Logic Coverage

CS 3250
Software Testing

[Ammann and Offutt, “Introduction to Software Testing,” Ch. 8]

Spring 2024 — University of Virginia © Praphamontripong 1

Structures for Criteria-Based Testing

Four structures for modeling software

| = |

[
Graph Logic Syntax

L Source L source L source

— Models

— Design — Specs

Applied to
Applied to

(©)
-
©
Qv
a

(@)
<

— Specs — FSMs — Integration

— Use cases — DNF — Inputs

El &

Spring 2024— University of Virginia © Praphamontripong

Overview

- Logic coverage ensures that tests not only reach certain
locations, but the internal state is infected by trying multiple
combinations of truth assignments to the expressions

- Covering logic expressions is required by the US Federal
Aviation Administration for safety critical avionics software

- Logical expressions can come from many sources

Decisions in programs
FSMs and statecharts
Requirements

SQL queries

- Tests are intended to choose some subset of the total number of
truth assignments to the expressions

Spring 2024— University of Virginia © Praphamontripong

Logic Predicates and Clauses

Predicate: An expression that evaluates to a Boolean value

May contain
Boolean variable
Non-Boolean variables that contain >, <, =
Boolean function calls

Created by the logical operators

negation operator
and operator

or operator
implication operator
exclusive or operator
equivalence operator

Clause: A predicate with no logical operators

Spring 2024— University of Virginia © Praphamontripong

== Db) v (C A f(X)) <—|
% A predicate with
logical operators

Three clauses

A relational expression (a == b)
A boolean variable C
A boolean-valued function p(x)

((a =Db) v C) A ((a b) v f(Xx)) ﬁ

W A predicate with
logical operators

Three clauses

A relational expression (a == b)
A boolean variable C
A boolean-valued function p(x)

e
-
G
©
2
-
o
0
=
©
A=
)
@)
—

Spring 2024— University of Virginia © Praphamontripong

Note on Predicates

- Most predicates have few clauses

- Sources of predicates

Decisions in program source code

public boolean isSatisfactory()
{
if ((good && fast) || (good && cheap) || (fast && cheap))
return true;
else
return false;

(good A fast) v (good A cheap) v (fast A cheap)

- Guards in finite state machines
button2 == true (when gear == park)
(gear == park) A (button2 == true)

Precondition in specifications
pre: stack not full AND object reference parameter not null

— stackFull() A (newObj # null)

Spring 2024— University of Virginia © Praphamontripong

Note on Predicates

Be careful when translating from English
"I am interested in CS6501 and CS4501”

4

Which one ? | (course = CS6501) AND (course = CS4501)
(course = CS6501) OR (course = CS4501) Qﬂ

From a study of 63 open source programs (>400,000 predicates),
most predicates have few clauses [Ammann and Offutt]

« 88.5% have 1 clauses

* 9.5% have 2 clauses

« 1.35% have 3 clauses

* Only .65% have 4 or more

Try to keep the predicate simple and short.
How? Refactor it.

Spring 2024— University of Virginia © Praphamontripong

Short Circuit Evaluation

- Impacted by the order of operation

- Evaluate an expression or predicate until an outcome
is known

((@a == b) v C)[A]f(x)

|

If f(x) is evaluated to T, we evaluate
(a ==Db)vCwhichcanbeTorF

If f(x) is evaluated to F, we stop. The
outcome of the predicate is F

Spring 2024— University of Virginia © Praphamontripong

Short Circuit Evaluation

_ Method call - something
Boolean variable can change

| |

if (isHungry|&&|Ctime = fCtime)))

.

If isHungry is evaluated to T, we evaluate
(time == f(time)) which can be T or F

If isHungry is evaluated to F, we stop. The
outcome of the predicate is F

Stop evaluating the predicate when we know the outcome

Spring 2024— University of Virginia © Praphamontripong

Logic Coverage Criteria

- We use predicates in testing as follows:

- Developing a model of the software as one or more
predicates

- Requiring tests to satisfy some combination of clauses

- Abbreviations:
- P is the set of predicates
- pis a single predicate in P
- Cis the set of clauses in P

- C, is the set of clauses in predicate p

- cis a single clause in C

Spring 2024— University of Virginia © Praphamontripong

Predicate Coverage (PC)

For each p in P, TR contains two requirements:

- p evaluates to true

- p evaluates to false Decision coverage

P =((a==Db)vC_C)Af(x)

Need 2 test cases to satisfy PC

PC does not evaluate all the clauses, especially in the
presence of short circuit evaluation

Spring 2024— University of Virginia © Praphamontripong

Clause Coverage (CC)

For each c in C, TR contains two requirements:

- C evaluates to true

- ¢ evaluates to false "Condition coverage”

Pp=((a==Db)vC_C)Aaf(x) (a == b) evaluates to
C evaluates to|TJF

f(x) evaluates to

Need 2 test cases to satisfy CC

CC does not always ensure PC

- The simplest solution is to test all combinations

Spring 2024— University of Virginia © Praphamontripong

Combinatorial Coverage (CoC)

Evaluate all possible combination of truth values

“"Multiple Condition coverage”

Pp=((a==Db)v_C)Aaf(x)

ni i e e A R A -

AR RARWWWW

-

Need 2N test cases to satisfy CoC, where N = number of clauses

Spring 2024— University of Virginia © Praphamontripong

Note on CoC

Coc is simple and comprehensive
But quite expensive

2N tests, where N is the number of clauses

- Impractical for predicates with more than 3 or 4 clauses

- The literature has lots of suggestions — some confusing

- The general idea is simple:

Test each clause that makes a big difference ...
"active clause”

Spring 2024— University of Virginia © Praphamontripong

Revisit CoC Example

Which clause makes a big difference

Pp=((a==Db)v_C)Aaf(x)
C

WWWWWwWww w (o

AR RARIWWWIW| Y

M M (M === =
i B R e e e A e e B =

Spring 2024— University of Virginia © Praphamontripong

Active Clauses

- To really test the results of a clause, the clause should be
the determining factor in the value of the predicate

Determination

- A clause ¢; in predicate p, called the major clause, determines
p if an only if the values of the remaining minor clauses c; are
such that changing c¢; changes the value p

- That is:

- Major clause - the clause (being considered) that
determine the predicate

- Minor clause - all other clauses in the predicate

- This is considered to make the clause active

Spring 2024— University of Virginia © Praphamontripong

Determination

- Goal: Find tests for each clause when the clause
determines the value of the predicate

- Determination: the conditions under which a clause solely
determines the outcome of a predicate

- Given a major clause ¢; in a predicate p, ¢; determines p if
the minor clauses ¢; # ¢;(J # /)

- Major clause - “active clause” - controls the behavior

- Consider p = a v b
- If b = true, the value of a does not matter

- If b = false, the value of a is the determining factor in the
value of the predicate

Spring 2024— University of Virginia © Praphamontripong

Revisit Coc Example (again)

Which clause determines the predicate

Pp=((a==Db)v_C)Aaf(x)

f(x)

-

f(x) determines
the predicate -
but when ??

(AP WWW I W|Y

M| MMM || (o

B e R R B B B
W Wlwlwlww w|lwl|o
T M=l |{=| [T |=|=|O

AR

Spring 2024— University of Virginia © Praphamontripong

Deriving
Determination Predicates,

Using Mathematical Approach

Spring 2024— University of Virginia © Praphamontripong

Deriving (Mathematical Approach)
Determination Predicates

p=aan(bvc)

Pa = Pa=true ® Pa=false

(true A (b v c)) @ (false A (b v C))
(b v c) @ false

bvcC

Pb=true ® Pb=rfalse

(a A (true v c)) @ (a A (false v ¢))
(a A true) @ (a A C)

a®(anc

d A C

= Pc=true @ Pc=false

= (a A (bvtrue)) @ (a A (b v false))
(a A true) @ (a A b)
a®(anb)
anAn-b

Spring 2024— University of Virginia

Deriving (Mathematical Approach)
Determination Predicates

P=aan (b V C) Pa=true ©® Pa=false
(true A (b v ¢)) @ (false A (b v ©))

Major clause: a (b v ¢) @ false
bvc

row

(Fill in a table to make it easy to 'read) | Blank indicates F

Spring 2024— University of Virginia © Praphamontripong

Deriving (Mathematical Approach)
Determination Predicates

Pb=true ® Pb=false

(a A (true v c)) @ (a A (false v ¢))
(a A true) @ (a A C)

a® (anc

d A —C

P Pa
T

p=aa(bvc)

Major clause: b

T
T
T

(Fill in a table to make it easy to read) Blank indicates F

Spring 2024— University of Virginia © Praphamontripong

Deriving (Mathematical Approach)
Determination Predicates

Pc=true D Pc=false

(a A (bvtrue)) @ (a A (b v false))
(a A true) @ (a A b)

a®(ananb)

a A -b

p=aa(bvc)

Major clause: c

Pa Pb
T

(Fill in a table to make it easy to read) Blank indicates F

Spring 2024— University of Virginia © Praphamontripong

Deriving
Determination Predicates,

Using Tabular Approach

Spring 2024— University of Virginia © Praphamontripong

Identifying Determination
Using Truth Table

p=ana(bvc) Major clause: a

row Pb Pc

OO N|O NP WIN|HF

Blank indicates F

Spring 2024— University of Virginia © Praphamontripong

Identifying Determination
Using Truth Table

p=ana(bvc) Major clause: b

row Pc

S| 1
15
> | 3
—>| 4
—>| 5
15| 6
S| 7
—>| 8

Blank indicates F

Spring 2024— University of Virginia © Praphamontripong

Identifying Determination
Using Truth Table

p=ana(bvc) Major clause: c

row

H

H

OO N|O NP WIN|HF

Blank indicates F
Spring 2024— University of Virginia © Praphamontripong

What's next?

Use determination

- Apply logic coverage criteria to derive test requirements
and design test cases

- Active Clause Coverage (ACQC)

- General Active Clause Coverage (GACC)

- Correlated Active Clause Coverage (CACQC)

- Restricted Active Clause Coverage (RACC)

Spring 2024— University of Virginia © Praphamontripong

