR---R



Spring 2024 – University of Virginia 3© Praphamontripong

Today’s Objectives
• Input domain (or input space) 

• Fundamental of Input Space Partitioning (ISP)
� Benefits of ISP

� Partitioning input domain

� Modeling input domain



Spring 2024 – University of Virginia 4© Praphamontripong

Software Testing

Test values 
(inputs)

Actual 
results

Program Expected 
results

vs

1. Testing is fundamentally about choosing finite sets of 
values from the input domain of the software being 
tested

Revisit

2. Given the test inputs, compare the actual results with 
the expected results

• Testing = process of finding test input values to 
check against a software

Test case consists of test values and expected results



Spring 2024 – University of Virginia 5© Praphamontripong

Input Domains
• All possible values that the input parameters can have 

• The input domain may be infinite even for a small program

• Testing is fundamentally about choosing finite sets of 
values from the input domain

• Input parameters can be 
� Parameters to a method (in unit testing)

� Global variables (in unit testing)

� Objects representing current state (in class or integration testing) 

� User level inputs (in system testing)

� Data read from a file 



Spring 2024 – University of Virginia 6© Praphamontripong

Example Input Domains
# Return index of the first occurrence of a letter in string,
# Otherwise, return -1

def get_index_of(string, letter):
index = -1
for i in range(1, len(string)):

if string[i] == letter:
return i

return index

What are input parameters?What is the domain of string?
What is the domain of letter?



Spring 2024 – University of Virginia 7© Praphamontripong

Overview: ISP
• Input space partitioning describes the input domain of 

the software

• Domain (D) are partitioned into blocks (b1, b2, .., bn)

• The partition (or blocks) must satisfy two properties
� Blocks must not overlap (disjointness)
� Blocks must cover the entire domain (completeness)

• At least one value is chosen from each block
� Each value is assumed to be equally useful for testing

D

b1 b2

b3

zero negative

positive numbers



Spring 2024 – University of Virginia 8© Praphamontripong

Benefits of ISP
• Easy to get started

� Can be applied with no automation and very little training

• Easy to adjust to procedure to get more or fewer tests

• No implementation knowledge is needed
� Just a description of the inputs

• Can be equally applied at several levels of testing
� Unit (inputs from method parameters and non-local variables)

� Integration (inputs from objects representing current state)

� System (user-level inputs to a program)



Spring 2024 – University of Virginia 9© Praphamontripong

Applying ISP

Apply a test criterion to choose 
combinations of blocks

Derive test values

Task I: Model 
input domain

(choose characteristics 
and partition)

Task II: Choose 
combinations 
of values

(apply coverage criterion)

Identify parameters, return types, 
return values, exceptional behavior

Identify testable functions

Model the input domain

Input Domain Model (IDMs)

The most creative 
design step in using ISP

Test requirements (TRs)

Test cases



Spring 2024 – University of Virginia 10© Praphamontripong

Modeling the Input Domain
• The domain is scoped by the parameters

• Characteristics define the structure of the input domain
� Should be based on the input domain – not program source

Design characteristics

Partition each 
characteristic into blocks

Identify values of 
each block

• Two Approaches
• Interface-based (simpler)

� Develop characteristics from 
individual parameters

• Functionality-based (harder)
� Develop characteristics from a 

behavior view



Spring 2024 – University of Virginia 11© Praphamontripong

Design Characteristics
Interface-based

� Develop characteristics 
directly from parameters
� Translate parameters to 

characteristics

� Consider each parameter 
separately

� Rely mostly on syntax

� Ignore some domain and 
semantic information
� Can lead to an incomplete IDM

� Ignore relationships among 
parameters

Functionality-based

� Develop characteristics that 
correspond to the intended 
functionality

� Can use relationships among 
parameters, relationships of 
parameters with special values 
(null, blank, …), preconditions, 
and postconditions

� Incorporate domain and 
semantic knowledge
� May lead to better tests

� The same parameter may 
appear in multiple 
characteristics



Spring 2024 – University of Virginia 12© Praphamontripong

Partition Characteristics 
Strategies for both approaches

� Partition is a set of blocks, designed using knowledge of what the 
software is supposed to do

� Each block represents a set of values

� More blocks means more tests

� Partition must satisfy disjointness and completeness properties

• Better to have more characteristics with few blocks
� Fewer mistakes and fewer tests

How partitions should be identified and 
how representative value should be selected from each block



Spring 2024 – University of Virginia 13© Praphamontripong

Partitioning and Identifying Values

Strategies for both approaches

� Include valid, invalid and special values

� Sub-partition some blocks

� Explore boundaries of domains

� Include values that represent “normal use”

� Try to balance the number of blocks in each characteristic

� Check for completeness and disjointness

• Each value is assumed to be equally useful for testing



Spring 2024 – University of Virginia 14© Praphamontripong

Interface-based Example1
# Return index of the first occurrence of a letter in string,
# Otherwise, return -1

def get_index_of(string, letter):

1. Identify testable functions
� get_index_of()

2. Identify parameters, return types, return values, and 
exceptional behavior
� Parameters: string, letter
� Return type: int
� Return value: index of the first occurrence, -1 if no occurrence
� Exceptional behavior: ??

Task I: Model Input Domain



Spring 2024 – University of Virginia 15© Praphamontripong

Interface-based Example1 (cont.)
3. Model the input domain

� Develop characteristics
• C1 = string is empty
• C2 = letter is empty

� Partition characteristics

� Identify (possible) values

What are other possible 
characteristics?

Characteristic b1 b2

C1 = string is empty True False

C2 = letter is empty True False

Characteristic b1 b2

C1 = string is empty "" "testing"

C2 = letter is empty "" "t"

Complete? Disjoint?



Spring 2024 – University of Virginia 16© Praphamontripong

Interface-based Example1 (cont.)

Test string letter Expected result

T1 (True,True) "" "" -1
T2 (True, False) "" "t" -1
T3 (False,True) "testing" "" -1
T4 (False, False) "testing" "t" 0

4. Combine partitions to define test requirements
� Assumption: choose all possible combinations

� Test requirements -- number of tests (upper bound) = 2 * 2 = 4

(True, True) (False, True)
(True, False) (False, False)

� Eliminate redundant tests and infeasible tests

5. Derive test values

Task II: Choose combinations of values



Spring 2024 – University of Virginia 17© Praphamontripong

Functionality-based Example1
# Return index of the first occurrence of a letter in string,
# Otherwise, return -1

def get_index_of(string, letter):

1. Identify testable functions
� get_index_of()

2. Identify parameters, return types, return values, and 
exceptional behavior
� Parameters: string, letter
� Return type: int
� Return value: index of the first occurrence, -1 if no occurrence
� Exceptional behavior: ??

Task I: Model Input Domain



Spring 2024 – University of Virginia 18© Praphamontripong

Functionality-based Example1 (cont.)
3. Model the input domain

� Develop characteristics
• C1 = number of occurrence of letter in string
• C2 = letter occurs first in string

� Partition characteristics

� Identify (possible) values

What are other possible 
characteristics?

Characteristic b1 b2 b3
C1 = number of occurrence of letter in string 0 1 > 1
C2 = letter occurs first in string True False

C b1 b2 b3
C1 "software engineering", "" "software engineering", "s" "software engineering", "n"
C2 "software engineering", "s" "software engineering", "t"

Complete? Disjoint?



Spring 2024 – University of Virginia 19© Praphamontripong

Test string letter Expected result
T1 (0, False) "software engineering" "" -1
T2 (1,True) "software engineering" "s" 0
T3 (1, False) "software engineering" "t" 3
T4 (>1,True) "software testing" "s" 0
T5 (>1, False) "software engineering" "n" 10

4. Combine partitions into tests
� Assumption: choose all possible combinations
� Test requirements -- number of tests (upper bound) = 3 * 2 = 6

(0, True) (1, True) (>1, True)
(0, False) (1, False) (>1, False)

� Eliminate redundant tests and infeasible tests

5. Derive test values

Task II: Choose combinations of values

Functionality-based Example1 (cont.)



Spring 2024 – University of Virginia 20© Praphamontripong

Interface-based Example2
public enum Triangle {Scalene, Isosceles, Equilateral, Invalid}
public static Triangle triang (int Side1, int Side2, int Side3)
# Side1, Side2, and Side3 represent the lengths of the sides of a 
#    triangle. 
# Return the appropriate enum value

1. Identify testable functions
� triang()

2. Identify parameters, return types, return values, and 
exceptional behavior
� Parameters: Side1, Side2, Side3
� Return type: enum
� Return value: enum describing type of a triangle
� Exceptional behavior: ??

Task I: Model Input Domain



Spring 2024 – University of Virginia 21© Praphamontripong

Interface-based Example2 (cont.)
3. Model the input domain

� Develop characteristics
• C1 = relation of Side1 to 0
• C2 = relation of Side2 to 0
• C3 = relation of Side3 to 0

� Partition characteristics

� Identify (possible) values

Characteristic b1 b2 b3
C1 = relation of Side1 to 0 greater than 0 equal to 0 less than 0
C2 = relation of Side2 to 0 greater than 0 equal to 0 less than 0
C3 = relation of Side3 to 0 greater than 0 equal to 0 less than 0

Characteristic b1 b2 b3
C1 = relation of Side1 to 0 7 0 -3
C2 = relation of Side2 to 0 3 0 -1
C3 = relation of Side3 to 0 2 0 -2

What are other possible 
characteristics?

Valid triangles?

Complete? Disjoint?



Spring 2024 – University of Virginia 22© Praphamontripong

Characteristic b1 b2 b3 b4
C1 = length of Side1 2 1 0 -1
C2 = length of Side2 2 1 0 -1
C3 = length of Side3 2 1 0 -1

� Refine characteristics (can lead to more tests)

• C1 = length of Side1
• C2 = length of Side2
• C3 = length of Side3

� Partition characteristics

� Identify (possible) values

Characteristic b1 b2 b3 b4
C1 = length of Side1 greater than 1 equal to 1 equal to 0 less than 0
C2 = length of Side2 greater than 1 equal to 1 equal to 0 less than 0
C3 = length of Side3 greater than 1 equal to 1 equal to 0 less than 0

Valid triangles?

Refining characterization to 
get more fine-grained testing 
(if the budget allows)

Complete? Disjoint?

Boundary tests

Interface-based Example2 (cont.)



Spring 2024 – University of Virginia 23© Praphamontripong

4. Combine partitions to define test requirements
� Assumption: choose all possible combinations

� Test requirements -- number of tests (upper bound) = 4*4*4 = 64
(C1b1, C2b1, C3b1) (C1b1, C2b2, C3b1) (C1b1, C2b3, C3b1) (C1b1, C2b4, C3b1)
(C1b1, C2b1, C3b2) (C1b1, C2b2, C3b2) (C1b1, C2b3, C3b2) (C1b1, C2b4, C3b2)
(C1b1, C2b1, C3b3) (C1b1, C2b2, C3b3) (C1b1, C2b3, C3b3) (C1b1, C2b4, C3b3)
(C1b1, C2b1, C3b4) (C1b1, C2b2, C3b4) (C1b1, C2b3, C3b4) (C1b1, C2b4, C3b4)
(C1b2, C2b1, C3b4) (C1b2, C2b2, C3b4) (C1b2, C2b3, C3b4) (C1b2, C2b4, C3b4)

…

� Eliminate redundant tests and infeasible tests

5. Derive test values
(2, 2, 2) (2, 1, 2) (2, 0, 2) (2, -1, 2)
(2, 2, 1) (2, 1, 1) (2, 0, 1) (2, -1, 1)

… 

Task II: Choose combinations of values

Do we really need these many tests?

Interface-based Example2 (cont.)



Spring 2024 – University of Virginia 24© Praphamontripong

Functionality-based Example2
public enum Triangle {Scalene, Isosceles, Equilateral, Invalid}
public static Triangle triang (int Side1, int Side2, int Side3)
# Side1, Side2, and Side3 represent the lengths of the sides of a 
#    triangle. 
# Return the appropriate enum value

1. Identify testable functions
� triang()

2. Identify parameters, return types, return values, and 
exceptional behavior
� Parameters: Side1, Side2, Side3
� Return type: enum
� Return value: enum describing type of a triangle
� Exceptional behavior: ??

Task I: Model Input Domain



Spring 2024 – University of Virginia 25© Praphamontripong

Functionality-based Example2 (cont.)
3. Model the input domain

� Develop characteristics

• C1 =Geometric classification

� Partition characteristics

� Refine characteristics

� Identify (possible) values

Characteristic b1 b2 b3 b4
C1 = Geometric classification scalene isosceles equilateral invalid

What are other possible 
characteristics?

Complete? Disjoint?

Characteristic b1 b2 b3 b4

C1 = Geometric classification scalene Isosceles, not 
equilateral equilateral invalid

Complete? Disjoint?

Characteristic b1 b2 b3 b4
C1 = Geometric classification (4, 5, 6) (3, 3, 4) (3, 3, 3) (3, 4, 8)



Spring 2024 – University of Virginia 26© Praphamontripong

4. Combine partitions into tests
� Assumption: choose all possible combinations
� Test requirements -- number of tests (upper bound) = 4

(C1b1) (C1b2) (C1b3) (C1b4)
� Eliminate redundant tests and infeasible tests

5. Derive test values

Task II: Choose combinations of values

This characteristic results in a simple set of test requirements. 
Is this good enough?  

If we define the characteristics differently? Multiple IDMs?

Test Side1 Side2 Side3 Expected result
T1 (scalene) 4 5 6 scalene
T2 (isosceles, not equilateral) 3 3 4 isosceles
T3 (equilateral) 3 3 3 equilateral
T4 (invalid) 3 4 8 invalid

Functionality-based Example2 (cont.)



Spring 2024 – University of Virginia 27© Praphamontripong

ISP Task I Summary
� Easy to apply, even with no automation and little training
� Easy to add more or fewer tests
� Rely on the input space, not implementation knowledge
� Applicable to all levels of testing, effective and widely used

Interface-based approach

Strength
� Easy to identify characteristics
� Easy to translate abstract tests 

into executable test cases

Weakness
� Some information will not be 

used – lead to incomplete IDM
� Ignore relationships among 

parameters

Functionality-based approach

Strength
� Incorporate semantic 
� Input domain modeling and test 

case generation in early 
development phases

Weakness
� Difficult to design reasonable 

characteristics
� Hard to generate tests



Spring 2024 – University of Virginia 28© Praphamontripong

What’s Next?
� How should we consider multiple partitions or IDMs at 

the same time?

� What combinations of blocks should we choose values 
from? 

� How many tests should we expect? 


