
Spring 2024 – University of Virginia 1© Praphamontripong

ISP Coverage Criteria

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 6.2-6.3]

Spring 2024 – University of Virginia 2© Praphamontripong

Structures for Criteria-Based Testing

Four structures for modeling software

Input
space

Graph

Source

Design

Specs

Use cases

A
pp

lie
d

to

Logic

Source

Specs

FSMs

DNF

A
pp

lie
d

to

Syntax

Source

Models

Integration

Inputs

A
pp

lie
d

to

R--R RI-R RIPR---R

Spring 2024 – University of Virginia 3© Praphamontripong

Today’s Objectives
� How should we consider multiple partitions or IDMs at

the same time?

� What combinations of blocks should we choose values
from?

� How many tests should we expect?

Spring 2024 – University of Virginia 4© Praphamontripong

Applying ISP

Apply a test criterion to choose
combinations of blocks

Task I: Model
input domain

Task II: Choose
combinations
of values

Identify parameters, return types,
return values, exceptional behavior

Identify testable functions

Model the input domain

Input Domain Model (IDMs)

The most creative
design step in using ISP

Test requirements (TRs)

Derive test inputs

Test cases

Revisit

Spring 2024 – University of Virginia 5© Praphamontripong

Modeling the Input Domain
• The domain is scoped by the parameters

• Characteristics define the structure of the input domain
� Should be based on the input domain – not program source

Design characteristics

Partition each
characteristic into blocks

Identify values of
each block

• Two Approaches
• Interface-based (simpler)

� Develop characteristics from
individual parameters

• Functionality-based (harder)
� Develop characteristics from a

behavior view

Revisit

Spring 2024 – University of Virginia 6© Praphamontripong

Using Multiple Partitions or IDMs
� Some programs may have many parameters

� Typical to create several small IDMs – divide-and-conquer

� Some parameters may appear in more than one IDM
� Leading to overlap IDMs

� Some IDMs may include specific constraints (such as
invalid values)

� Multiple partitions or IDMs can be combined to create tests

How should we consider multiple partitions or IDMs
at the same time?

Spring 2024 – University of Virginia 7© Praphamontripong

Applying ISP

Apply a test criterion to choose
combinations of blocks

Derive test inputs

Task I: Model
input domain

Task II: Choose
combinations
of values

Identify parameters, return types,
return values, exceptional behavior

Identify testable functions

Model the input domain

Input Domain Model (IDMs)

Test requirements (TRs)

Test cases Today’s focus

Spring 2024 – University of Virginia 8© Praphamontripong

Running Example: triang()
� Partition characteristics

� For convenience, let’s relabel the blocks

� Possible values

Characteristic b1 b2 b3 b4
C1) = length of Side1 greater than 1 equal to 1 equal to 0 less than 0
C2) = length of Side2 greater than 1 equal to 1 equal to 0 less than 0
C3) = length of Side3 greater than 1 equal to 1 equal to 0 less than 0

Characteristic b1 b2 b3 b4
A = length of Side1 A1 A2 A3 A4
B = length of Side2 B1 B2 B3 B4
C = length of Side3 C1 C2 C3 C4

Characteristic b1 b2 b3 b4
A = length of Side1 2 1 0 -1
B = length of Side2 2 1 0 -1
C = length of Side3 2 1 0 -1

Spring 2024 – University of Virginia 9© Praphamontripong

Choosing Combinations of Values
� Approaches to choose values

� Select values randomly
� Quality of tests depends on experience and expertise

� Use coverage criteria – to choose effective subsets
� Quality of tests depends on the strength of the criteria

• ISP Coverage criteria
� All Combinations Coverage (ACoC)
� Each Choice Coverage (EEC)
� Pair-Wise Coverage (PWC)
� T-Wise Coverage (TWC) – expensive, unclear benefits
� Base Choice Coverage (BCC)
� Multiple Base Choice Coverage (MBCC)

Spring 2024 – University of Virginia 10© Praphamontripong

All Combinations (ACoC)

• Number of tests =

Q = number partitions (or characteristics), B = number blocks

• More tests à likely to find more faults

• More tests than necessary

• Impractical when more than two or three partitions are defined

All combinations of blocks from all characteristics must be used

P Q
i=1

(Bi)

Spring 2024 – University of Virginia 11© Praphamontripong

ACoC - Example
� Applying ACoC to derive test requirements

A1

C1
C2
C3
C4

B1

C1
C2
C3
C4

B2

C1
C2
C3
C4

B3

C1
C2
C3
C4

B4

A2

C1
C2
C3
C4

B1

C1
C2
C3
C4

B2

C1
C2
C3
C4

B3

C1
C2
C3
C4

B4

A3

C1
C2
C3
C4

B1

C1
C2
C3
C4

B2

C1
C2
C3
C4

B3

C1
C2
C3
C4

B4

A4

C1
C2
C3
C4

B1

C1
C2
C3
C4

B2

C1
C2
C3
C4

B3

C1
C2
C3
C4

B4

Spring 2024 – University of Virginia 12© Praphamontripong

ACoC – Example (cont.)
� Test requirements: 4*4*4 = 64 tests

This is almost
certainly more than
we need

Only 8 are valid
(all sides greater
than zero)

(A1, B1, C1)
(A1, B1, C2)
(A1, B1, C3)
(A1, B1, C4)

(A1, B2, C1)
(A1, B2, C2)
(A1, B2, C3)
(A1, B2, C4)

(A1, B3, C1)
(A1, B3, C2)
(A1, B3, C3)
(A1, B3, C4)

(A1, B4, C1)
(A1, B4, C2)
(A1, B4, C3)
(A1, B4, C4)

(A2, B1, C1)
(A2, B1, C2)
(A2, B1, C3)
(A2, B1, C4)

(A2, B2, C1)
(A2, B2, C2)
(A2, B2, C3)
(A2, B2, C4)

(A2, B3, C1)
(A2, B3, C2)
(A2, B3, C3)
(A2, B3, C4)

(A2, B4, C1)
(A2, B4, C2)
(A2, B4, C3)
(A2, B4, C4)

(A3, B1, C1)
(A3, B1, C2)
(A3, B1, C3)
(A3, B1, C4)

(A3, B2, C1)
(A3, B2, C2)
(A3, B2, C3)
(A3, B2, C4)

(A3, B3, C1)
(A3, B3, C2)
(A3, B3, C3)
(A3, B3, C4)

(A3, B4, C1)
(A3, B4, C2)
(A3, B4, C3)
(A3, B4, C4)

(A4, B1, C1)
(A4, B1, C2)
(A4, B1, C3)
(A4, B1, C4)

(A4, B2, C1)
(A4, B2, C2)
(A4, B2, C3)
(A4, B2, C4)

(A4, B3, C1)
(A4, B3, C2)
(A4, B3, C3)
(A4, B3, C4)

(A4, B4, C1)
(A4, B4, C2)
(A4, B4, C3)
(A4, B4, C4)

Zero length:
A3, B3, C3

Negative length:
A4, B4, C4

Spring 2024 – University of Virginia 13© Praphamontripong

� Substituting test input values
(2, 2, 2)
(2, 2, 1)
(2, 2, 0)
(2, 2, -1)

(2, 1, 2)
(2, 1, 1)
(2, 1, 0)
(2, 1, -1)

(2, 0, 2)
(2, 0, 1)
(2, 0, 0)
(2, 0, -1)

(2, -1, 2)
(2, -1, 1)
(2, -1, 0)
(2, -1, -1)

(1, 2, 2)
(1, 2, 1)
(1, 2, 0)
(1, 2, -1)

(1, 1, 2)
(1, 1, 1)
(1, 1, 0)
(1, 1, -1)

(1, 0, 2)
(1, 0, 1)
(1, 0, 0)
(1, 0, -1)

(1, -1, 2)
(1, -1, 1)
(1, -1, 0)
(1, -1, -1)

(0, 2, 2)
(0, 2, 1)
(0, 2, 0)
(0, 2, -1)

(0, 1, 2)
(0, 1, 1)
(0, 1, 0)
(0, 1, -1)

(0, 0, 2)
(0, 0, 1)
(0, 0, 0)
(0, 0, -1)

(0, -1, 2)
(0, -1, 1)
(0, -1, 0)
(0, -1, -1)

(-1, 2, 2)
(-1, 2, 1)
(-1, 2, 0)
(-1, 2, -1)

(-1, 1, 2)
(-1, 1, 1)
(-1, 1, 0)
(-1, 1, -1)

(-1, 0, 2)
(-1, 0, 1)
(-1, 0, 0)
(-1, 0, -1)

(-1, -1, 2)
(-1, -1, 1)
(-1, -1, 0)
(-1, -1, -1)

Different choices of values from the same block are equivalent from
a testing perspective. Thus, we need only one value from each block

Refining TRs by
eliminating
redundant and
infeasible tests

Substituting values
before refining TRs
à Useless tests

Always refine TRs
before deriving test
values

ACoC – Example (cont.)

Spring 2024 – University of Virginia 14© Praphamontripong

Each Choice (ECC)

• Number of tests =

Q = number partitions (or characteristics), B = number blocks

• Flexibility in terms of how to combine the test values

• Fewer tests à cheap but may be ineffective

• Not require values to be combined with other values
à weak criterion

One value from each block for each characteristic must be used
in at least one test case

Max Q

i=1
(Bi)

Spring 2024 – University of Virginia 15© Praphamontripong

ECC – Example
� Applying ECC to derive test requirements

Blocks for characteristic A = {A1, A2, A3, A4}
Blocks for characteristic B = {B1, B2, B3, B4}
Blocks for characteristic C = {C1, C2, C3, C4}

Possible combination Another possible combination

A1 C1B1

A2 C2B2

A3 C3B3

A4 C4B4

A1 C1B4

A2 C2B3

A3 C3B2

A4 C4B1

Spring 2024 – University of Virginia 16© Praphamontripong

ECC – Example (cont.)
� Test requirements: Max number of blocks = 4

� Substituting test input values

(A1, B1, C1)
(A2, B2, C2)
(A3, B3, C3)
(A4, B4, C4)

(2, 2, 2)
(1, 1, 1)
(0, 0, 0)
(-1, -1, -1)

What are missing?

Testers sometimes recognize that certain values are important.
To strengthen ECC, domain knowledge of the program must be
incorporated.

What is the most important block for each partition?

Spring 2024 – University of Virginia 17© Praphamontripong

Pair-Wise (PWC)

• Number of tests =

Q = number partitions (or characteristics), B = number blocks

• Allow the same test case to cover more than one unique pair
of values

A value from each block for each characteristic must be combined
with a value from every block for each other characteristic

(Max Q

i=1
(Bi)) * (Max Q

j=1, j!=i
(Bj))

Spring 2024 – University of Virginia 18© Praphamontripong

PWC – Example 1: triang()
� Applying PWC to derive test requirements

Blocks for characteristic A = {A1, A2, A3, A4}
Blocks for characteristic B = {B1, B2, B3, B4}
Blocks for characteristic C = {C1, C2, C3, C4}

� Number of tests = 4 * 4 = 16

� Test requirements
� It is simpler to list the combinations in a table (see next slide)

Spring 2024 – University of Virginia 19© Praphamontripong

Pair-Wise – Example 1
� Order characteristics in columns,

from max number of blocks

� Fill the first column, repeat as
many times as the number of the
next max blocks

� File the second column

� Ensure each block of A pairs with
all possible blocks of B. Swap as
needed

� Fill the third column

TR A B C
1 A1 B1 C1
2 A1 B2 C2
3 A1 B3 C3
4 A1 B4 C4
5 A2 B1 C1
6 A2 B2 C2
7 A2 B3 C3
8 A2 B4 C4
9 A3 B1 C1
10 A3 B2 C2
11 A3 B3 C3
12 A3 B4 C4
13 A4 B1 C1
14 A4 B2 C2
15 A4 B3 C3
16 A4 B4 C4

TR = Test requirement

Spring 2024 – University of Virginia 20© Praphamontripong

Pair-Wise – Example 1
� Order characteristics in columns,

from max number of blocks

� Fill the first column, repeat as
many times as the number of the
next max blocks

� File the second column

� Ensure each block of A pairs with
all possible blocks of B. Swap as
needed

� Fill the third column

� Ensure each block of B pairs with
all possible of blocks of C. Swap
as needed

� Ensure each block of A pairs with
all possible blocks of C. Swap as
needed

TR A B C
1 A1 B1 C1
2 A1 B2 C2
3 A1 B3 C3
4 A1 B4 C4
5 A2 B1 C2
6 A2 B2 C3
7 A2 B3 C4
8 A2 B4 C1
9 A3 B1 C3
10 A3 B2 C4
11 A3 B3 C1
12 A3 B4 C2
13 A4 B1 C4
14 A4 B2 C1
15 A4 B3 C2
16 A4 B4 C3

TR = Test requirement

Spring 2024 – University of Virginia 21© Praphamontripong

Substituting test
input values

TC A B C Expected
output

1 2 2 2
2 2 1 1
3 2 0 0
4 2 -1 -1
5 1 2 1
6 1 1 0
7 1 0 -1
8 1 -1 2
9 0 2 0
10 0 1 -1
11 0 0 2
12 0 -1 1
13 -1 2 -1
14 -1 1 2
15 -1 0 1
16 -1 -1 0

TC = Test case

Re
m

in
de

r:
 t

w
o

m
an

da
to

ry
 c

om
po

ne
nt

s

of
 a

 t
es

t
ca

se
 a

re
 t

es
t

in
pu

ts
 a

nd

ex
pe

ct
ed

 o
ut

pu
t

Pair-Wise – Example 1

Spring 2024 – University of Virginia 22© Praphamontripong

TR C2 C1 C3
1 1 A x
2 1 B y
3 2 A x
4 2 B y
5 3 A x
6 3 B y

� Applying PWC to derive test requirements

Blocks for characteristic C1 = {A, B}
Blocks for characteristic C2 = {1, 2, 3}
Blocks for characteristic C3 = {x, y}

� Number of tests = 3 * 2 = 6

y
x

Pair-Wise – Example 2

Spring 2024 – University of Virginia 23© Praphamontripong

Base Choice (BCC)

• Number of tests =

Q = number partitions (or characteristics), B = number blocks

• Use domain knowledge of the program
� What is the most important block for each partition?

• Pick the base choice test, then add additional tests
• Test quality depends on the selection of the base choice

A base choice block is chosen for each characteristic.

A base test is formed by using the base choice for each
characteristic.

Subsequent tests are chosen by holding all but one base choice
constant and using each non-base choice in each other
characteristic.

1 + å
Q

i=1
(Bi -1)

Spring 2024 – University of Virginia 24© Praphamontripong

BCC – Example
� Applying BCC to derive test requirements

Blocks for characteristic A = {A1, A2, A3, A4}
Blocks for characteristic B = {B1, B2, B3, B4}
Blocks for characteristic C = {C1, C2, C3, C4}

Suppose base choice blocks are A1, B1, and C1
Then the base choice test is (A1, B1, C1)

Hold all but one base choice constant, use each non-base choice
in each other characteristic

A1 B1
C2
C3
C4

A1 C1
B2
B3
B4

B1 C1
A2
A3
A4

A1, B1, C1

Spring 2024 – University of Virginia 25© Praphamontripong

BCC – Example (cont)
� Test requirements: 1 + 3 + 3 + 3 = 10

� Substituting test input values

(A1, B1, C2)
(A1, B1, C3)
(A1, B1, C4)

(A1, B2, C1)
(A1, B3, C1)
(A1, B4, C1)

(A2, B1, C1)
(A3, B1, C1)
(A4, B1, C1)

(A1, B1, C1)
Base

(2, 2, 1)
(2, 2, 0)
(2, 2, -1)

(2, 1, 2)
(2, 0, 2)
(2, -1, 2)

(1, 2, 2)
(0, 2, 2)
(-1, 2, 2)

(2, 2, 2)
Base

Spring 2024 – University of Virginia 26© Praphamontripong

BCC – Notes
� The base test must be feasible

� Base choices can be
� From an end-user point of view
� Simplest
� Smallest
� First in some order
� Happy path test

� The base choice is a crucial design decision as it affects
the quality of testing
� Test designers should always document why the choices were

made

Testers sometimes have multiple logical base choices

Spring 2024 – University of Virginia 27© Praphamontripong

Multiple Base Choice (MBCC)

• Number of tests =

M = number base tests
mi = number base choices for each characteristic
Q = number partitions (or characteristics)
B = number blocks

At least one, and possible more, base choice blocks are chosen
from each characteristic.

Base tests are formed by using each base choice for each
characteristic at least once.

Subsequent tests are chosen by holding all but one base choice
constant for each base test and using each non-base choice in
each other characteristic.

M + å
Q

i=1
(M * (Bi - mi))

Spring 2024 – University of Virginia 28© Praphamontripong

MBCC – Example
� Applying MBCC to derive test requirements

Blocks for characteristic A = {A1, A2, A3, A4}
Blocks for characteristic B = {B1, B2, B3, B4}
Blocks for characteristic C = {C1, C2, C3, C4}

Suppose base choice blocks are A1, B1, C1 and A2, B2, C2
Then the base choice tests are (A1, B1, C1) and (A2, B2, C2)

Hold all but one base choice constant for each base test, use
each non-base choice in each other characteristic

A1 B1
C3
C4 A1 C1

B3
B4 B1 C1

A3
A4

A1, B1, C1

A2 B2
C3
C4 A2 C2

B3
B4 B2 C2

A3
A4

A2, B2, C2

Spring 2024 – University of Virginia 29© Praphamontripong

MBCC – Example (cont.)
� Test requirements: 2+(2*(4-2))+(2*(4-2))+(2*(4-2)) = 14

� Substituting test input values

(A1, B1, C3)
(A1, B1, C4)

(A1, B3, C1)
(A1, B4, C1)

(A3, B1, C1)
(A4, B1, C1)

(A1, B1, C1)
Base

(2, 2, 0)
(2, 2, -1)

(2, 0, 2)
(2, -1, 2)

(0, 2, 2)
(-1, 2, 2)

(2, 2, 2)
Base

(A2, B2, C3)
(A2, B2, C4)

(A2, B3, C2)
(A2, B4, C2)

(A3, B2, C2)
(A4, B2, C2)

(A2, B2, C2)
Base

(1, 1, 0)
(1, 1, -1)

(1, 0, 1)
(1, -1, 1)

(0, 1, 1)
(-1, 1, 1)

(1, 1, 1)
Base

Spring 2024 – University of Virginia 30© Praphamontripong

ISP Coverage Criteria Subsumption
All Combinations

Coverage
(ACoC)

Multiple Base Choice
Coverage
(MBCC)

Base Choice
Coverage

(BCC)

Each Choice
Coverage

(ECC)

T-Wise
Coverage

(TWC)

Pair-Wise
Coverage

(PWC)

Spring 2024 – University of Virginia 31© Praphamontripong

Constraints Among Characteristics
� Some combinations of blocks are infeasible

� A triangle cannot be “less than 0” and “scalene” at the same time

� These are represented as constraints among blocks

� Two kinds of constraints
� A block from one characteristic cannot be combined with a block from

another characteristic

� A block from one characteristic must be combined with a specific block
from another characteristic

• Handling constraints depends on the criterion used
� ACoC – drop the infeasible pairs
� ECC – change a value to find a feasible combination

� BCC, MBCC – change a value to another non-base choice to find a
feasible combination

Spring 2024 – University of Virginia 32© Praphamontripong

Handling Constraints - Example
Return index of the first occurrence of a letter in string,
Otherwise, return -1

def get_index_of(string, letter):

Characteristic b1 b2 b3

C1 = number of occurrence of letter in string 0 1 > 1
C2 = letter occurs first in string True False
Invalid combinations: (C1b1)

If a letter cannot be found in string,
it cannot appear first in string

Spring 2024 – University of Virginia 33© Praphamontripong

Summary
� Sometimes testers decide to use more than one IDM

� Once characteristics and partitions are defined, criteria are
used to choose the combinations of test values

� Different criteria provide different coverage and result in
different number of test requirements (and hence testing
effort)

� ACoC may not be practical

� ECC may be too simplistic and ineffective

� BCC and MBCC pick meaningful blocks à ”do smarter”

ISP testing is simple, straightforward, effective,
and widely used

