
Spring 2024 – University of Virginia 1© Praphamontripong

Graph Coverage for
Specifications

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 7.5]

Spring 2024 – University of Virginia 2© Praphamontripong

Overview
� Software specification describes aspects of what behavior

software should exhibit

� Two types of descriptions
� Sequencing constraints on class methods
� State behavior descriptions of software

Spring 2024 – University of Virginia 3© Praphamontripong

Sequencing Constraints
� Sequencing constraints are rules that impose constraints

on the order in which methods may be called
� Example: cannot pop an element from a stack until

something has been pushed onto it

� Sequencing constraints give an easy and effective way to
choose which sequences to use

� Sequencing constraints may be
� Expressed explicitly
� Expressed implicitly
� Not expressed at all

� Sometimes, they can be encoded as preconditions or
other specifications

Spring 2024 – University of Virginia 4© Praphamontripong

Sequencing Constraints
� If they are not expressed, testers should derive them

� Look at existing design documents
� Look at requirement documents
� Ask the developers
� Look at the implementation (last choice)

� Testers should share sequencing constraints with
designers before designing tests

Spring 2024 – University of Virginia 5© Praphamontripong

Queue Example

� Does not include the requirement that we must have at least as
many enQueue() calls as deQueue() calls

� Can be handled by state behavior technique

Implicit sequencing
constraints occur
between enQueue()
and deQueue()

enQueue() must be
called before
deQueue()

Sequencing constraints do not capture all behavior,
but only abstract certain key aspects

Spring 2024 – University of Virginia 6© Praphamontripong

File ADT Example
class FileADT has three methods:
• open(String fName) // Opens file with name fName
• close() // Closes the file and makes it unavailable
• write(String textLine) // Writes a line of text to the file

Valid sequencing constraints on FileADT:
1. An open(f) must be executed before every write(t)
2. An open(f) must be executed before every close()
3. A write(f) must not be executed after a close() unless there is an

open(f) in between
4. A write(t) should be executed before every close()
5. A close() must not be executed after a close() unless and open(f)

appears in between
6. An open(f) must not be executed after an open(f) unless a close()

appears in between

Constraints are used to evaluate software that uses the class (a ”client”)

Spring 2024 – University of Virginia 7© Praphamontripong

File ADT Example: Client 1
Static checking
� Is there a path that violates any of the

sequencing constraints?

� Is there a path to a write() that does not
go through an open()?

� Is there a path to a close() that does not
go through an open()?

� Is there a path from a close() to a
write()?

� Is there a path from an open() to a
close() that does not go through at least
one write()?
� Possible problem: path [1,3,4,6]

� Is there a path from a close() to a close()
that does not go through an open()?

1

2 3

4 5

6

open(f)

write(t)

write(t)

close()

Client that uses FileADT

Spring 2024 – University of Virginia 8© Praphamontripong

File ADT Example: Client 2
Static checking
� Is there a path that violates any of the

sequencing constraints?

� Is there a path to a write() that does not
go through an open()?

� Is there a path to a close() that does
not go through an open()?

� Is there a path from a close() to a
write()?

� Is there a path from an open() to a
close() that does not go through at least
one write()?

� Is there a path from a close() to a
close() that does not go through an
open()?
� Path [7,3,4], close() before write()

close ()

1

2 3

4 5

8

open (f)

write (t) write (t)

6 7
close ()

Client that uses FileADT

Spring 2024 – University of Virginia 9© Praphamontripong

File ADT Example: Client 1
Dynamic checking
� Consider path [1,3,4,6] where no write()

appears

� It is possible that the logic of the program
does not allow the edge (3,4) unless the
loop [3,5,3] is taken at least once

� Deciding whether the path [1,3,4,6] can
be taken or not is undecidable

� This situation can be checked only by
executing the program – static checking
is not enough

� Thus, we generate test requirements to
try to violate the sequencing constraints

1

2 3

4 5

6

open(f)

write(t)

write(t)

close()

Client that uses FileADT

Goal: Violate every
sequencing
constraint

Spring 2024 – University of Virginia 10© Praphamontripong

File ADT Example:
Test Requirements

1. Cover every path from the start node to every node that contains a
write() such that the path does not go through a node containing
an open()

2. Cover every path from the start node to every node that contains a
close() such that the path does not go through a node containing
an open()

3. Cover every path from every node that contains a close() to every
node that contains a write()

4. Cover every path from every node that contains an open() to every
node that contains a close() such that the path does not go through
a node containing a write()

5. Cover every path from every node that contains an open() to every
node that contains an open()

• If program is correct, all test requirements will be infeasible
• Any tests created will almost definitely find faults

Spring 2024 – University of Virginia 11© Praphamontripong

Testing State Behavior
� Other major method for using graphs based on specifications is

to model state behavior of the software using finite state
machine

� A finite state machine (FSM) is a graph that describes how
software variables are modified during execution

� Nodes represent states in the execution behavior
� States represent values of variables

� Edges represent transitions among the states
� Transitions represent changes in the state

Off On

switch up

switch down

Spring 2024 – University of Virginia 12© Praphamontripong

Finite State Machine (FSM)
� FSMs are used to model state behavior of many kinds of

software
� Embedded and control software (cell phones, watches, remote

controls, cars, traffic signals, airplane flight guidance)

� Compilers and operating systems
� Web applications

� Creating FSMs can help find software problems

� Many languages have been developed to express FSMs
� UML statecharts, automata, state tables, petri nets

� Limitation
� ”State explosion” – FSMs are not always practical for programs that

have lots of states

Spring 2024 – University of Virginia 13© Praphamontripong

Annotations on FSMs
� FSMs can be annotated with different types of actions

� Actions on transitions
� Entry actions to nodes

� Exit actions on nodes

� Actions can express changes to variables or conditions on
variables

� When the variables change, the software is considered to move
from the pre-state to the post-state
� If a transition’s pre-state and post-state are the same, the values of

state variables will not change

Spring 2024 – University of Virginia 14© Praphamontripong

Annotations on FSMs

Closed Open

Open elevator door

pre: elevSpeed = 0
trigger: openButton = pressed

pre-state post-state

Precondition or guard
on transition
Define values that specific
variables must have for the
transition to be enabled

Trigger event
Change in variable values
that cause the transition to
be taken

Before–values: values the
triggering event has before
the transition

After-values: values the
triggering event has after
the transition

Spring 2024 – University of Virginia 15© Praphamontripong

Covering FSMs
� Node coverage: execute every state (state coverage)

� Edge coverage: execute every transition (transition coverage)

� Edge-pair coverage: execute every pair of transitions (transition-
pair coverage)

� Data flow coverage:

� Nodes often do not include defs or uses of variables

� Defs of variables in triggers are used immediately (the next state)

� Defs and uses are usually computed for guards, or states are
extended

� FSMs typically only model a subset of the variables

� Generating FSMs is often harder than covering them

Spring 2024 – University of Virginia 16© Praphamontripong

Deriving FSMs
Modeling state variables

� Consider state variables

� In theory, every combination of values for the state variables
defines a different state

� In practice, we must identify ranges, or sets of values, that are
all in one state

� Some states may not be feasible

� Steps:

� Identify the state variables
� Choose which are actually relevant to the FSM

Spring 2024 – University of Virginia 17© Praphamontripong

Example: Deriving FSM (Watch)

Spring 2024 – University of Virginia 18© Praphamontripong

Example: Deriving FSM (Watch)

Spring 2024 – University of Virginia 19© Praphamontripong

State Variables in Watch

Constants
Not relevant, really just
values

Non-Constant
variables
Relevant, affect the
changes of state

Consider values
� mode (values: TIME, STOPWATCH, ALARM)

Spring 2024 – University of Virginia 20© Praphamontripong

State Variables in Time
Non-Constant
variables
Relevant, affect the
changes of state

Consider every combination of values
� hour (values: 1 … 12)
� minute (values: 0 … 59)

Combine values into ranges of similar values
� hour (values: 1…11, 12)
� minute (values: 0, 1…59)

Combine values in ranges (another way: hour and minute)
� Time: 12:00, 12:01…12:59, 01:00...11:59)

12 x 60 values = 720 states … too many

Four states: (1…11, 0), (12, 0),
(1...11, 1...59), (12, 1...59) ...

Clumsy, not sequential

These require semantic domain knowledge of the program

Spring 2024 – University of Virginia 21© Praphamontripong

FSM for Watch/Time

up

Mode = TIME
Watch = 12:00

Mode = TIME
Watch = 12:01…12:59

Mode = TIME
Watch = 01:01…11:59

up

down

up

down

up up

Mode = STOPWATCH
Watch = 12:00

Mode = STOPWATCH
Watch = 12:01…12:59

Mode = STOPWATCH
Watch = 01:01…11:59

up

down

up

down

up

next next nextdown
next next

Mode = ALARM
Watch = 12:00

Mode = ALARM
Watch = 12:01…12:59

Mode = ALARM
Watch = 01:01…11:59

up

down

up

down

up

next next nextdown

down

Spring 2024 – University of Virginia 22© Praphamontripong

Hierarchical FSM for Watch/Time

next

next

next

mode = TIME

h : m =
12:00

h : m =
12:01 .. 12:59

h : m =
1:00 .. 11:59

up

do
wn

down

up

down

up

up

up
up

down
down down

mode = STOPWATCH

h : m =
12:00

h : m =
12:01 .. 12:59

h : m =
1:00 .. 11:59

up

do
wn

down

up

down

up

up

up
up

down
down down

mode = ALARM

h : m =
12:00

h : m =
12:01 .. 12:59

h : m =
1:00 .. 11:59

up
do

wn

down

up

down

up

up

up
up

down
down down

Spring 2024 – University of Virginia 23© Praphamontripong

Summary
� Advantages of applying graph coverage criteria to FSMs

� Tests can be designed before implementation

� Analyzing FSMs is easier than analyzing source

� Disadvantages of applying graph coverage criteria to FSMs
� Some implementation decisions are not modeled in the FSM

� Deriving FSMs may be subjective

� The names appearing in the FSM may not be the same as the names
in the program

