Graph-based Testing

CS 3250 Software Testing

[Ammann and Offutt, "Introduction to Software Testing," Ch. 7]

Spring 2024 – University of Virginia

© Praphamontripong

Structures for Criteria-Based Testing

Today's Objectives

- Start investigating some of the most widely known test coverage criteria
- Understand basic theory of graph
 - Generic view of graph without regard to the graph's source
- Understand test paths, visiting and touring
- Mapping test case inputs and test paths

Overview

- Graphs are the most commonly used structure for testing
- Graphs can come from many sources
 - Control flow graphs from source
 - Design structures
 - Finite state machine (FSM)
 - Statecharts
 - Use cases
- The graph is not the same as the artifact under test, and usually omits certain details
- Tests must cover the graph in some way
 - Usually traversing specific portions of the graph

Graph: Nodes and Edges

- Node represents
 - Statement
 - State
 - Method
 - Basic block

Edge represents

- Branch
- Transition
- Method call

Basic Notion of a Graph

- Nodes:
 - N = a set of nodes, N must not be empty
- Initial nodes
 - N_0 = a set of initial nodes, must not be empty
 - Single entry vs. multiple entry
- Final nodes
 - N_f = a set of final nodes, must not be empty
 - Single exit vs. multiple exit
- Edges:
 - E = a set of edges, each edge from one node to another
 - An edge is written as (n_i, n_j)
 - *n_i* is predecessor, *n_j* is successor

Every test must start in some initial node, and end in some final node

Note on Graphs

- The concept of a final node depends on the kind of software artifact the graph represents
- Some test criteria require tests to end in a particular final node
- Some test criteria are satisfied with any node for a final node (i.e., the set N_f = the set N)

Example Graph

Is this a graph? $N = \{1\}$ $N_0 = \{1\}$ $N_f = \{1\}$ $E = \{ \}$

Example Graph

Multiple-entry, multiple-exit

Node

$$N = \{1, 2, 3, 4, 5, \\
6, 7, 8, 9, 10\}$$

$$N_0 = \{1, 2, 3\}$$

$$N_f = \{8, 9, 10\}$$

• Edge

 $E = \{(1,4), (1,5), \\ (2,5), (6,2), \\ (3,6), (3,7), \\ (4,8), (5,8), \\ (5,9), (6,10), \\ (7,10), (9,6)\}$

Example Graph

Node

$$N = \{1, 2, 3, 4\}$$

 $N_0 = \{\}$
 $N_f = \{4\}$

• Edge $E = \{(1,2), (1,3), (2,4), (3,4)\}$

Not valid graph – no initial nodes Not useful for generating test cases

Paths in Graphs

• Path p

- A sequence of nodes, $[n_1, n_2, ..., n_M]$
- Each pair of adjacent nodes, (n_i, n_{i+1}) , is an edge

• Length

- The number of edges
- A single node is a path of length 0

Subpath

A subsequence of nodes in p (possibly p itself)

Example Paths

Cycle – a path that begins and ends at the same node

Example Paths

Invalid paths

 [1, 8]
 [4, 5]
 [3, 7, 9]

Invalid path – a path where the two nodes are not connected by an edge

Example Invalid Path

Invalid Paths

- Many test criteria require inputs that start at one node and end at another. – This is only possible if those nodes are connected by a path.
- When applying these criteria on specific graphs, we sometimes find that we have asked for a path that for some reason cannot be executed.
- Example: a path may demand that a loop be executed zero time, where the program always executed the loop at least once.
- This problem is based on the semantics of the software artifact that the graph represents.
- For now, let's emphasize only the syntax of the graph

Graph and Reachability

- A location in a graph (node or edge) can be reached from another location if there is a sequence of edges from the first location to the second
- Syntactically reachable
 - There exists a subpath from node n_i to n (or to edge e)
- Semantically reachable
 - There exists a test that can execute that subpath

Example: Reachability

Some graphs (such as finite state machines) have explicit edges from a node to itself, that is (n_i, n_i)

- From node 1
 - Possible to reach all nodes except nodes 3 and 7
- From node 5
 - Possible to reach all nodes except nodes 1, 3, 4, and 7
- From edge (7, 10)
 - Possible to reach nodes 7 and 10 and edge (7, 10)

Test Paths

- A path that starts at an initial node and end at a final node
- A test path represents the execution test cases
 - Some test paths can be executed by many test cases
 - Some test paths cannot be executed by any test cases
 - Some test paths cannot be executed because they are infeasible

SESE Graphs

- SESE (Single-Entry-Single-Exit) graphs
 - The set N_0 has exactly one node (n_0)
 - The set N_f has exactly one node (n_f) , n_f may be the same as n_0
 - n_f must be syntactically reachable from every node in N
 - No node in N (except n_f) be syntactically reachable from n_f (unless n₀ and n_f are the same node)

"Double-diamonded graph" (two if-then-else statements)

4 test paths

[1, 2, 4, 5, 7]
[1, 2, 4, 6, 7]
[1, 3, 4, 5, 7]
[1, 3, 4, 6, 7]

Visiting

- A test path p visits node n if n is in p
- A test path p visits edge e if e is in p

Node
$$N = \{1, 2, 3, 4, 5, 6, 7\}$$

Edge $E = \{(1,2), (1,3), (2,4), (3,4), (4,5), (4,6), (5,7), (6,7)\}$

Consider path [1, 2, 4, 5, 7] Visits node: 1, 2, 4, 5, 7 Visits edge: (1,2), (2,4), (4,5), (5,7)

Touring

A test path p tours subpath q if q is a subpath of p

Node $N = \{1, 2, 3, 4, 5, 6, 7\}$ Edge $E = \{(1,2), (1,3), (2,4), (3,4), (4,5), (4,6), (5,7), (6,7)\}$

(Each edge is technically a subpath)

Consider a test path [1, 2, 4, 5, 7] Visit nodes: 1, 2, 4, 5, 7

Visit edges: (1,2), (2,4), (4,5), (5,7)

Tours subpaths: [1,2,4,5,7], [1,2,4,5], [2,4,5,7], [1,2,4], [2,4,5], [4,5,7], [1,2], [2,4], [4,5], [5,7]

Any given path p always tours itself

Mapping: Test Cases – Test Paths

- path(t) = Test path executed by test case t
- path(T) = Set of test paths executed by set of tests T

 Test path is a complete execution from a start node to a final node

- Minimal set of test paths = the fewest test paths that will satisfy test requirements
 - Taking any test path out will no longer satisfy the criterion

Mapping: Test Cases – Test Paths

Deterministic software: test always executes the same test path

Non-deterministic software: the same test can execute different test paths

© Praphamontripong

Example Mapping Test Case inputs – Test Paths

Test case t1 inputs: $(a=0, b=1) \xrightarrow{map to} [$ Test path p1: 1, 2, 4, 3] Test case t2 inputs: $(a=1, b=1) \longrightarrow [$ Test path p2: 1, 4, 3] Test case t3 inputs: $(a=2, b=1) \longrightarrow [$ Test path p3: 1, 3]