Logic Coverage

CS 3250 Software Testing

[Ammann and Offutt, "Introduction to Software Testing," Ch. 8]

Spring 2024 – University of Virginia

© Praphamontripong

Structures for Criteria-Based Testing

Overview

- Logic coverage ensures that tests not only reach certain locations, but the internal state is infected by trying multiple combinations of truth assignments to the expressions
- Covering logic expressions is required by the US Federal Aviation Administration for safety critical avionics software
- Logical expressions can come from many sources
 - Decisions in programs
 - FSMs and statecharts
 - Requirements
 - SQL queries
- Tests are intended to choose some subset of the total number of truth assignments to the expressions

Logic Predicates and Clauses

- Predicate: An expression that evaluates to a Boolean value
 - May contain
 - Boolean variable
 - Non-Boolean variables that contain >, <, ==, >=, <=, !=
 - Boolean function calls
 - Created by the logical operators

7	negation operator
\wedge	and operator
\vee	<i>or</i> operator
\rightarrow	implication operator
\oplus	exclusive or operator
\leftrightarrow	equivalence operator

• Clause: A predicate with no logical operators

Example

A boolean-valued function p(x)

Spring 2024– University of Virginia

equivalent

Logically

© Praphamontripong

Note on Predicates

- Most predicates have few clauses
- Sources of predicates
 - Decisions in program source code

```
public boolean isSatisfactory()
{
    if ((good && fast) || (good && cheap) || (fast && cheap))
        return true;
    else
        return false;
}
    (good ^ fast) ∨ (good ^ cheap) ∨ (fast ^ cheap)
```

Guards in finite state machines

button2 == true (when gear == park)

 $(gear == park) \land (button2 == true)$

Precondition in specifications

pre: stack not full AND object reference parameter not null

 \neg stackFull() \land (newObj \neq null)

Note on Predicates

• Be careful when translating from English

"I am interested in CS6501 and CS4501"

Which one ?

(course = CS6501) AND (course = CS4501) (course = CS6501) OR (course = CS4501)

From a study of 63 open source programs (>400,000 predicates), most predicates have few clauses [Ammann and Offutt]

- 88.5% have 1 clauses
- 9.5% have 2 clauses
- 1.35% have 3 clauses
- Only .65% have 4 or more

Try to keep the predicate simple and short. How? Refactor it.

Short Circuit Evaluation

- Impacted by the order of operation
- Evaluate an expression or predicate until an outcome is known

$$((a == b) \lor C) \land f(x)$$

If f(x) is evaluated to T, we evaluate (a == b) \vee C which can be T or F

If f(x) is evaluated to F, we stop. The outcome of the predicate is F

Short Circuit Evaluation

Stop evaluating the predicate when we know the outcome

Logic Coverage Criteria

- We use predicates in testing as follows:
 - Developing a model of the software as one or more predicates
 - Requiring tests to satisfy some combination of clauses
- Abbreviations:
 - P is the set of predicates
 - p is a single predicate in P
 - C is the set of clauses in P
 - C_p is the set of clauses in predicate p
 - c is a single clause in C

Predicate Coverage (PC)

- For each *p* in *P*, TR contains two requirements:
 - *p* evaluates to true
 - *p* evaluates to false

"Decision coverage"

$$p = ((a == b) \lor C) \land f(x)$$

Need 2 test cases to satisfy PC

а	b	С	f(x)	р
3 -	Г 3	Т	Т	Т
4 I	= 3	F	Т	F

 PC does not evaluate all the clauses, especially in the presence of short circuit evaluation

Clause Coverage (CC)

- For each *c* in *C*, TR contains two requirements:
 - c evaluates to true
 - c evaluates to false

"Condition coverage"

$$p = ((a == b) \lor C) \land f(x)$$

(a == b) evaluates to T, F C evaluates to T, F f(x) evaluates to T, F

а	b	С	f(x)	р	
3	T 3	T	F	F	
4	F 3	F	Т	F	

Need 2 test cases to satisfy CC

- CC does not always ensure PC
- The simplest solution is to test all combinations

© Praphamontripong

Combinatorial Coverage (CoC)

Evaluate all possible combination of truth values

"Multiple Condition coverage"

$$p = ((a == b) \lor C) \land f(x)$$

а		b	С	f(x)	р
3	T	3	Т	Т	Т
3	T	3	Т	F	F
3	T	3	F	Т	Т
3	T	3	F	F	F
4	F	3	Т	Т	Т
4	F	3	Т	F	F
4	F	3	F	Т	F
4	F	3	F	F	F

Need 2^{N} test cases to satisfy CoC, where N = number of clauses

Note on CoC

- Coc is simple and comprehensive
- But quite expensive
- 2^{N} tests, where N is the number of clauses
 - Impractical for predicates with more than 3 or 4 clauses
- The literature has lots of suggestions some confusing
- The general idea is simple:

Test each clause that makes a big difference ... "active clause"

Revisit CoC Example

Which clause makes a big difference

$$p = ((a == b) \lor C) \land f(x)$$

Active Clauses

 To really test the results of a clause, the clause should be the determining factor in the value of the predicate

Determination

- A clause c_i in predicate p, called the major clause, determines p if an only if the values of the remaining minor clauses c_j are such that changing c_i changes the value p
- That is:
 - Major clause the clause (being considered) that determine the predicate
 - Minor clause all other clauses in the predicate
- This is considered to make the clause active

Determination

- Goal: Find tests for each clause when the clause determines the value of the predicate
- Determination: the conditions under which a clause solely determines the outcome of a predicate
 - Given a major clause c_i in a predicate p, c_i determines p if the minor clauses $c_j \neq c_i$ $(j \neq i)$
 - Major clause "active clause" controls the behavior
- Consider $p = a \vee b$
 - If b = true, the value of a does not matter
 - If b = false, the value of a is the determining factor in the value of the predicate

Revisit Coc Example (again)

Which clause determines the predicate

$$p = ((a == b) \lor C) \land f(x)$$

f(x) determines the predicate – but when ??

Deriving Determination Predicates, Using Mathematical Approach

p = **a** ∧ (**b** ∨ **c**)

 $\begin{array}{ll} p_b &= p_{b=true} \oplus p_{b=false} \\ &= (a \land (true \lor c)) \oplus (a \land (false \lor c)) \\ &= (a \land true) \oplus (a \land c) \\ &= a \oplus (a \land c) \\ &= a \land \neg c \end{array}$

$$p_c = p_{c=true} \oplus p_{c=false}$$

= $(a \land (b \lor true)) \oplus (a \land (b \lor false))$
= $(a \land true) \oplus (a \land b)$
= $a \oplus (a \land b)$
= $a \land \neg b$

$$p = a \land (b \lor c)$$

- $p_a = p_{a=true} \oplus p_{a=false}$
 - = (true \land (b \lor c)) \oplus (false \land (b \lor c)) = (b \lor c) \oplus false

Major clause: a

$$= b \lor c$$

row	а	b	С	р	p _a	р _ь	р _с
1	Т	Т	Т	Т	Т		
2	Т	Т		Т	Т		
3	Т		Т	Т	Т		
4	Т						
5		Т	Т		Т		
6		Т			Т		
7			Т		Т		
8							

(Fill in a table to make it easy to read)

$$p = a \land (b \lor c)$$

Major clause: b

 $p_b = p_{b=true} \oplus p_{b=false}$ = $(a \land (true \lor c)) \oplus (a \land (false \lor c))$ = $(a \land true) \oplus (a \land c)$ = $a \oplus (a \land c)$ = $a \land \neg c$

row	а	b	С	р	p a	p _b	p _c
1	Т	Т	Т	Т	Т		
2	Т	Т		Т	Т	Т	
3	Т		Т	Т	Т		
4	Т					Т	
5		Т	Т		Т		
6		Т			Т		
7			Т		Т		
8							

(Fill in a table to make it easy to read)

$$p = a \land (b \lor c)$$

Major clause: c

- $\begin{array}{ll} p_c &= p_{c=true} \oplus p_{c=false} \\ &= (a \land (b \lor true)) \oplus (a \land (b \lor false)) \\ &= (a \land true) \oplus (a \land b) \\ &= a \oplus (a \land b) \end{array}$
 - $= a \wedge \neg b$

row	а	b	С	р	p _a	p _b	р _с
1	Т	Т	Т	Т	Т		
2	Т	Т		Т	Т	Т	
3	Т		Т	Т	Т		Т
4	Т					Т	Т
5		Т	Т		Т		
6		Т			Т		
7			Т		Т		
8							

(Fill in a table to make it easy to read)

Deriving Determination Predicates, Using Tabular Approach

Identifying Determination Using Truth Table

$$\mathbf{p} = \mathbf{a} \land (\mathbf{b} \lor \mathbf{c})$$

Major clause: a

Identifying Determination Using Truth Table

$$\mathbf{p} = \mathbf{a} \land (\mathbf{b} \lor \mathbf{c})$$

Major clause: **b**

Identifying Determination Using Truth Table

$$\mathbf{p} = \mathbf{a} \land (\mathbf{b} \lor \mathbf{c})$$

Major clause: c

What's next?

- Use determination
- Apply logic coverage criteria to derive test requirements and design test cases
 - Active Clause Coverage (ACC)
 - General Active Clause Coverage (GACC)
 - Correlated Active Clause Coverage (CACC)
 - Restricted Active Clause Coverage (RACC)