
Spring 2024 – University of Virginia 1© Praphamontripong

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 7]

Graph-based Testing

CS 3250
Software Testing



Spring 2024 – University of Virginia 2© Praphamontripong

Structures for Criteria-Based Testing
Four structures for modeling software

Input 
space

Graph

Source

Design

Specs

Use cases

A
pp

lie
d 

to

Logic

Source

Specs

FSMs

DNF

A
pp

lie
d 

to

Syntax

Source

Models

Integration

Inputs

A
pp

lie
d 

to

R--R RI-R RIPR---R



Spring 2024 – University of Virginia 3© Praphamontripong

Today’s Objectives
� Start investigating some of the most widely known test 

coverage criteria

� Understand basic theory of graph 
� Generic view of graph without regard to the graph’s source

� Understand test paths, visiting and touring

� Mapping test case inputs and test paths



Spring 2024 – University of Virginia 4© Praphamontripong

Overview
� Graphs are the most commonly used structure for testing

� Graphs can come from many sources 
� Control flow graphs from source
� Design structures
� Finite state machine (FSM) 
� Statecharts
� Use cases

� The graph is not the same as the artifact under test, and 
usually omits certain details

� Tests must cover the graph in some way
� Usually traversing specific portions of the graph



Spring 2024 – University of Virginia 5© Praphamontripong

Graph: Nodes and Edges
� Node represents 

� Statement
� State
� Method
� Basic block

� Edge represents 
� Branch
� Transition
� Method call



Spring 2024 – University of Virginia 6© Praphamontripong

Basic Notion of a Graph
� Nodes:

� N = a set of nodes, N must not be empty

� Initial nodes
� N0 = a set of initial nodes, must not be empty
� Single entry vs. multiple entry 

� Final nodes
� Nf = a set of final nodes, must not be empty
� Single exit vs. multiple exit 

� Edges:
� E = a set of edges, each edge from one node to another
� An edge is written as (ni, nj)

� ni is predecessor, nj is successor

Every test 
must start

in some 
initial node, 

and end
in some 

final node



Spring 2024 – University of Virginia 7© Praphamontripong

Note on Graphs
� The concept of a final node depends on the kind of 

software artifact the graph represents

� Some test criteria require tests to end in a particular final 
node

� Some test criteria are satisfied with any node for a final 
node (i.e., the set Nf = the set N)



Spring 2024 – University of Virginia 8© Praphamontripong

1

32

4

Example Graph
� Node

N = {1, 2, 3, 4}
N0 = {1}
Nf = {4}

� Edge
E = {(1,2), (1,3), 

(2,4), (3,4)}

32

4

11

Single-Entry, Single-Exit  
(SESE)

1

N = {1}
N0 = {1}
Nf = {1}
E = { }

Is this a graph?



Spring 2024 – University of Virginia 9© Praphamontripong

Example Graph

10

1

54

8

2

6

9

3

7

� Node
N = {1, 2, 3, 4, 5, 

6, 7, 8, 9, 10}
N0 = {1, 2, 3}
Nf = {8, 9, 10}

� Edge
E = {(1,4), (1,5), 

(2,5), (6,2), 
(3,6), (3,7), 
(4,8), (5,8), 
(5,9), (6,10), 
(7,10), (9,6)}Multiple-entry, multiple-exit 



Spring 2024 – University of Virginia 10© Praphamontripong

Example Graph

1

32

4

� Node
N = {1, 2, 3, 4}
N0 = {}
Nf = {4}

� Edge
E = {(1,2), (1,3), 

(2,4), (3,4)}

Not valid graph – no initial nodes
Not useful for generating test cases



Spring 2024 – University of Virginia 11© Praphamontripong

Paths in Graphs
� Path p

� A sequence of nodes, [n1, n2, …, nM]
� Each pair of adjacent nodes, (ni, ni+1), is an edge

� Length
� The number of edges 
� A single node is a path of length 0

� Subpath
� A subsequence of nodes in p (possibly p itself)



Spring 2024 – University of Virginia 12© Praphamontripong

Example Paths

10

1

54

8

2

6

9

3

7

� Paths
[1, 4, 8]
[2, 5, 8]
[2, 5, 9]
[2, 5, 9, 6, 10]
[3, 6, 10]
[3, 7, 10]
[3, 6, 2, 5, 9]
…
[2, 5, 9, 6, 2] 

Cycle – a path that begins and ends at the same node

cycle



Spring 2024 – University of Virginia 13© Praphamontripong

Example Paths

10

1

54

8

2

6

9

3

7

� Invalid paths
[1, 8]
[4, 5]
[3, 7, 9]

Invalid path – a path 
where the two nodes 
are not connected by 

an edge



Spring 2024 – University of Virginia 14© Praphamontripong

Example Invalid Path
def template(num1, num2):

result = ""
if num1 == 0:

result = "num1 is 0"
elif num1 == 1:

result = "num1 is 1"
if num2 > 3:

result = " num2 > 3"
elif num2 > 4:

result = " This will never run"
else:

result = " num2 <= 3"
else:

result = "num1 is not 0 or 1"
return result 

10

1

23

num1 == 0num1 != 0

result = “”

result = 
“num1 is 0”

45

num1 == 1num1 != 1

result = 
“num1 is 1”result = “num1 

is not 0 or 1”

67

num2 > 3!(num2 > 3)

result = 
“num2 > 3”

89

num2 > 4!(num2 > 4)

result = “This 
will never run”

result = 
“num2 <= 3”

return result



Spring 2024 – University of Virginia 15© Praphamontripong

Invalid Paths
� Many test criteria require inputs that start at one node and 

end at another. – This is only possible if those nodes are 
connected by a path. 

� When applying these criteria on specific graphs, we 
sometimes find that we have asked for a path that for some 
reason cannot be executed. 

� Example: a path may demand that a loop be executed zero 
time, where the program always executed the loop at least 
once.

� This problem is based on the semantics of the software 
artifact that the graph represents.

� For now, let’s emphasize only the syntax of the graph



Spring 2024 – University of Virginia 16© Praphamontripong

Graph and Reachability
� A location in a graph (node or edge) can be reached from 

another location if there is a sequence of edges from the 
first location to the second

� Syntactically reachable
� There exists a subpath from node ni to n (or to edge e) 

� Semantically reachable
� There exists a test that can execute that subpath



Spring 2024 – University of Virginia 17© Praphamontripong

Example: Reachability

10

1

54

8

2

6

9

3

7

� From node 1 
� Possible to reach all 

nodes except nodes 
3 and 7

� From node 5 
� Possible to reach all 

nodes except nodes 
1, 3, 4, and 7

� From edge (7, 10) 
� Possible to reach 

nodes 7 and 10 and 
edge (7, 10)Some graphs (such as finite state 

machines) have explicit edges from 
a node to itself, that is (ni, ni)



Spring 2024 – University of Virginia 18© Praphamontripong

Test Paths
� A path that starts at an initial node and end at a final node

� A test path represents the execution test cases
� Some test paths can be executed by many test cases
� Some test paths cannot be executed by any test cases
� Some test paths cannot be executed because they are 

infeasible



Spring 2024 – University of Virginia 19© Praphamontripong

SESE Graphs
� SESE (Single-Entry-Single-Exit) graphs

� The set N0 has exactly one node (n0)

� The set Nf has exactly one node (nf), nfmay be the same as n0
� nf must be syntactically reachable from every node in N

� No node in N (except nf) be syntactically reachable from nf
(unless n0 and nf are the same node)

1

3

2

74

6

5

“Double-diamonded graph”
(two if-then-else statements)

4 test paths
[1, 2, 4, 5, 7]
[1, 2, 4, 6, 7]
[1, 3, 4, 5, 7]
[1, 3, 4, 6, 7]



Spring 2024 – University of Virginia 20© Praphamontripong

Visiting
� A test path p visits node n if n is in p

� A test path p visits edge e if e is in p

Node N = {1, 2, 3, 4, 5, 6, 7}

Edge E = {(1,2), (1,3), (2,4), (3,4), 
(4,5), (4,6), (5,7), (6,7)}1

3

2

74

6

5

Consider path [1, 2, 4, 5, 7]

Visits node: 1, 2, 4, 5, 7

Visits edge: (1,2), (2,4), (4,5), (5,7)



Spring 2024 – University of Virginia 21© Praphamontripong

Touring
� A test path p tours subpath q if q is a subpath of p

Node N = {1, 2, 3, 4, 5, 6, 7}

Edge E = {(1,2), (1,3), (2,4), (3,4), 
(4,5), (4,6), (5,7), (6,7)}

(Each edge is technically a subpath)

1

3

2

74

6

5

Consider a test path [1, 2, 4, 5, 7]

Visit nodes:

Visit edges:

Tours subpaths:

Any given path p always tours itself

1, 2, 4, 5, 7

(1,2), (2,4), (4,5), (5,7)

[1,2,4,5,7], [1,2,4,5], [2,4,5,7], [1,2,4], 
[2,4,5], [4,5,7], [1,2], [2,4], [4,5], [5,7]



Spring 2024 – University of Virginia 22© Praphamontripong

Mapping: Test Cases – Test Paths
� path(t) = Test path executed by test case t

� path(T) = Set of test paths executed by set of tests T

� Test path is a complete execution from a start node to a 
final node

� Minimal set of test paths = the fewest test paths that will 
satisfy test requirements
� Taking any test path out will no longer satisfy the criterion 



Spring 2024 – University of Virginia 23© Praphamontripong

Mapping: Test Cases – Test Paths
test 1

test 2

test 3

many-to-one

Test Path 1

Deterministic software: test always executes the same test path

test 1

test 2

test 3

many-to-many
Test Path 1

Test Path 2

Test Path 3

Non-deterministic software: the same test can execute different
test paths



Spring 2024 – University of Virginia 24© Praphamontripong

Example Mapping 
Test Case inputs – Test Paths

a < b
1 2

3 4

a > b
a = b

Test case t1 inputs: (a=0, b=1)            [ Test path p1: 1, 2, 4, 3]

Test case t2 inputs: (a=1, b=1)            [ Test path p2: 1, 4, 3]

Test case t3 inputs: (a=2, b=1)            [ Test path p3: 1, 3] 

map to

[AO, page 111, Figure 7.5]


