
Spring 2024 – University of Virginia 1© Praphamontripong

Graph Coverage for
Design Elements

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 7.4]

Spring 2024 – University of Virginia 2© Praphamontripong

Overview
� Use of data abstraction and OO software

à Emphasis on modularity and reuse
à Complexity in design

� Testing design of software becomes more important than
in the past

� Graphs for the design are based on couplings between
software components
� Couplings = dependency relations between components

� Faults in one component (unit) may affect the coupled
component (unit)

� Most test criteria for design require that connections
among components be visited

Spring 2024 – University of Virginia 3© Praphamontripong

Call Graph
� The most common graph for structural design testing

� Nodes represent methods (or units)
� Edges represent method calls

B C D

A

FE

Node coverage (method coverage)
� Call every method at least once

Edge coverage (call coverage)
� Execute every call at least once

Node F must be called at least
twice, once from C and once from D

Node and edge coverage of class call graphs often do not work
well because individual methods might not all call each other

Spring 2024 – University of Virginia 4© Praphamontripong

Data Flow for Design Elements
� Control connections among design elements are not

effective at finding faults

� Data flow coverage can be applied to call graphs

� Data flow couplings are often more complex than control
flow couplings
� When values are passed, they change names
� Many different ways to share data
� Analysis of defs and uses can be difficult

� Which uses a def can reach

When software gets complicated,
that indicates a source of faults

Spring 2024 – University of Virginia 5© Praphamontripong

Call Site Example
The primary issue is where the defs and uses occur

A
!

B (x)
!

end A

B (Y)
!

end B

Callee

Unit that invokes another unit

Unit that is called

Variable in the caller

Call site
Statement or node where
the call appears

Variable in the callee

Caller

Actual parameter

Formal parameter

Call
interface

Mapping of
actual to formal
parameters

The criteria require execution from definitions of actual
parameters through calls to uses of formal parameters

Spring 2024 – University of Virginia 6© Praphamontripong

Data Flow Couplings for Call Sites
Types of couplings between caller and callee units

Parameter coupling Defined by parameter passing from
caller to callee

Return value coupling Defined by return value passing from
callee to caller

Shared data coupling Defined by shared variables between
caller and callee

External device coupling Defined by shared use of a device by
caller and callee (e.g., a file)

Spring 2024 – University of Virginia 7© Praphamontripong

Inter-Procedural DU Pairs
� To achieve confidence in the interfaces between integrated

program units, variables defined in caller unit must be
appropriately used in callee

� For a variable x that expresses a coupling between caller
and callee

� Last-def
(of x)

� First-use
(of x)

Set of locations (or nodes) that last
define x (def-clear) in one of the
units (caller or callee)

Set of locations (or nodes) that first use
x in the other unit (def-clear and use-
clear path from the call site to the nodes)

Spring 2024 – University of Virginia 8© Praphamontripong

Inter-Procedural DU Pairs Example

F x = 14
!

y = G(x)
!

print(y) first-use

Caller

Callee

G(a) print(a)
!

b = 42
!

return(b)

DU pair

DU pair

last-def

call site

last-def

first-use

Parameter coupling
� last-def of x: set of locations in

caller that last define a call param
x just before the call site

� first-use of x: set of locations in
callee that first use a param a
after the entry point

Return value coupling
� last-def of b: set of locations in

callee that last define return result

� first-use of b: set of locations in
caller that first use the result of
the call after the call site

last-defs and first-uses define coupling du-pairs

Spring 2024 – University of Virginia 9© Praphamontripong

Inter-Procedural DU Pairs Example

Last Defs
2, 3

First Uses
11, 12

Coupling DU Pairs
(A, x, 2)—(B, y, 11)
(A, x, 2)—(B, y, 12)
(A, x, 3)—(B, y, 11)
(A, x, 3)—(B, y, 12)

x = 5

x = 4

B(x)

x = 3

2

1

4

3

Caller A

B(int y)

T = yZ = y

Print(y)

10

11 12

13

Callee B

coupling du-path = path from
a last-def to a first-use

Spring 2024 – University of Virginia 10© Praphamontripong

Coupling DU-Paths and
Coverage Criteria

� A coupling du-path for x is a path from a last-def of x to a
first-use of x

� Data flow coverage criteria for coupling du-paths:

� All-Coupling-Defs Coverage (~All-Defs Coverage)
� For each last-def of x, cover at least one first-use

� All-Coupling-Uses Coverage (~All-Uses Coverage)
� For each last-def of x, cover every first-uses

� All-Coupling-DU-Paths Coverage (~All-DU-Paths
Coverage)

� For each last-def of x, cover all paths to every first-uses

Spring 2024 – University of Virginia 11© Praphamontripong

Example
QuadraticShared variables

Call sitelast-def

first-use

last-def

first-use

(main(), X, 12) – (Root(), A, 36)

(main(), Y, 13) – (Root(), B, 36)

(main(), Z, 14) – (Root(), C, 36)
(main(), X, 19) – (Root(), A, 36)

(main(), Y, 20) – (Root(), B, 36)

(main(), Z, 21) – (Root(), C, 36)

(Root(), Root1, 42) – (main(), Root1, 26)

(Root(), Root2, 43) – (main(), Root2, 26)

(Root(), Result, 39) – (main(), ok, 24)
(Root(), Result, 44) – (main(), ok, 24)

Spring 2024 – University of Virginia 12© Praphamontripong

Example: Quadratic
Coupling DU-Pairs

Pairs of locations: method name, variable name, statement

(main(), X, 12) – (Root(), A, 36)
(main(), Y, 13) – (Root(), B, 36)
(main(), Z, 14) – (Root(), C, 36)
(main(), X, 19) – (Root(), A, 36)
(main(), Y, 20) – (Root(), B, 36)
(main(), Z, 21) – (Root(), C, 36)

(Root(), Root1, 42) – (main(), Root1, 26)
(Root(), Root2, 43) – (main(), Root2, 26)
(Root(), Result, 39) – (main(), ok, 24)
(Root(), Result, 44) – (main(), ok, 24)

Spring 2024 – University of Virginia 13© Praphamontripong

Summary
• Call graphs are common and very useful ways to design
integration tests

• Inter-procedural data flow is relatively easy to compute
and results in effective integration tests

• The ideas of coupling data flow for OO software and web
applications are preliminary and have not been used much
in practice

Spring 2024 – University of Virginia 14© Praphamontripong

Extra Slides
If you may be interested in

graph coverage for inheritance

(will not be tested)

Spring 2024 – University of Virginia 15© Praphamontripong

A

B

C D

Inheritance and Polymorphism
� The most obvious graph for testing these OO features is

the inheritance hierarchy

� Classes are not executable à the graph is not directly
testable. To test the inheritance hierarchy graph, we need
to instantiate objects for the classes

A

B

C D

Ideas of graph coverage for inheritance and polymorphism are preliminary and have not been widely used
[noted by Offutt and Ammann]

a

b

dc

Spring 2024 – University of Virginia 16© Praphamontripong

A

B

C D

Coverage on Inheritance Graph
� Node coverage: create at least one object for each class

� Weak because there is no execution

� Thus, we create an object for each class and then apply
call coverage (execute every call at least once)

a

b

d2

d1

c

OO call coverage
� Cover each node in the call graph

of an object instantiated for each
class in the inheritance hierarchy
graph

All object call coverage
� Cover each node in the call graph

of every object instantiated for
each class in the inheritance
hierarchy graph

